about summary refs log tree commit diff
path: root/lib/util/intcode.h
blob: 155e47e12927ddbd472f477c9748acdf1107330e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#ifndef INTCODE_H_INCLUDED
#define INTCODE_H_INCLUDED

#include "pm_config.h"  /* For uint32_t, BYTE_ORDER */

static unsigned int const pm_byteOrder = BYTE_ORDER;


typedef struct {
/*----------------------------------------------------------------------------
   This is a big-endian representation of a 32 bit integer.  I.e.
   bytes[0] is the most significant 8 bits; bytes[3] is the least
   significant 8 bits of the number in pure binary.

   On a big-endian machines, this is bit for bit identical to uint32_t.
   On a little-endian machine, it isn't.

   This is an important data type because decent file formats use
   big-endian -- they don't care if some CPU happens to use some other
   code for its own work.
-----------------------------------------------------------------------------*/
    unsigned char bytes[4];
} bigend32;


static __inline__ uint32_t
pm_uintFromBigend32(bigend32 const arg) {

    uint32_t retval;

    switch (pm_byteOrder) {
    case BIG_ENDIAN: {
        union {
            bigend32 bigend;
            uint32_t native;
        } converter;
        
        converter.bigend = arg;
        
        retval = converter.native;
    }; break;
    case LITTLE_ENDIAN: {
        retval =
            (arg.bytes[0] << 24) |
            (arg.bytes[1] << 16) |
            (arg.bytes[2] <<  8) |
            (arg.bytes[3] <<  0);
    } break;
    }
    return retval;
}



static __inline__ bigend32
pm_bigendFromUint32(uint32_t const arg) {

    bigend32 retval;

    switch (pm_byteOrder) {
    case BIG_ENDIAN: {
        union {
            bigend32 bigend;
            uint32_t native;
        } converter;
        
        converter.native = arg;

        retval = converter.bigend;
    } break;
    case LITTLE_ENDIAN: {
        uint32_t shift;
        shift = arg;
        retval.bytes[3] = shift;  /* Takes lower 8 bits */
        shift >>= 8;
        retval.bytes[2] = shift;  /* Takes lower 8 bits */
        shift >>= 8;
        retval.bytes[1] = shift;  /* Takes lower 8 bits */
        shift >>= 8;
        retval.bytes[0] = shift;  /* Takes lower 8 bits */
    } break;
    }
    return retval;
}

typedef struct {
/*----------------------------------------------------------------------------
   This is a big-endian representation of a 16 bit integer.  I.e.
   bytes[0] is the most significant 8 bits; bytes[1] is the least
   significant 8 bits of the number in pure binary.

   On a big-endian machines, this is bit for bit identical to uint16_t.
   On a little-endian machine, it isn't.

   This is an important data type because decent file formats use
   big-endian -- they don't care if some CPU happens to use some other
   code for its own work.
-----------------------------------------------------------------------------*/
    unsigned char bytes[2];
} bigend16;


static __inline__ uint16_t
pm_uintFromBigend16(bigend16 const arg) {

    uint16_t retval;

    switch (pm_byteOrder) {
    case BIG_ENDIAN: {
        union {
            bigend16 bigend;
            uint16_t native;
        } converter;
        
        converter.bigend = arg;
        
        retval = converter.native;
    }; break;
    case LITTLE_ENDIAN: {
        retval =
            (arg.bytes[0] << 16) |
            (arg.bytes[1] <<  8);
    } break;
    }
    return retval;
}



static __inline__ bigend16
pm_bigendFromUint16(uint16_t const arg) {

    bigend16 retval;

    switch (pm_byteOrder) {
    case BIG_ENDIAN: {
        union {
            bigend16 bigend;
            uint16_t native;
        } converter;
        
        converter.native = arg;

        retval = converter.bigend;
    } break;
    case LITTLE_ENDIAN: {
        uint16_t shift;
        shift = arg;
        retval.bytes[1] = shift;  /* Takes lower 8 bits */
        shift >>= 8;
        retval.bytes[0] = shift;  /* Takes lower 8 bits */
    } break;
    }
    return retval;
}

#endif