1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
|
/*=============================================================================
libpammap.c
===============================================================================
These are functions that deal with tuple hashes and tuple tables.
Both tuple hashes and tuple tables let you associate an arbitrary
integer with a tuple value. A tuple hash lets you look up the one
integer value (if any) associated with a given tuple value, having
the low memory and execution time characteristics of a hash table.
A tuple table lets you scan all the values, being a table of elements
that consist of an ordered pair of a tuple value and integer.
This file was originally written by Bryan Henderson and is contributed
to the public domain by him and subsequent authors.
=============================================================================*/
#include <assert.h>
#include "netpbm/pm_c_util.h"
#include "netpbm/mallocvar.h"
#include "netpbm/nstring.h"
#include "pam.h"
#include "pammap.h"
#define HASH_SIZE 20023
unsigned int
pnm_hashtuple(struct pam * const pamP,
tuple const tuple) {
/*----------------------------------------------------------------------------
Return the hash value of the tuple 'tuple' -- i.e. an index into a hash
table.
-----------------------------------------------------------------------------*/
unsigned int const hash_factor[] = {1, 33, 33*33};
unsigned int i;
unsigned int hash;
hash = 0; /* initial value */
for (i = 0; i < MIN(pamP->depth, 3); ++i) {
hash += tuple[i] * hash_factor[i];
}
hash %= HASH_SIZE;
return hash;
}
tuplehash
pnm_createtuplehash(void) {
/*----------------------------------------------------------------------------
Create an empty tuple hash -- i.e. a hash table of zero length hash chains.
-----------------------------------------------------------------------------*/
tuplehash retval;
unsigned int i;
MALLOCARRAY(retval, HASH_SIZE);
if (retval == NULL)
pm_error("Out of memory allocating tuple hash of size %u",
HASH_SIZE);
for (i = 0; i < HASH_SIZE; ++i)
retval[i] = NULL;
return retval;
}
void
pnm_destroytuplehash(tuplehash const tuplehash) {
int i;
/* Free the chains */
for (i = 0; i < HASH_SIZE; ++i) {
struct tupleint_list_item * p;
struct tupleint_list_item * next;
/* Walk this chain, freeing each element */
for (p = tuplehash[i]; p; p = next) {
next = p->next;
free(p);
}
}
/* Free the table of chains */
free(tuplehash);
}
static struct tupleint_list_item *
allocTupleIntListItem(struct pam * const pamP) {
/* This is complicated by the fact that the last element of a
tupleint_list_item is of variable length, because the last element
of _it_ is of variable length
*/
struct tupleint_list_item * retval;
unsigned int const size =
sizeof(*retval) - sizeof(retval->tupleint.tuple)
+ pamP->depth * sizeof(sample);
retval = (struct tupleint_list_item *) malloc(size);
return retval;
}
void
pnm_addtotuplehash(struct pam * const pamP,
tuplehash const tuplehash,
tuple const tupletoadd,
int const value,
int * const fitsP) {
/*----------------------------------------------------------------------------
Add a tuple value to the hash -- assume it isn't already there.
Allocate new space for the tuple value and the hash chain element.
If we can't allocate space for the new hash chain element, don't
change anything and return *fitsP = FALSE;
-----------------------------------------------------------------------------*/
struct tupleint_list_item * const listItemP = allocTupleIntListItem(pamP);
if (listItemP == NULL)
*fitsP = FALSE;
else {
unsigned int const hashvalue = pnm_hashtuple(pamP, tupletoadd);
*fitsP = TRUE;
pnm_assigntuple(pamP, listItemP->tupleint.tuple, tupletoadd);
listItemP->tupleint.value = value;
listItemP->next = tuplehash[hashvalue];
tuplehash[hashvalue] = listItemP;
}
}
void
pnm_lookuptuple(struct pam * const pamP,
const tuplehash tuplehash,
const tuple searchval,
int * const foundP,
int * const retvalP) {
unsigned int const hashvalue = pnm_hashtuple(pamP, searchval);
struct tupleint_list_item * p;
struct tupleint_list_item * found;
found = NULL; /* None found yet */
for (p = tuplehash[hashvalue]; p && !found; p = p->next)
if (pnm_tupleequal(pamP, p->tupleint.tuple, searchval)) {
found = p;
}
if (found) {
*foundP = TRUE;
*retvalP = found->tupleint.value;
} else
*foundP = FALSE;
}
static void
addColorOccurrenceToHash(tuple const color,
tuplehash const tuplefreqhash,
struct pam * const pamP,
unsigned int const maxsize,
unsigned int * const sizeP,
bool * const fullP) {
unsigned int const hashvalue = pnm_hashtuple(pamP, color);
struct tupleint_list_item *p;
for (p = tuplefreqhash[hashvalue];
p && !pnm_tupleequal(pamP, p->tupleint.tuple, color);
p = p->next);
if (p) {
/* It's in the hash; just tally one more occurrence */
++p->tupleint.value;
*fullP = FALSE;
} else {
/* It's not in the hash yet, so add it (if allowed) */
++(*sizeP);
if (maxsize > 0 && *sizeP > maxsize)
*fullP = TRUE;
else {
*fullP = FALSE;
p = allocTupleIntListItem(pamP);
if (p == NULL)
pm_error("out of memory computing hash table");
pnm_assigntuple(pamP, p->tupleint.tuple, color);
p->tupleint.value = 1;
p->next = tuplefreqhash[hashvalue];
tuplefreqhash[hashvalue] = p;
}
}
}
void
pnm_addtuplefreqoccurrence(struct pam * const pamP,
tuple const value,
tuplehash const tuplefreqhash,
int * const firstOccurrenceP) {
unsigned int const hashvalue = pnm_hashtuple(pamP, value);
struct tupleint_list_item * p;
for (p = tuplefreqhash[hashvalue];
p && !pnm_tupleequal(pamP, p->tupleint.tuple, value);
p = p->next);
if (p) {
/* It's in the hash; just tally one more occurrence */
++p->tupleint.value;
*firstOccurrenceP = FALSE;
} else {
struct tupleint_list_item * p;
/* It's not in the hash yet, so add it */
*firstOccurrenceP = TRUE;
p = allocTupleIntListItem(pamP);
if (p == NULL)
pm_error("out of memory computing hash table");
pnm_assigntuple(pamP, p->tupleint.tuple, value);
p->tupleint.value = 1;
p->next = tuplefreqhash[hashvalue];
tuplefreqhash[hashvalue] = p;
}
}
static void
computehashrecoverable(struct pam * const pamP,
tuple ** const tupleArray,
unsigned int const maxsize,
unsigned int const newDepth,
sample const newMaxval,
unsigned int * const sizeP,
tuplehash * const tuplefreqhashP,
tuple ** const rowbufferP,
tuple * const colorP) {
/*----------------------------------------------------------------------------
This is computetuplefreqhash(), only it leaves a trail so that if it
happens to longjmp out because of a failed memory allocation, the
setjmp'er can cleanup whatever it had done so far.
-----------------------------------------------------------------------------*/
unsigned int row;
struct pam freqPam;
bool full;
freqPam = *pamP;
freqPam.maxval = newMaxval;
freqPam.depth = newDepth;
assert(freqPam.depth <= pamP->depth);
*tuplefreqhashP = pnm_createtuplehash();
*sizeP = 0; /* initial value */
*rowbufferP = pnm_allocpamrow(pamP);
*colorP = pnm_allocpamtuple(pamP);
full = FALSE; /* initial value */
/* Go through the entire raster, building a hash table of
tuple values.
*/
for (row = 0; row < pamP->height && !full; ++row) {
unsigned int col;
const tuple * tuplerow; /* The row of tuples we are processing */
if (tupleArray)
tuplerow = tupleArray[row];
else {
pnm_readpamrow(pamP, *rowbufferP);
tuplerow = *rowbufferP;
}
for (col = 0; col < pamP->width && !full; ++col) {
pnm_scaletuple(pamP, *colorP, tuplerow[col], freqPam.maxval);
addColorOccurrenceToHash(
*colorP, *tuplefreqhashP, &freqPam, maxsize, sizeP, &full);
}
}
pnm_freepamtuple(*colorP); *colorP = NULL;
pnm_freepamrow(*rowbufferP); *rowbufferP = NULL;
if (full) {
pnm_destroytuplehash(*tuplefreqhashP);
*tuplefreqhashP = NULL;
}
}
static tuplehash
computetuplefreqhash(struct pam * const pamP,
tuple ** const tupleArray,
unsigned int const maxsize,
unsigned int const newDepth,
sample const newMaxval,
unsigned int * const sizeP) {
/*----------------------------------------------------------------------------
Compute a tuple frequency hash from a PAM. This is a hash that gives
you the number of times a given tuple value occurs in the PAM. You can
supply the input PAM in one of two ways:
1) a two-dimensional array of tuples tupleArray[][]; In this case,
'tupleArray' is non-NULL.
2) an open PAM file, positioned to the raster. In this case,
'tupleArray' is NULL. *pamP contains the file descriptor.
We return with the file still open and its position undefined.
In either case, *pamP contains parameters of the tuple array.
Return the number of unique tuple values found as *sizeP.
However, if the number of unique tuple values is greater than 'maxsize',
return a null return value and *sizeP undefined.
The tuple values that index the hash have depth 'newDepth'. We look at
only the first 'newDepth' planes of the input. Caler must ensure that
the input has at least that many planes.
The tuple values that index the hash are scaled to a new maxval of
'newMaxval'. E.g. if the input has maxval 100 and 'newMaxval' is
50, and a particular tuple has sample value 50, it would be counted
as sample value 25 in the hash.
-----------------------------------------------------------------------------*/
tuplehash tuplefreqhash;
tuple * rowbuffer; /* malloc'ed */
/* Buffer for a row read from the input file; undefined (but still
allocated) if input is not from a file.
*/
tuple color;
/* The color currently being added, scaled to the new maxval */
jmp_buf jmpbuf;
jmp_buf * origJmpbufP;
/* Initialize to "none" for purposes of error recovery */
tuplefreqhash = NULL;
rowbuffer = NULL;
color = NULL;
if (setjmp(jmpbuf) != 0) {
if (color)
pnm_freepamtuple(color);
if (rowbuffer)
pnm_freepamrow(rowbuffer);
if (tuplefreqhash)
pnm_destroytuplehash(tuplefreqhash);
pm_setjmpbuf(origJmpbufP);
pm_longjmp();
} else {
pm_setjmpbufsave(&jmpbuf, &origJmpbufP);
computehashrecoverable(pamP, tupleArray, maxsize, newDepth, newMaxval,
sizeP, &tuplefreqhash, &rowbuffer, &color);
pm_setjmpbuf(origJmpbufP);
}
return tuplefreqhash;
}
tuplehash
pnm_computetuplefreqhash(struct pam * const pamP,
tuple ** const tupleArray,
unsigned int const maxsize,
unsigned int * const sizeP) {
/*----------------------------------------------------------------------------
Compute the tuple frequency hash for the tuple array tupleArray[][].
-----------------------------------------------------------------------------*/
return computetuplefreqhash(pamP, tupleArray, maxsize,
pamP->depth, pamP->maxval,
sizeP);
}
static void
alloctupletable(const struct pam * const pamP,
unsigned int const size,
tupletable * const tupletableP,
const char ** const errorP) {
if (UINT_MAX / sizeof(struct tupleint) < size)
pm_asprintf(errorP, "size %u is too big for arithmetic", size);
else {
unsigned int const mainTableSize = size * sizeof(struct tupleint *);
unsigned int const tupleIntSize =
sizeof(struct tupleint) - sizeof(sample)
+ pamP->depth * sizeof(sample);
/* To save the enormous amount of time it could take to allocate
each individual tuple, we do a trick here and allocate everything
as a single malloc block and suballocate internally.
*/
if ((UINT_MAX - mainTableSize) / tupleIntSize < size)
pm_asprintf(errorP, "size %u is too big for arithmetic", size);
else {
unsigned int const allocSize = mainTableSize + size * tupleIntSize;
void * pool;
pool = malloc(allocSize);
if (!pool)
pm_asprintf(errorP,
"Unable to allocate %u bytes for a %u-entry "
"tuple table", allocSize, size);
else {
tupletable const tbl = (tupletable) pool;
unsigned int i;
*errorP = NULL;
for (i = 0; i < size; ++i)
tbl[i] = (struct tupleint *)
((char*)pool + mainTableSize + i * tupleIntSize);
*tupletableP = tbl;
}
}
}
}
tupletable
pnm_alloctupletable(const struct pam * const pamP,
unsigned int const size) {
tupletable retval;
const char * error;
alloctupletable(pamP, size, &retval, &error);
if (error) {
pm_errormsg("%s", error);
pm_strfree(error);
pm_longjmp();
}
return retval;
}
void
pnm_freetupletable(const struct pam * const pamP,
tupletable const tupletable) {
/* Note that the address 'tupletable' is, to the operating system,
the address of a larger block of memory that contains not only
tupletable, but all the samples to which it points (e.g.
tupletable[0].tuple[0])
*/
free(tupletable);
}
void
pnm_freetupletable2(const struct pam * const pamP,
tupletable2 const tupletable) {
pnm_freetupletable(pamP, tupletable.table);
}
static tupletable
tuplehashtotable(const struct pam * const pamP,
tuplehash const tuplehash,
unsigned int const allocsize) {
/*----------------------------------------------------------------------------
Create a tuple table containing the info from a tuple hash. Allocate
space in the table for 'allocsize' elements even if there aren't that
many tuple values in the input hash. That's so the caller has room
for expansion.
Caller must ensure that 'allocsize' is at least as many tuple values
as there are in the input hash.
We allocate new space for all the table contents; there are no pointers
in the table to tuples or anything else in existing space.
-----------------------------------------------------------------------------*/
tupletable tupletable;
const char * error;
alloctupletable(pamP, allocsize, &tupletable, &error);
if (error) {
pm_errormsg("%s", error);
pm_strfree(error);
pm_longjmp();
} else {
unsigned int i, j;
/* Loop through the hash table. */
j = 0;
for (i = 0; i < HASH_SIZE; ++i) {
/* Walk this hash chain */
struct tupleint_list_item * p;
for (p = tuplehash[i]; p; p = p->next) {
assert(j < allocsize);
tupletable[j]->value = p->tupleint.value;
pnm_assigntuple(pamP, tupletable[j]->tuple, p->tupleint.tuple);
++j;
}
}
}
return tupletable;
}
tupletable
pnm_tuplehashtotable(const struct pam * const pamP,
tuplehash const tuplehash,
unsigned int const allocsize) {
tupletable tupletable;
tupletable = tuplehashtotable(pamP, tuplehash, allocsize);
if (tupletable == NULL)
pm_error("out of memory generating tuple table");
return tupletable;
}
tuplehash
pnm_computetupletablehash(struct pam * const pamP,
tupletable const tupletable,
unsigned int const tupletableSize) {
/*----------------------------------------------------------------------------
Create a tuple hash containing indices into the tuple table
'tupletable'. The hash index for the hash is the value of a tuple;
the hash value is the tuple table index for the element in the
tuple table that contains that tuple value.
Assume there are no duplicate tuple values in the tuple table.
We allocate space for the main hash table and all the elements of the
hash chains.
-----------------------------------------------------------------------------*/
tuplehash tupletablehash;
unsigned int i;
int fits;
tupletablehash = pnm_createtuplehash();
fits = TRUE; /* initial assumption */
for (i = 0; i < tupletableSize && fits; ++i) {
pnm_addtotuplehash(pamP, tupletablehash,
tupletable[i]->tuple, i, &fits);
}
if (!fits) {
pnm_destroytuplehash(tupletablehash);
pm_error("Out of memory computing tuple hash from tuple table");
}
return tupletablehash;
}
tupletable
pnm_computetuplefreqtable3(struct pam * const pamP,
tuple ** const tupleArray,
unsigned int const maxsize,
unsigned int const newDepth,
sample const newMaxval,
unsigned int * const countP) {
/*----------------------------------------------------------------------------
Compute a tuple frequency table from a PAM image. This is an
array that tells how many times each tuple value occurs in the
image.
Except for the format of the output, this function is the same as
computetuplefreqhash().
If there are more than 'maxsize' unique tuple values in tupleArray[][],
give up.
Return the array in newly malloc'ed storage. Allocate space for
'maxsize' entries even if there aren't that many distinct tuple
values in tupleArray[]. That's so the caller has room for
expansion.
If 'maxsize' is zero, allocate exactly as much space as there are
distinct tuple values in tupleArray[], and don't give up no matter
how many tuple values we find (except, of course, we abort if we
can't get enough memory).
Return the number of unique tuple values in tupleArray[][] as
*countP.
The tuples in the table have depth 'newDepth'. We look at
only the first 'newDepth' planes of the input. If the input doesn't
have that many planes, we throw an error.
Scale the tuple values to a new maxval of 'newMaxval' before
processing them. E.g. if the input has maxval 100 and 'newMaxval'
is 50, and a particular tuple has sample value 50, it would be
listed as sample value 25 in the output table. This makes the
output table smaller and the processing time less.
-----------------------------------------------------------------------------*/
tuplehash tuplefreqhash;
tupletable tuplefreqtable;
unsigned int uniqueCount;
if (newDepth > pamP->depth)
pm_error("pnm_computetuplefreqtable3 called with 'newDepth' "
"argument (%u) greater than input depth (%u)",
newDepth, pamP->depth);
tuplefreqhash = computetuplefreqhash(pamP, tupleArray, maxsize,
newDepth, newMaxval, &uniqueCount);
if (tuplefreqhash == NULL)
tuplefreqtable = NULL;
else {
unsigned int tableSize = (maxsize == 0 ? uniqueCount : maxsize);
assert(tableSize >= uniqueCount);
tuplefreqtable = tuplehashtotable(pamP, tuplefreqhash, tableSize);
pnm_destroytuplehash(tuplefreqhash);
if (tuplefreqtable == NULL)
pm_error("Out of memory generating tuple table");
}
*countP = uniqueCount;
return tuplefreqtable;
}
tupletable
pnm_computetuplefreqtable2(struct pam * const pamP,
tuple ** const tupleArray,
unsigned int const maxsize,
sample const newMaxval,
unsigned int * const countP) {
return
pnm_computetuplefreqtable3(pamP, tupleArray, maxsize,
pamP->depth, newMaxval, countP);
}
tupletable
pnm_computetuplefreqtable(struct pam * const pamP,
tuple ** const tupleArray,
unsigned int const maxsize,
unsigned int * const sizeP) {
return pnm_computetuplefreqtable2(pamP, tupleArray, maxsize, pamP->maxval,
sizeP);
}
char*
pam_colorname(struct pam * const pamP,
tuple const color,
enum colornameFormat const format) {
unsigned int r, g, b;
FILE* f;
static char colorname[200];
r = pnm_scalesample(color[PAM_RED_PLANE], pamP->maxval, 255);
g = pnm_scalesample(color[PAM_GRN_PLANE], pamP->maxval, 255);
b = pnm_scalesample(color[PAM_BLU_PLANE], pamP->maxval, 255);
f = pm_openColornameFile(NULL, format == PAM_COLORNAME_ENGLISH);
if (f != NULL) {
unsigned int best_diff;
bool done;
best_diff = 32767;
done = FALSE;
while (!done) {
struct colorfile_entry const ce = pm_colorget(f);
if (ce.colorname) {
unsigned int const this_diff =
abs((int)r - (int)ce.r) +
abs((int)g - (int)ce.g) +
abs((int)b - (int)ce.b);
if (this_diff < best_diff) {
best_diff = this_diff;
strcpy(colorname, ce.colorname);
}
} else
done = TRUE;
}
fclose(f);
if (best_diff != 32767 &&
(best_diff == 0 || format == PAM_COLORNAME_ENGLISH))
return colorname;
}
/* Color lookup failed, but caller is willing to take an X11-style
hex specifier, so return that.
*/
sprintf(colorname, "#%02x%02x%02x", r, g, b);
return colorname;
}
|