1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
/*=============================================================================
boundaries.c
===============================================================================
Boundary buffer functions
New triangles are drawn one row at a time, and for every such row we have
left and right boundary columns within the frame buffer such that the
fraction of the triangle's area within that scanline is enclosed between
those two points (inclusive). Those coordinates may correspond to columns
outside the frame buffer's actual limits, in which case proper
post-processing should be made wherever such coordinates are used to
actually plot anything into the frame buffer.
=============================================================================*/
#include <stdlib.h>
#include <netpbm/mallocvar.h>
#include <netpbm/pm.h>
#include "varying.h"
#include "utils.h"
#include "boundaries.h"
void
init_boundary_buffer(boundary_info * const bi,
int16_t const height) {
MALLOCARRAY(bi->buffer, height * 2);
if (!bi->buffer) {
pm_error("unable to get memory for %u-row high boundary buffer.",
height);
}
}
void
free_boundary_buffer(boundary_info * bi) {
free(bi->buffer);
}
bool
gen_triangle_boundaries(Xy const xy,
boundary_info * const bi,
int16_t const width,
int16_t const height) {
/*----------------------------------------------------------------------------
Generate an entry in the boundary buffer for the boundaries of every
VISIBLE row of a particular triangle. In case there is no such row,
start_scanline is accordingly set to -1. "xy" is a 3-element array
of pairs of integers representing the coordinates of the vertices of
a triangle. Those vertices MUST be already sorted in order from the
uppermost to the lowermost vertex (which is what draw_triangle, the
only function which uses this one, does with the help of sort3).
The return value indicates whether the middle vertex is to the left of
the line connecting the top vertex to the bottom vertex or not.
-----------------------------------------------------------------------------*/
int16_t leftmost_x;
int16_t rightmost_x;
int mid_is_to_the_left;
varying top_x;
varying mid_x;
varying bot_x;
varying top2mid;
varying top2bot;
varying mid2bot;
varying* upper_left;
varying* lower_left;
varying* upper_right;
varying* lower_right;
varying* left[2];
varying* right[2];
int16_t* num_rows_ptr[2];
int32_t y;
int32_t i;
uint8_t k;
leftmost_x = xy._[0][0]; /* initial value */
rightmost_x = xy._[0][0]; /* initial value */
bi->start_scanline = -1;
bi->num_upper_rows = 0;
bi->num_lower_rows = 0;
if (xy._[2][1] < 0 || xy._[0][1] >= height) {
/* Triangle is either completely above the uppermost scanline or
completely below the lowermost scanline.
*/
return false; /* Actual value doesn't matter. */
}
{
unsigned int i;
for (i = 1; i < 3; i++) {
if (xy._[i][0] < leftmost_x) {
leftmost_x = xy._[i][0];
}
if (xy._[i][0] > rightmost_x) {
rightmost_x = xy._[i][0];
}
}
}
if (rightmost_x < 0 || leftmost_x >= width) {
/* Triangle is either completely to the left of the leftmost
framebuffer column or completely to the right of the rightmost
framebuffer column.
*/
return false; /* Actual value doesn't matter. */
}
if (xy._[0][1] == xy._[1][1] && xy._[1][1] == xy._[2][1]) {
/* Triangle is degenerate: its visual representation consists only of
a horizontal straight line.
*/
bi->start_scanline = xy._[0][1];
return false; /* Actual value doesn't matter. */
}
mid_is_to_the_left = 2;
int32_to_varying_array(&xy._[0][0], &top_x, 1);
int32_to_varying_array(&xy._[1][0], &mid_x, 1);
int32_to_varying_array(&xy._[2][0], &bot_x, 1);
if (xy._[0][1] == xy._[1][1]) {
/* Triangle has only a lower part. */
k = 1;
mid_is_to_the_left = 0;
} else {
k = 0;
if (xy._[1][1] == xy._[2][1]) {
/* Triangle has only an upper part (plus the row of the middle
vertex).
*/
mid_is_to_the_left = 1;
}
}
prepare_for_interpolation(&top_x, &mid_x, &top2mid, xy._[1][1] - xy._[0][1], 1);
prepare_for_interpolation(&top_x, &bot_x, &top2bot, xy._[2][1] - xy._[0][1], 1);
prepare_for_interpolation(&mid_x, &bot_x, &mid2bot, xy._[2][1] - xy._[1][1], 1);
if (mid_is_to_the_left == 2) {
mid_is_to_the_left = top2mid.s < top2bot.s;
}
if (mid_is_to_the_left) {
upper_left = &top2mid;
lower_left = &mid2bot;
upper_right = &top2bot;
lower_right = upper_right;
} else {
upper_right = &top2mid;
lower_right = &mid2bot;
upper_left = &top2bot;
lower_left = upper_left;
}
left[0] = upper_left;
left[1] = lower_left;
right[0] = upper_right;
right[1] = lower_right;
num_rows_ptr[0] = &bi->num_upper_rows;
num_rows_ptr[1] = &bi->num_lower_rows;
y = xy._[0][1];
i = 0;
while (k < 2) {
int32_t end;
end = xy._[k + 1][1] + k; /* initial value */
if (y < 0) {
int32_t delta;
if (end > 0) {
delta = -y;
} else {
delta = xy._[k + 1][1] - y;
}
y += delta;
multi_step_up(left[k], delta, 1);
multi_step_up(right[k], delta, 1);
if (y < 0) {
k++;
continue;
}
} else if(y >= height) {
return mid_is_to_the_left;
}
if (end > height) {
end = height;
}
while (y < end) {
if (round_varying(*left[k]) >= width || round_varying(*right[k]) < 0) {
if (bi->start_scanline > -1) {
return mid_is_to_the_left;
}
} else {
if (bi->start_scanline == -1) {
bi->start_scanline = y;
}
bi->buffer[i++] = round_varying(*left[k]);
bi->buffer[i++] = round_varying(*right[k]);
(*(num_rows_ptr[k]))++;
}
step_up(left[k], 1);
step_up(right[k], 1);
y++;
}
k++;
}
return mid_is_to_the_left;
}
void
get_triangle_boundaries(uint16_t const row_index,
int32_t * const left,
int32_t * const right,
const boundary_info * const bi) {
/*----------------------------------------------------------------------------
Return the left and right boundaries for a given VISIBLE triangle row (the
row index is relative to the first visible row). These values may be out of
the horizontal limits of the frame buffer, which is necessary in order to
compute correct attribute interpolations.
-----------------------------------------------------------------------------*/
uint32_t const i = row_index << 1;
*left = bi->buffer[i];
*right = bi->buffer[i + 1];
}
|