1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
|
/*=============================================================================
pamshaderelief
===============================================================================
Generate a shaded relief image of terrain, given a terrain map - a two
dimensional map of elevations. A shaded relief image is an image of
what terrain with the given elevations would look like illuminated by
oblique light.
The input array is a one-channel PAM image. The sample values are
elevations of terrain.
This is derived from John Walker's 'pgmcrater' which not only does this
shading, but first generates a terrain map of fractal craters on which to
run it.
The original program carried this attribution and license:
Designed and implemented in November of 1989 by:
John Walker
Autodesk SA
Avenue des Champs-Montants 14b
CH-2074 MARIN
Switzerland
Usenet: kelvin@Autodesk.com
Fax: 038/33 88 15
Voice: 038/33 76 33
Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, without any conditions or restrictions. This software is
provided "as is" without express or implied warranty.
=============================================================================*/
/* Modifications by Arjen Bax, 2001-06-21: Remove black vertical line at right
edge.
*/
#define _XOPEN_SOURCE 500 /* get M_PI in math.h */
#include <assert.h>
#include <math.h>
#include "pm_c_util.h"
#include "mallocvar.h"
#include "nstring.h"
#include "shhopt.h"
#include "pam.h"
struct CmdlineInfo {
/* All the information the user supplied in the command line,
in a form easy for the program to use.
*/
const char * inputFileName;
float gamma;
};
static void
parseCommandLine(int argc, const char ** const argv,
struct CmdlineInfo * const cmdlineP) {
/*----------------------------------------------------------------------------
Note that the file spec array we return is stored in the storage that
was passed to us as the argv array.
-----------------------------------------------------------------------------*/
optEntry * option_def;
/* Instructions to OptParseOptions3 on how to parse our options.
*/
optStruct3 opt;
unsigned int option_def_index;
unsigned int gammaSpec;
MALLOCARRAY_NOFAIL(option_def, 100);
option_def_index = 0; /* incremented by OPTENT3 */
OPTENT3(0, "gamma", OPT_FLOAT, &cmdlineP->gamma,
&gammaSpec, 0);
opt.opt_table = option_def;
opt.short_allowed = FALSE; /* We have no short (old-fashioned) options */
opt.allowNegNum = FALSE; /* We may have parms that are negative numbers */
pm_optParseOptions3(&argc, (char **)argv, opt, sizeof(opt), 0);
/* Uses and sets argc, argv, and some of *cmdlineP and others. */
if (!gammaSpec)
cmdlineP->gamma = 1.0;
if (cmdlineP->gamma <= 0.0)
pm_error("gamma correction must be greater than 0");
if (argc-1 == 0)
cmdlineP->inputFileName = "-";
else if (argc-1 != 1)
pm_error("Program takes zero or one argument (filename). You "
"specified %u", argc-1);
else
cmdlineP->inputFileName = argv[1];
free(option_def);
}
/* Definitions for obtaining random numbers. */
/* Display parameters */
static double const ImageGamma = 0.5; /* Inherent gamma of mapped image */
static int const slopemin = -52;
static int const slopemax = 52;
static void
generateSlopeGrayMap(sample * const slopeGrayMap,
double const dgamma) {
/*----------------------------------------------------------------------------
Map each possible slope to the brightness that terrain with that
left-to-right slope should have in the shaded relief.
The brightness is what would result from light incident from the left
falling on the terrain.
-----------------------------------------------------------------------------*/
double const gamma = dgamma * ImageGamma;
int i;
for (i = slopemin; i <= 0; ++i) { /* Negative, downhill, dark */
slopeGrayMap[i - slopemin] =
128 - 127.0 * pow(sin((M_PI / 2) * i / slopemin), gamma);
}
for (i = 0; i <= slopemax; ++i) { /* Positive, uphill, bright */
slopeGrayMap[i - slopemin] =
128 + 127.0 * pow(sin((M_PI / 2) * i / slopemax), gamma);
}
/* Confused? OK, we're using the left-to-right slope to
calculate a shade based on the sine of the angle with
respect to the vertical (light incident from the left).
Then, with one exponentiation, we account for both the
inherent gamma of the image (ad-hoc), and the
user-specified display gamma, using the identity:
(x^y)^z = (x^(y*z))
*/
}
static gray
brightnessOfSlope(int const slope,
sample * const slopeGrayMap) {
return slopeGrayMap[MIN(MAX(slopemin, slope), slopemax) - slopemin];
}
static void
writeShadedRelief(struct pam * const terrainPamP,
tuple ** const terrain,
double const dgamma,
FILE * const ofP) {
unsigned int row;
tuple * outrow;
sample * slopeGrayMap; /* Slope to gray value map */
struct pam outpam;
outpam.size = sizeof(outpam);
outpam.len = PAM_STRUCT_SIZE(tuple_type);
outpam.file = ofP;
outpam.format = PAM_FORMAT;
outpam.height = terrainPamP->height;
outpam.width = terrainPamP->width;
outpam.depth = 1;
outpam.maxval = 255;
outpam.bytes_per_sample = 1;
STRSCPY(outpam.tuple_type, "GRAYSCALE");
outrow = pnm_allocpamrow(&outpam);
pnm_writepaminit(&outpam);
MALLOCARRAY(slopeGrayMap, slopemax - slopemin + 1);
generateSlopeGrayMap(slopeGrayMap, dgamma);
for (row = 0; row < terrainPamP->height; ++row) {
unsigned int col;
for (col = 0; col < terrainPamP->width - 1; ++col) {
int const slope = terrain[row][col+1][0] - terrain[row][col][0];
outrow[col][0] = brightnessOfSlope(slope, slopeGrayMap);
}
{
/* Wrap around to determine shade of pixel on right edge */
int const slope =
terrain[row][0][0] - terrain[row][outpam.width-1][0];
outrow[outpam.width - 1][0] =
brightnessOfSlope(slope, slopeGrayMap);
}
pnm_writepamrow(&outpam, outrow);
}
free(slopeGrayMap);
pnm_freepamrow(outrow);
}
static void
readTerrain(FILE * const ifP,
struct pam * const pamP,
tuple *** const tuplesP) {
*tuplesP = pnm_readpam(ifP, pamP, PAM_STRUCT_SIZE(tuple_type));
}
int
main(int argc, const char ** argv) {
struct CmdlineInfo cmdline;
FILE * ifP;
struct pam terrainPam;
tuple ** terrain;
/* Array of elevations */
pm_proginit(&argc, argv);
parseCommandLine(argc, argv, &cmdline);
ifP = pm_openr(cmdline.inputFileName);
readTerrain(ifP, &terrainPam, &terrain);
writeShadedRelief(&terrainPam, terrain, cmdline.gamma, stdout);
return 0;
}
|