1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "pm_c_util.h"
#include "shhopt.h"
#include "mallocvar.h"
#include "pam.h"
struct cmdlineInfo {
/* All the information the user supplied in the command line,
in a form easy for the program to use.
*/
unsigned int width;
unsigned int height;
unsigned int maxval;
float sigma;
const char * tupletype;
};
static void
parseCommandLine(int argc, char ** argv,
struct cmdlineInfo * const cmdlineP) {
/*----------------------------------------------------------------------------
Convert program invocation arguments (argc,argv) into a format the
program can use easily, struct cmdlineInfo. Validate arguments along
the way and exit program with message if invalid.
Note that some string information we return as *cmdlineP is in the storage
argv[] points to.
-----------------------------------------------------------------------------*/
optEntry *option_def;
/* Instructions to OptParseOptions2 on how to parse our options.
*/
optStruct3 opt;
unsigned int tupletypeSpec, maxvalSpec, sigmaSpec;
unsigned int option_def_index;
MALLOCARRAY_NOFAIL(option_def, 100);
option_def_index = 0; /* incremented by OPTENTRY */
OPTENT3(0, "tupletype", OPT_STRING, &cmdlineP->tupletype,
&tupletypeSpec, 0);
OPTENT3(0, "maxval", OPT_UINT, &cmdlineP->maxval,
&maxvalSpec, 0);
OPTENT3(0, "sigma", OPT_FLOAT, &cmdlineP->sigma,
&sigmaSpec, 0);
opt.opt_table = option_def;
opt.short_allowed = FALSE; /* We have no short (old-fashioned) options */
opt.allowNegNum = FALSE; /* We have no parms that are negative numbers */
pm_optParseOptions3(&argc, argv, opt, sizeof(opt), 0);
/* Uses and sets argc, argv, and some of *cmdlineP and others. */
if (!tupletypeSpec)
cmdlineP->tupletype = "";
else {
struct pam pam;
if (strlen(cmdlineP->tupletype)+1 > sizeof(pam.tuple_type))
pm_error("The tuple type you specified is too long. "
"Maximum %u characters.",
(unsigned)sizeof(pam.tuple_type)-1);
}
if (!sigmaSpec)
pm_error("You must specify the -sigma option.");
else if (cmdlineP->sigma <= 0.0)
pm_error("-sigma must be positive. You specified %f",
cmdlineP->sigma);
if (!maxvalSpec)
cmdlineP->maxval = PNM_MAXMAXVAL;
else {
if (cmdlineP->maxval > PNM_OVERALLMAXVAL)
pm_error("The maxval you specified (%u) is too big. "
"Maximum is %u", cmdlineP->maxval, PNM_OVERALLMAXVAL);
if (cmdlineP->maxval < 1)
pm_error("-maxval must be at least 1");
}
if (argc-1 < 2)
pm_error("Need two arguments: width and height.");
else if (argc-1 > 2)
pm_error("Only two arguments allowed: width and height. "
"You specified %d", argc-1);
else {
cmdlineP->width = atoi(argv[1]);
cmdlineP->height = atoi(argv[2]);
if (cmdlineP->width <= 0)
pm_error("width argument must be a positive number. You "
"specified '%s'", argv[1]);
if (cmdlineP->height <= 0)
pm_error("height argument must be a positive number. You "
"specified '%s'", argv[2]);
}
}
static double
distFromCenter(struct pam * const pamP,
int const col,
int const row) {
return sqrt(SQR(col - pamP->width/2) + SQR(row - pamP->height/2));
}
static double
gauss(double const arg,
double const sigma) {
/*----------------------------------------------------------------------------
Compute the value of the gaussian function with sigma parameter 'sigma'
and mu parameter zero of argument 'arg'.
-----------------------------------------------------------------------------*/
double const pi = 3.14159;
double const coefficient = 1 / (sigma * sqrt(2*pi));
double const exponent = - SQR(arg-0) / (2 * SQR(sigma));
return coefficient * exp(exponent);
}
static double
imageNormalizer(struct pam * const pamP,
double const sigma) {
/*----------------------------------------------------------------------------
Compute the value that has to be multiplied by the value of the
one-dimensional gaussian function of the distance from center in
order to get the value for a normalized two-dimensional gaussian
function. Normalized here means that the volume under the whole
curve is 1, just as the area under a whole one-dimensional gaussian
function is 1.
-----------------------------------------------------------------------------*/
double volume;
unsigned int row;
volume = 0.0; /* initial value */
for (row = 0; row < pamP->height; ++row) {
unsigned int col;
for (col = 0; col < pamP->width; ++col)
volume += gauss(distFromCenter(pamP, col, row), sigma);
}
return 1.0 / volume;
}
int
main(int argc, char **argv) {
struct cmdlineInfo cmdline;
struct pam pam;
int row;
double normalizer;
tuplen * tuplerown;
pnm_init(&argc, argv);
parseCommandLine(argc, argv, &cmdline);
pam.size = sizeof(pam);
pam.len = PAM_STRUCT_SIZE(tuple_type);
pam.file = stdout;
pam.format = PAM_FORMAT;
pam.plainformat = 0;
pam.width = cmdline.width;
pam.height = cmdline.height;
pam.depth = 1;
pam.maxval = cmdline.maxval;
strcpy(pam.tuple_type, cmdline.tupletype);
normalizer = imageNormalizer(&pam, cmdline.sigma);
pnm_writepaminit(&pam);
tuplerown = pnm_allocpamrown(&pam);
for (row = 0; row < pam.height; ++row) {
int col;
for (col = 0; col < pam.width; ++col) {
double const gauss1 = gauss(distFromCenter(&pam, col, row),
cmdline.sigma);
tuplerown[col][0] = gauss1 * normalizer;
}
pnm_writepamrown(&pam, tuplerown);
}
pnm_freepamrown(tuplerown);
return 0;
}
|