about summary refs log tree commit diff
path: root/editor/ppmdither.c
blob: ec1b97718360a19b577104b554e2ab52f4c347b2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/*=============================================================================
                                 pamdither
===============================================================================
  By Bryan Henderson, July 2006.

  Contributed to the public domain.

  This is meant to replace Ppmdither by Christos Zoulas, 1991.
=============================================================================*/
#include <assert.h>

#include "pm_c_util.h"
#include "mallocvar.h"
#include "nstring.h"
#include "shhopt.h"
#include "pam.h"

/* Besides having to have enough memory available, the limiting factor
   in the dithering matrix power is the size of the dithering value.
   We need 2*dith_power bits in an unsigned int.  We also reserve
   one bit to give headroom to do calculations with these numbers.
*/
#define MAX_DITH_POWER (((unsigned)sizeof(unsigned int)*8 - 1) / 2)


struct colorResolution {
    unsigned int c[3];
        /* comp[PAM_RED_PLANE] is number of distinct red levels, etc. */
};

#define RED PAM_RED_PLANE
#define GRN PAM_GRN_PLANE
#define BLU PAM_BLU_PLANE

struct cmdlineInfo {
    /* All the information the user supplied in the command line,
       in a form easy for the program to use.
    */
    const char * inputFileName;  /* File name of input file */
    unsigned int dim;
    struct colorResolution colorRes;
    unsigned int verbose;
};



static void
parseCommandLine(int argc, const char ** const argv,
                 struct cmdlineInfo * const cmdlineP) {
/*----------------------------------------------------------------------------
   parse program command line described in Unix standard form by argc
   and argv.  Return the information in the options as *cmdlineP.  

   If command line is internally inconsistent (invalid options, etc.),
   issue error message to stderr and abort program.

   Note that the strings we return are stored in the storage that
   was passed to us as the argv array.  We also trash *argv.
-----------------------------------------------------------------------------*/
    optEntry * option_def;
        /* Instructions to pm_optParseOptions3 on how to parse our options.
         */
    optStruct3 opt;

    unsigned int option_def_index;

    unsigned int dimSpec, redSpec, greenSpec, blueSpec;

    MALLOCARRAY_NOFAIL(option_def, 100);
    
    option_def_index = 0;   /* incremented by OPTENT3 */
    OPTENT3(0, "dim",          OPT_UINT, 
            &cmdlineP->dim,            &dimSpec,                  0);
    OPTENT3(0, "red",          OPT_UINT, 
            &cmdlineP->colorRes.c[RED],   &redSpec,       0);
    OPTENT3(0, "green",        OPT_UINT, 
            &cmdlineP->colorRes.c[GRN],   &greenSpec,     0);
    OPTENT3(0, "blue",         OPT_UINT,
            &cmdlineP->colorRes.c[BLU],   &blueSpec,      0);
    OPTENT3(0, "verbose",      OPT_FLAG,
            NULL,                      &cmdlineP->verbose,        0);

    opt.opt_table = option_def;
    opt.short_allowed = FALSE;  /* We have no short (old-fashioned) options */
    opt.allowNegNum = FALSE;  /* We have no parms that are negative numbers */

    pm_optParseOptions3(&argc, (char **)argv, opt, sizeof(opt), 0);
        /* Uses and sets argc, argv, and some of *cmdline_p and others. */

    if (!dimSpec)
        cmdlineP->dim = 4;

    if (cmdlineP->dim > MAX_DITH_POWER)
        pm_error("Dithering matrix power %u (-dim) is too large.  "
                 "Must be <= %u",
                 cmdlineP->dim, MAX_DITH_POWER);
        
    if (redSpec) {
        if (cmdlineP->colorRes.c[RED] < 2)
            pm_error("-red must be at least 2.  You specified %u",
                     cmdlineP->colorRes.c[RED]);
    } else
        cmdlineP->colorRes.c[RED] = 5;

    if (greenSpec) {
        if (cmdlineP->colorRes.c[GRN] < 2)
            pm_error("-green must be at least 2.  You specified %u",
                     cmdlineP->colorRes.c[GRN]);
    } else
        cmdlineP->colorRes.c[GRN] = 9;

    if (blueSpec) {
        if (cmdlineP->colorRes.c[BLU] < 2)
            pm_error("-blue must be at least 2.  You specified %u",
                     cmdlineP->colorRes.c[BLU]);
    } else
        cmdlineP->colorRes.c[BLU] = 5;

    if (argc-1 > 1)
        pm_error("Program takes at most one argument: the input file "
                 "specification.  "
                 "You specified %d arguments.", argc-1);
    if (argc-1 < 1)
        cmdlineP->inputFileName = "-";
    else
        cmdlineP->inputFileName = argv[1];
}



typedef struct {
/*----------------------------------------------------------------------------
   A scaler object scales a red/green/blue triple, each component having its
   own maxval, to a tuple having another maxval.  That maxval is the same for
   all three components.  The input and output maxvals are characteristic of
   the scaler.

   Example: The scaler scales from a red value of 0-3, green value of
   0-3, and blue value of 0-1 to a tuple with maxval 255.  So you can
   ask it to scale (1,1,1) and it responds with (85, 85, 255).
-----------------------------------------------------------------------------*/
    struct colorResolution colorRes;
        /* Number of values of each color component possible, i.e. maxval
           plus 1
        */
    tuple * out;
        /* Malloced array that provides the scaled output when indexed by a
           certain function (see scaler_scale()) of the input red, green, and
           blue values.
        */
} scaler;    



static tuple *
allocScalerMap(unsigned int const size) {
    /* The tuple row data structure starts with 'size' pointers to
       the tuples, immediately followed by the 'size' tuples
       themselves.  Each tuple consists of 3 samples.  
    */

    unsigned int const depth = 3;
    unsigned int const bytesPerTuple = depth * sizeof(sample);

    tuple * map;

    map = malloc(size * (sizeof(tuple *) + bytesPerTuple));
                      
    if (map != NULL) {
        /* Now we initialize the pointers to the individual tuples
           to make this a regulation C two dimensional array.  
        */
        char * p;
        unsigned int i;
        
        p = (char*) (map + size);  /* location of Tuple 0 */
        for (i = 0; i < size; ++i) {
            map[i] = (tuple) p;
            p += bytesPerTuple;
        }
    }
    return map;
}



static void
scaler_create(sample                 const outputMaxval,
              struct colorResolution const colorRes,
              scaler **              const scalerPP) {

    scaler * scalerP;
    unsigned int mapSize;
    
    if (UINT_MAX / colorRes.c[RED] / colorRes.c[GRN] / colorRes.c[BLU] < 1)
        pm_error("red/green/blue dimensions %u/%u/%u is uncomputably large",
                 colorRes.c[RED], colorRes.c[GRN], colorRes.c[BLU]);

    {
        unsigned int plane;
        for (plane = 0, mapSize = 1; plane < 3; ++plane)
            mapSize *= colorRes.c[plane];
    }
    MALLOCVAR_NOFAIL(scalerP);

    scalerP->colorRes = colorRes;

    scalerP->out = allocScalerMap(mapSize);

    if (scalerP->out == NULL)
        pm_error("Unable to allocate memory for %u colors "
                 "(%u red x %u green x %u blue)",
                 mapSize, colorRes.c[RED], colorRes.c[GRN], colorRes.c[BLU]);

    {
        unsigned int r;
        for (r = 0; r < colorRes.c[RED]; ++r) {
            unsigned int g;
            for (g = 0; g < colorRes.c[GRN]; ++g) {
                unsigned int b;
                for (b = 0; b < colorRes.c[BLU]; ++b) {
                    unsigned int const index =
                        (r * colorRes.c[GRN] + g)
                        * colorRes.c[BLU] + b;
                    tuple const t = scalerP->out[index];
                         
                    t[PAM_RED_PLANE] =
                        r * outputMaxval / (colorRes.c[RED] - 1);
                    t[PAM_GRN_PLANE] = 
                        g * outputMaxval / (colorRes.c[GRN] - 1);
                    t[PAM_BLU_PLANE] =
                        b * outputMaxval / (colorRes.c[BLU] - 1);
                }
            }
        }
    }
    *scalerPP = scalerP;
}



static void
scaler_destroy(scaler * const scalerP) {

    free(scalerP->out);

    free(scalerP);
}



static tuple
scaler_scale(const scaler * const scalerP,
             unsigned int   const red,
             unsigned int   const grn,
             unsigned int   const blu) {

    unsigned int const index =
        ((red * scalerP->colorRes.c[GRN]) + grn)
        * scalerP->colorRes.c[BLU] + blu;

    assert(red < scalerP->colorRes.c[RED]);
    assert(grn < scalerP->colorRes.c[GRN]);
    assert(blu < scalerP->colorRes.c[BLU]);

    return scalerP->out[index];
}



static unsigned int
dither(sample       const p,
       sample       const maxval,
       unsigned int const d,
       unsigned int const ditheredMaxval,
       unsigned int const ditherMatrixArea) {
/*----------------------------------------------------------------------------
  Return the dithered brightness for a component of a pixel whose real 
  brightness for that component is 'p' based on a maxval of 'maxval'.
  The returned brightness is based on a maxval of ditheredMaxval.

  'd' is the entry in the dithering matrix for the position of this pixel
  within the dithered square.

  'ditherMatrixArea' is the area (number of pixels in) the dithered square.
-----------------------------------------------------------------------------*/
    unsigned int const ditherSquareMaxval = ditheredMaxval * ditherMatrixArea;
        /* This is the maxval for an intensity that an entire dithered
           square can represent.
        */
    unsigned int const pScaled = ditherSquareMaxval * p / maxval;
        /* This is the input intensity P expressed with a maxval of
           'ditherSquareMaxval'
        */
    
    /* Now we scale the intensity back down to the 'ditheredMaxval', and
       as that will involve rounding, we round up or down based on the position
       in the dithered square, as determined by 'd'
    */

    return (pScaled + d) / ditherMatrixArea;
}



static unsigned int
dithValue(unsigned int const yArg,
          unsigned int const xArg,
          unsigned int const dithPower) { 
/*----------------------------------------------------------------------------
  Return the value of a dither matrix which is 2 ** dithPower elements
  square at Row x, Column y.
  [graphics gems, p. 714]
-----------------------------------------------------------------------------*/
    unsigned int d;
        /*
          Think of d as the density. At every iteration, d is shifted
          left one and a new bit is put in the low bit based on x and y.
          If x is odd and y is even, or visa versa, then a bit is shifted in.
          This generates the checkerboard pattern seen in dithering.
          This quantity is shifted again and the low bit of y is added in.
          This whole thing interleaves a checkerboard pattern and y's bits
          which is what you want.
        */
    unsigned int x, y;
    unsigned int i;

    for (i = 0, d = 0, x = xArg, y = yArg;
         i < dithPower;
         ++i, x >>= 1, y >>= 1)
        d = (d << 2) | (((x & 1) ^ (y & 1)) << 1) | (y & 1);

    return d;
}



static unsigned int **
dithMatrix(unsigned int const dithPower) {
/*----------------------------------------------------------------------------
   Create the dithering matrix for dimension 'dithDim'.

   Return it in newly malloc'ed storage.

   Note that we assume 'dithPower' is small enough that the 'dithMatSize'
   computed within fits in an int.  Otherwise, results are undefined.
-----------------------------------------------------------------------------*/
    unsigned int const dithDim = 1 << dithPower;

    unsigned int ** dithMat;

    assert(dithPower < sizeof(unsigned int) * 8);

    {
        unsigned int const dithMatSize = 
            (dithDim * sizeof(*dithMat)) + /* pointers */
            (dithDim * dithDim * sizeof(**dithMat)); /* data */
        
        dithMat = malloc(dithMatSize);
        
        if (dithMat == NULL) 
            pm_error("Out of memory.  "
                     "Cannot allocate %u bytes for dithering matrix.",
                     dithMatSize);
    }
    {
        unsigned int * const rowStorage = (unsigned int *)&dithMat[dithDim];
        unsigned int y;
        for (y = 0; y < dithDim; ++y)
            dithMat[y] = &rowStorage[y * dithDim];
    }
    {
        unsigned int y;
        for (y = 0; y < dithDim; ++y) {
            unsigned int x;
            for (x = 0; x < dithDim; ++x)
                dithMat[y][x] = dithValue(y, x, dithPower);
        }
    }
    return dithMat;
}



static void
validateNoDitherOverflow(unsigned int           const ditherMatrixArea,
                         struct pam *           const inpamP,
                         struct colorResolution const colorRes) {
/*----------------------------------------------------------------------------
   Validate that we'll be able to do the dithering calculations based on
   the parameters above without busting out of an integer.
-----------------------------------------------------------------------------*/
    unsigned int maxDitherMaxval;
    unsigned int plane;

    for (plane = 0, maxDitherMaxval = 1; plane < 0; ++plane) {
        assert(colorRes.c[plane] >= 2);
        maxDitherMaxval = MAX(maxDitherMaxval, colorRes.c[plane]-1);
    }

    if (UINT_MAX / ditherMatrixArea / inpamP->maxval / maxDitherMaxval < 1)
        pm_error("Numbers are too large to compute.  You must reduce "
                 "the dither power, the input maxval, or the number of "
                 "component levels in the output");
}



static void
ditherRow(struct pam *           const inpamP,
          const tuple *          const inrow,
          const scaler *         const scalerP,
          unsigned int **        const ditherMatrix,
          unsigned int           const ditherMatrixArea,
          struct colorResolution const colorRes,
          unsigned int           const row,
          unsigned int           const modMask,
          struct pam *           const outpamP,
          tuple *                const outrow) {

    unsigned int col;

    for (col = 0; col < inpamP->width; ++col) {
        unsigned int const d =
            ditherMatrix[row & modMask][(inpamP->width-col-1) & modMask];

        unsigned int dithered[3];
        unsigned int plane;

        assert(inpamP->depth >= 3);

        for (plane = 0; plane < 3; ++plane)
            dithered[plane] =
                dither(inrow[col][plane], inpamP->maxval, d,
                       colorRes.c[plane]-1, ditherMatrixArea);

        pnm_assigntuple(outpamP,
                        outrow[col],
                        scaler_scale(scalerP,
                                     dithered[PAM_RED_PLANE],
                                     dithered[PAM_GRN_PLANE],
                                     dithered[PAM_BLU_PLANE]));
    }
}



static void
ditherImage(struct pam *           const inpamP,
            const scaler *         const scalerP,
            unsigned int           const dithPower,
            struct colorResolution const colorRes,
            struct pam *           const outpamP,
            tuple ***              const outTuplesP) {

    unsigned int const dithDim = 1 << dithPower;
    unsigned int const ditherMatrixArea = SQR(dithDim);

    unsigned int const modMask = (dithDim - 1);
       /* And this into N to compute N % dithDim cheaply, since we
          know (though the compiler doesn't) that dithDim is a power of 2
       */
    unsigned int ** const ditherMatrix = dithMatrix(dithPower);

    tuple * inrow;
    tuple ** outTuples;
    unsigned int row; 
    struct pam ditherPam;
        /* Describes the tuples that ditherRow() sees */

    assert(dithPower < sizeof(unsigned int) * 8);
    assert(UINT_MAX / dithDim >= dithDim);
    
    validateNoDitherOverflow(ditherMatrixArea, inpamP, colorRes);

    inrow = pnm_allocpamrow(inpamP);

    outTuples = pnm_allocpamarray(outpamP);

    /* We will modify the input to promote it to depth 3 */
    ditherPam = *inpamP;
    ditherPam.depth = 3;

    for (row = 0; row < inpamP->height; ++row) {
        pnm_readpamrow(inpamP, inrow);

        pnm_makerowrgb(inpamP, inrow);

        ditherRow(&ditherPam, inrow, scalerP, ditherMatrix, ditherMatrixArea,
                  colorRes, row, modMask,
                  outpamP, outTuples[row]);
    }
    free(ditherMatrix);
    pnm_freepamrow(inrow);
    *outTuplesP = outTuples;
}



int
main(int           argc,
     const char ** argv) {

    struct cmdlineInfo cmdline;
    FILE * ifP;
    tuple ** outTuples;        /* Output image */
    scaler * scalerP;
    struct pam inpam;
    struct pam outpam;

    pm_proginit(&argc, argv);

    parseCommandLine(argc, argv, &cmdline);

    ifP = pm_openr(cmdline.inputFileName);

    pnm_readpaminit(ifP, &inpam, PAM_STRUCT_SIZE(allocation_depth));

    pnm_setminallocationdepth(&inpam, 3);
    
    outpam.size               = sizeof(outpam);
    outpam.len                = PAM_STRUCT_SIZE(tuple_type);
    outpam.file               = stdout;
    outpam.width              = inpam.width;
    outpam.height             = inpam.height;
    outpam.depth              = 3;
    outpam.maxval             =
        pm_lcm(cmdline.colorRes.c[RED]-1,
               cmdline.colorRes.c[GRN]-1,
               cmdline.colorRes.c[BLU]-1,
               PPM_MAXMAXVAL);
    outpam.bytes_per_sample   = inpam.bytes_per_sample;
    STRSCPY(outpam.tuple_type, "RGB");
    outpam.format             = RPPM_FORMAT;
    outpam.plainformat        = false;

    scaler_create(outpam.maxval, cmdline.colorRes, &scalerP);

    ditherImage(&inpam, scalerP, cmdline.dim, cmdline.colorRes,
                &outpam, &outTuples);

    pnm_writepam(&outpam, outTuples);

    scaler_destroy(scalerP);

    pnm_freepamarray(outTuples, &outpam);

    pm_close(ifP);

    return 0;
}