about summary refs log tree commit diff
path: root/editor/pbmclean.c
blob: beecf3e81d935c85d29218e6a708caef43652192 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
/*=============================================================================
                                 pbmclean
===============================================================================
  Pixel cleaner:   Remove pixel if less than N connected identical neighbors

=============================================================================*/
#include <assert.h>
#include <stdio.h>

#include "pm_c_util.h"
#include "mallocvar.h"
#include "shhopt.h"
#include "pbm.h"

struct cmdlineInfo {
    /* All the information the user supplied in the command line,
       in a form easy for the program to use.
    */
    const char * inputFileName;  /* File name of input file */
    bool flipWhite;
    bool flipBlack;
    unsigned int connect;
    unsigned int verbose;
};



static void
parseCommandLine(int argc, const char ** argv,
                 struct cmdlineInfo *cmdlineP) {
/*----------------------------------------------------------------------------
   Note that the file spec array we return is stored in the storage that
   was passed to us as the argv array.
-----------------------------------------------------------------------------*/
    optStruct3 opt;  /* set by OPTENT3 */
    optEntry * option_def;
    unsigned int option_def_index;

    unsigned int black, white;
    unsigned int minneighborsSpec;

    MALLOCARRAY(option_def, 100);

    option_def_index = 0;   /* incremented by OPTENT3 */
    OPTENT3(0,   "verbose",          OPT_FLAG, NULL, &cmdlineP->verbose, 0);
    OPTENT3(0,   "black",            OPT_FLAG, NULL, &black, 0);
    OPTENT3(0,   "white",            OPT_FLAG, NULL, &white, 0);
    OPTENT3(0,   "minneighbors",     OPT_UINT, &cmdlineP->connect, 
            &minneighborsSpec, 0);

    opt.opt_table = option_def;
    opt.short_allowed = FALSE;  /* We have no short (old-fashioned) options */
    opt.allowNegNum = TRUE;  /* We sort of allow negative numbers as parms */

    optParseOptions3(&argc, (char **)argv, opt, sizeof(opt), 0);
        /* Uses and sets argc, argv, and some of *cmdlineP and others. */

    free(option_def);

    if (!black && !white) {
        cmdlineP->flipBlack = TRUE;
        cmdlineP->flipWhite = TRUE;
    } else {
        cmdlineP->flipBlack = !!black;
        cmdlineP->flipWhite = !!white;
    }    

    if (!minneighborsSpec) {
        /* Now we do a sleazy tour through the parameters to see if
           one is -N where N is a positive integer.  That's for
           backward compatibility, since Pbmclean used to have
           unconventional syntax where a -N option was used instead of
           the current -minneighbors option.  The only reason -N didn't
           get processed by pm_optParseOptions3() is that it looked
           like a negative number parameter instead of an option.  
           If we find a -N, we make like it was a -minneighbors=N option.
        */
        int i;
        bool foundNegative;

        cmdlineP->connect = 1;  /* default */
        foundNegative = FALSE;

        for (i = 1; i < argc; ++i) {
            if (foundNegative)
                argv[i-1] = argv[i];
            else {
                if (atoi(argv[i]) < 0) {
                    cmdlineP->connect = - atoi(argv[i]);
                    foundNegative = TRUE;
                }
            }
        }
        if (foundNegative)
            --argc;
    }

    if (argc-1 < 1) 
        cmdlineP->inputFileName = "-";
    else if (argc-1 == 1)
        cmdlineP->inputFileName = argv[1];
    else
        pm_error("You specified too many arguments (%d).  The only "
                 "argument is the optional input file specification.",
                 argc-1);
}


static unsigned int
bitpop8(unsigned char const x) {
/*----------------------------------------------------------------------------
   Return the number of 1 bits in 'x'
-----------------------------------------------------------------------------*/
static unsigned int const p[256] = {
    0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
    1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
    1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
    1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
    2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
    4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 };

    return p[x];
}



static unsigned int
bitpop24(uint32_t const w){
/*----------------------------------------------------------------------------
   Return the number of 1 bits in the lower 24 bits of 'w'
   A GCC builtin, __builtin_popcountl(), is available, but it
   emits a call to an external function instead of inlining (GCC 4.4.3).

   This table lookup method is faster.
-----------------------------------------------------------------------------*/
    return (bitpop8((w >> 16) & 0xff) +
            bitpop8((w >>  8) & 0xff) +
            bitpop8((w >>  0) & 0xff));  
}



/*----------------------------------------------------------------------------
Fast algorithm for counting friendly neighbor pixels

In this program both input and output rows are in raw (packed) PBM format.

We handle input rows in groups of three, named "prevrow", "thisrow",
"nextrow" and scan from left to right.  At every byte boundary, 10 bits
are read from each of the three rows and placed into a temporary storage
we call "sample".

prevrow: ... ... _______M NNNNNNNN O_______ ...
thisrow: ... ... _______W cCCCCCCC E_______ ...
nextrow: ... ... _______R SSSSSSSS T_______ ...

sample : xxMNNNNNNNNOWcCCCCCCCERSSSSSSST

We count bits by taking the logical and of "sample" and a bit-mask called
"selection", and feeding the result to a table-based bit-population counter.

For example, the bits around the leftmost bit of the byte ("c") are selected
like this:

sample :       xxMNNNNNNNNOWcCCCCCCCERSSSSSSST
selection: & | __111_______1_1_______111______

(In the actual process, "sample" is shifted right and anded against a
 constant "selection" mask.)

The above reports one bits.  For the zero (white) bits we replace "sample"
with its inverse.

If the friendly neighbor count is below a threshold (default 1), we record
that as a one bit in "flipmask".  Bits are flipped in units of eight
and written to outrow at the byte boundary.
-----------------------------------------------------------------------------*/



static unsigned int
likeNeighbors(uint32_t     const blackSample, 
              unsigned int const offset) {

    bool const thispoint = ( blackSample >> (18-offset) ) & 0x01;
    uint32_t const sample = (thispoint == PBM_BLACK ) 
                          ?   blackSample
                          : ~ blackSample ;
    uint32_t const selection = 0x701407;

    return (bitpop24((sample >> (7-offset)) & selection));
}



static uint32_t
setSample(const bit *  const prevrow,
          const bit *  const thisrow,
          const bit *  const nextrow,
          unsigned int const col){

    int const col8 = col/8;

    uint32_t sample;

    sample =
        ((prevrow[col8 - 1]       )  << 29) |
        ((prevrow[col8]           )  << 21) |
        ((prevrow[col8 + 1] & 0x80)  << 13) |
        ((thisrow[col8 - 1] & 0x01)  << 19) |
        ((thisrow[col8]           )  << 11) |
        ((thisrow[col8 + 1] & 0x80)  <<  3) |
        ((nextrow[col8 - 1] & 0x01)  <<  9) |
        ((nextrow[col8]           )  <<  1) |
        ((nextrow[col8 + 1] & 0x80)  >>  7);
    
    return sample;
}



static unsigned char
setTestmask(unsigned char const whiteTestmask,
            bool          const testWhite,
            bool          const testBlack) {
/* -----------------------------------------------------------------------
  Make a byte pattern of what bits should be tested within a given "thisrow"
  (current inrow) byte.  0 means test, 1 means skip.
-------------------------------------------------------------------------- */
    if (testWhite == testBlack) {
        assert(testWhite); assert(testBlack);
        return 0x00;
    } else if (testWhite == TRUE) {
        assert(!testBlack);
        return whiteTestmask;
    } else
        return ~whiteTestmask;
}



static void
cleanrow(const bit *    const prevrow,
         const bit *    const thisrow,
         const bit *    const nextrow,
         bit *          const outrow,
         unsigned int   const cols,
         unsigned int   const threshold,
         bool           const flipWhite,
         bool           const flipBlack,
         unsigned int * const nFlippedP) {
/* ----------------------------------------------------------------------
  Work through row, scanning for bits that require flipping, and write
  the results to outrow.
  
  Returns the number of bits flipped within this one row as *nFlippedP.
-------------------------------------------------------------------------*/
    uint32_t sample;
    unsigned char testmask;
    unsigned char flipmask;
    unsigned int col;
    unsigned int nFlipped;

    flipmask = 0x00;  /* initial value */
    nFlipped = 0;     /* initial value */

    for (col=0 ; col < cols ; ++col) {
        unsigned int const col8 = col / 8;
        unsigned int const offset = col % 8;

        if (offset == 0) {
            if (flipmask != 0x00) {
                /* Some bits have to be flipped */
                outrow[col8 -1] = thisrow [col8 -1] ^ flipmask;
                nFlipped += bitpop8(flipmask);
                flipmask = 0x00;
            } else if (col8 > 0)
                outrow[col8 -1] = thisrow [col8 -1];

            sample = setSample(prevrow, thisrow, nextrow, col);
            testmask = setTestmask(thisrow[col8], flipWhite, flipBlack);
        }

        if (((testmask << offset) & 0x80 ) ==0) {
            if (likeNeighbors(sample, offset ) < threshold)
                flipmask |= (0x80 >> offset);
        }
    }

    {
        /* Write out last byte */
        unsigned int const col8Last = pbm_packed_bytes(cols) -1;

        if (flipmask != 0x00) {
            outrow[col8Last] = thisrow[col8Last] ^ flipmask;
            nFlipped += bitpop8(flipmask);
        } else
            outrow[col8Last] = thisrow[col8Last];
    }
    *nFlippedP = nFlipped;
}



static void
pbmclean(FILE *             const ifP,
         FILE *             const ofP,
         struct cmdlineInfo const cmdline,
         double *           const nFlippedP) {

    bit ** buffer;
    bit * prevrow;
    bit * thisrow;
    bit * nextrow;
    bit * outrow;
    bit * edgerow;
    int cols, rows, format;
    unsigned int row;

    pbm_readpbminit(ifP, &cols, &rows, &format);

    /* Initialize input buffers.
       We add a margin of 8 bits each on the left and right of the rows.

       On the top and bottom of the image we place an imaginary blank row
       ("edgerow") to facilitate the process.
    */
    {
        unsigned int i;

        buffer  = pbm_allocarray_packed(cols+16, 3);
        edgerow = pbm_allocrow_packed(cols+16);

        for (i = 0; i < pbm_packed_bytes(cols+16); ++i)
            edgerow[i] = 0x00;
        
        for (i = 0; i < 3; ++i) {
            /* Add blank (all white) bytes beside the edges */ 
            buffer[i][0] = buffer[i][ pbm_packed_bytes( cols +16 ) - 1] = 0x00;
        }
        thisrow = &edgerow[1];
        nextrow = &buffer[0][1];

        /* Read the top line into nextrow and clean the right end. */

        pbm_readpbmrow_packed(ifP, nextrow, cols, format);

        if (cols % 8 > 0){
            nextrow[pbm_packed_bytes(cols) -1 ] >>= (8 - cols % 8);
            nextrow[pbm_packed_bytes(cols) -1 ] <<= (8 - cols % 8);
        }
    }

    outrow = pbm_allocrow(cols);

    pbm_writepbminit(ofP, cols, rows, 0) ;

    *nFlippedP = 0;  /* none flipped yet */

    for (row = 0; row < rows; ++row) {
        unsigned int nFlipped;

        prevrow = thisrow;  /* Slide up the input row window */
        thisrow = nextrow;
        if (row < rows -1){
            nextrow = &buffer[(row+1)%3][1];
            /* We take the address directly instead of shuffling the rows
               with the help of a temporary.  This provision is for proper 
               handling of the initial edgerow.
            */
            pbm_readpbmrow_packed(ifP, nextrow, cols, format);
            if (cols % 8 > 0){
                nextrow[pbm_packed_bytes(cols) -1 ] >>= (8 - cols % 8);
                nextrow[pbm_packed_bytes(cols) -1 ] <<= (8 - cols % 8);
            }
        } else  /* Bottom of image.  */
            nextrow = & edgerow[1];

        cleanrow(prevrow, thisrow, nextrow, outrow, cols, cmdline.connect,
                 cmdline.flipWhite, cmdline.flipBlack, &nFlipped);
        
        *nFlippedP += nFlipped;

        pbm_writepbmrow_packed(ofP, outrow, cols, 0) ;
    }

    pbm_freearray(buffer, 3);
    pbm_freerow(edgerow);
    pbm_freerow(outrow);
}



int
main(int argc, const char *argv[]) {

    struct cmdlineInfo cmdline;
    FILE * ifP;
    double nFlipped;
        /* Number of pixels we have flipped so far.  Use type double to
           prevent overflow.
        */

    pm_proginit(&argc, argv);

    parseCommandLine(argc, argv, &cmdline);

    ifP = pm_openr(cmdline.inputFileName);

    pbmclean(ifP, stdout, cmdline, &nFlipped);

    if (cmdline.verbose)
        pm_message("%f pixels flipped", nFlipped);

    pm_close(ifP);

    return 0;
}