1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
|
/*=============================================================================
pbmclean
===============================================================================
Pixel cleaner: Remove pixel if less than N connected identical neighbors
=============================================================================*/
#include <assert.h>
#include <stdio.h>
#include <stdbool.h>
#include "pm_c_util.h"
#include "mallocvar.h"
#include "shhopt.h"
#include "pbm.h"
struct CmdlineInfo {
/* All the information the user supplied in the command line,
in a form easy for the program to use.
*/
const char * inputFileName; /* File name of input file */
bool flipWhite;
bool flipBlack;
unsigned int minneighbors;
unsigned int verbose;
unsigned int extended;
};
static void
parseCommandLine(int argc, const char ** argv,
struct CmdlineInfo *cmdlineP) {
/*----------------------------------------------------------------------------
Note that the file spec array we return is stored in the storage that
was passed to us as the argv array.
-----------------------------------------------------------------------------*/
optStruct3 opt; /* set by OPTENT3 */
optEntry * option_def;
unsigned int option_def_index;
unsigned int black, white;
unsigned int minneighborsSpec;
MALLOCARRAY(option_def, 100);
option_def_index = 0; /* incremented by OPTENT3 */
OPTENT3(0, "verbose", OPT_FLAG, NULL, &cmdlineP->verbose, 0);
OPTENT3(0, "black", OPT_FLAG, NULL, &black, 0);
OPTENT3(0, "white", OPT_FLAG, NULL, &white, 0);
OPTENT3(0, "minneighbors", OPT_UINT, &cmdlineP->minneighbors,
&minneighborsSpec, 0);
OPTENT3(0, "extended", OPT_FLAG, NULL, &cmdlineP->extended, 0);
opt.opt_table = option_def;
opt.short_allowed = false; /* We have no short (old-fashioned) options */
opt.allowNegNum = true; /* We sort of allow negative numbers as parms */
pm_optParseOptions3(&argc, (char **)argv, opt, sizeof(opt), 0);
/* Uses and sets argc, argv, and some of *cmdlineP and others. */
free(option_def);
if (cmdlineP->extended) {
if (black && white)
pm_error("With -extended, you cannot specify both "
"-black and -white");
else if (!black & !white) {
cmdlineP->flipBlack = true;
cmdlineP->flipWhite = false;
} else {
cmdlineP->flipBlack = !!black;
cmdlineP->flipWhite = !!white;
}
} else {
if (!black && !white) {
cmdlineP->flipBlack = TRUE;
cmdlineP->flipWhite = TRUE;
} else {
cmdlineP->flipBlack = !!black;
cmdlineP->flipWhite = !!white;
}
}
if (!minneighborsSpec) {
/* Now we do a sleazy tour through the parameters to see if
one is -N where N is a positive integer. That's for
backward compatibility, since Pbmclean used to have
unconventional syntax where a -N option was used instead of
the current -minneighbors option. The only reason -N didn't
get processed by pm_pm_optParseOptions3() is that it looked
like a negative number parameter instead of an option.
If we find a -N, we make like it was a -minneighbors=N option.
*/
int i;
bool foundNegative;
cmdlineP->minneighbors = 1; /* default */
foundNegative = FALSE;
for (i = 1; i < argc; ++i) {
if (foundNegative)
argv[i-1] = argv[i];
else {
if (atoi(argv[i]) < 0) {
cmdlineP->minneighbors = - atoi(argv[i]);
foundNegative = TRUE;
}
}
}
if (foundNegative)
--argc;
}
if (argc-1 < 1)
cmdlineP->inputFileName = "-";
else if (argc-1 == 1)
cmdlineP->inputFileName = argv[1];
else
pm_error("You specified too many arguments (%d). The only "
"argument is the optional input file specification.",
argc-1);
}
static unsigned int
bitpop8(unsigned char const x) {
/*----------------------------------------------------------------------------
Return the number of 1 bits in 'x'
-----------------------------------------------------------------------------*/
static unsigned int const p[256] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 };
return p[x];
}
static unsigned int
bitpop24(uint32_t const w){
/*----------------------------------------------------------------------------
Return the number of 1 bits in the lower 24 bits of 'w'
A GCC builtin, __builtin_popcountl(), is available, but it
emits a call to an external function instead of inlining (GCC 4.4.3).
This table lookup method is faster.
-----------------------------------------------------------------------------*/
return (bitpop8((w >> 16) & 0xff) +
bitpop8((w >> 8) & 0xff) +
bitpop8((w >> 0) & 0xff));
}
/*----------------------------------------------------------------------------
Fast algorithm for counting friendly neighbor pixels
In this program both input and output rows are in raw (packed) PBM format.
We handle input rows in groups of three, named "prevrow", "thisrow",
"nextrow" and scan from left to right. At every byte boundary, 10 bits
are read from each of the three rows and placed into a temporary storage
we call "sample".
prevrow: ... ... _______M NNNNNNNN O_______ ...
thisrow: ... ... _______W cCCCCCCC E_______ ...
nextrow: ... ... _______R SSSSSSSS T_______ ...
sample : xxMNNNNNNNNOWcCCCCCCCERSSSSSSST
We count bits by taking the logical and of "sample" and a bit-mask called
"selection", and feeding the result to a table-based bit-population counter.
For example, the bits around the leftmost bit of the byte ("c") are selected
like this:
sample : xxMNNNNNNNNOWcCCCCCCCERSSSSSSST
selection: & | __111_______1_1_______111______
(In the actual process, "sample" is shifted right and anded against a
constant "selection" mask.)
The above reports one bits. For the zero (white) bits we replace "sample"
with its inverse.
If the friendly neighbor count is below a threshold (default 1), we record
that as a one bit in "flipmask". Bits are flipped in units of eight
and written to outrow at the byte boundary.
-----------------------------------------------------------------------------*/
static unsigned int
likeNeighbors(uint32_t const blackSample,
unsigned int const offset) {
bool const thispoint = ( blackSample >> (18-offset) ) & 0x01;
uint32_t const sample = (thispoint == PBM_BLACK )
? blackSample
: ~ blackSample ;
uint32_t const selection = 0x701407;
return (bitpop24((sample >> (7-offset)) & selection));
}
static uint32_t
setSample(const bit * const prevrow,
const bit * const thisrow,
const bit * const nextrow,
unsigned int const col){
int const col8 = col/8;
uint32_t sample;
sample =
((prevrow[col8 - 1] ) << 29) |
((prevrow[col8] ) << 21) |
((prevrow[col8 + 1] & 0x80) << 13) |
((thisrow[col8 - 1] & 0x01) << 19) |
((thisrow[col8] ) << 11) |
((thisrow[col8 + 1] & 0x80) << 3) |
((nextrow[col8 - 1] & 0x01) << 9) |
((nextrow[col8] ) << 1) |
((nextrow[col8 + 1] & 0x80) >> 7);
return sample;
}
static unsigned char
setTestmask(unsigned char const whiteTestmask,
bool const testWhite,
bool const testBlack) {
/* -----------------------------------------------------------------------
Make a byte pattern of what bits should be tested within a given "thisrow"
(current inrow) byte. 0 means test, 1 means skip.
-------------------------------------------------------------------------- */
if (testWhite == testBlack) {
assert(testWhite); assert(testBlack);
return 0x00;
} else if (testWhite == TRUE) {
assert(!testBlack);
return whiteTestmask;
} else
return ~whiteTestmask;
}
static void
cleanrow(const bit * const prevrow,
const bit * const thisrow,
const bit * const nextrow,
bit * const outrow,
unsigned int const cols,
unsigned int const threshold,
bool const flipWhite,
bool const flipBlack,
unsigned int * const nFlippedP) {
/* ----------------------------------------------------------------------
Work through row, scanning for bits that require flipping, and write
the results to 'outrow'.
Returns the number of bits flipped within this one row as *nFlippedP.
-------------------------------------------------------------------------*/
uint32_t sample;
unsigned char testmask;
unsigned char flipmask;
unsigned int col;
unsigned int nFlipped;
flipmask = 0x00; /* initial value */
nFlipped = 0; /* initial value */
for (col=0 ; col < cols ; ++col) {
unsigned int const col8 = col / 8;
unsigned int const offset = col % 8;
if (offset == 0) {
if (flipmask != 0x00) {
/* Some bits have to be flipped */
outrow[col8 -1] = thisrow [col8 -1] ^ flipmask;
nFlipped += bitpop8(flipmask);
flipmask = 0x00;
} else if (col8 > 0)
outrow[col8 -1] = thisrow [col8 -1];
sample = setSample(prevrow, thisrow, nextrow, col);
testmask = setTestmask(thisrow[col8], flipWhite, flipBlack);
}
if (((testmask << offset) & 0x80 ) ==0) {
if (likeNeighbors(sample, offset ) < threshold)
flipmask |= (0x80 >> offset);
}
}
{
/* Write out last byte */
unsigned int const col8Last = pbm_packed_bytes(cols) -1;
if (flipmask != 0x00) {
outrow[col8Last] = thisrow[col8Last] ^ flipmask;
nFlipped += bitpop8(flipmask);
} else
outrow[col8Last] = thisrow[col8Last];
}
*nFlippedP = nFlipped;
}
static void
setupInputBuffers(FILE * const ifP,
unsigned int const cols,
int const format,
bit *** const bufferP,
bit ** const edgeRowP,
bit ** const thisRowP,
bit ** const nextRowP) {
/*----------------------------------------------------------------------------
Initialize input buffers.
We add a margin of 8 bits each on the left and right of the rows.
On the top and bottom of the image we place an imaginary blank row
("edgerow") to facilitate the process.
-----------------------------------------------------------------------------*/
bit ** const buffer = pbm_allocarray_packed(cols+16, 3);
bit * const edgeRow = pbm_allocrow_packed(cols+16);
bit * nextRow;
unsigned int i;
for (i = 0; i < pbm_packed_bytes(cols+16); ++i)
edgeRow[i] = 0x00;
for (i = 0; i < 3; ++i) {
/* Add blank (all white) bytes beside the edges */
buffer[i][0] = buffer[i][ pbm_packed_bytes( cols +16 ) - 1] = 0x00;
}
nextRow = &buffer[0][1];
/* Read the top line into nextrow and clean the right end. */
pbm_readpbmrow_packed(ifP, nextRow, cols, format);
pbm_cleanrowend_packed(nextRow, cols);
*bufferP = buffer;
*edgeRowP = edgeRow;
*thisRowP = &edgeRow[1];
*nextRowP = nextRow;
}
static void
cleanSimple(FILE * const ifP,
FILE * const ofP,
struct CmdlineInfo const cmdline,
double * const nFlippedP) {
/*----------------------------------------------------------------------------
Do the traditional clean where you look only at the immediate neighboring
pixels of a subject pixel to determine whether to erase that pixel.
-----------------------------------------------------------------------------*/
bit ** buffer;
/* The rows of the input relevant to our current processing:
the current row and the one above and below it.
*/
bit * edgeRow;
/* A blank (all white) row. Constant */
bit * prevRow;
bit * thisRow;
bit * nextRow;
bit * outRow;
int cols, rows, format;
unsigned int row;
pbm_readpbminit(ifP, &cols, &rows, &format);
setupInputBuffers(ifP, cols, format, &buffer, &edgeRow,
&thisRow, &nextRow);
outRow = pbm_allocrow(cols);
pbm_writepbminit(ofP, cols, rows, 0) ;
*nFlippedP = 0; /* none flipped yet */
for (row = 0; row < rows; ++row) {
unsigned int nFlipped;
prevRow = thisRow; /* Slide up the input row window */
thisRow = nextRow;
if (row < rows -1){
nextRow = &buffer[(row+1)%3][1];
/* We take the address directly instead of shuffling the rows
with the help of a temporary. This provision is for proper
handling of the initial edgerow.
*/
pbm_readpbmrow_packed(ifP, nextRow, cols, format);
pbm_cleanrowend_packed(nextRow, cols);
} else /* Bottom of image. */
nextRow = &edgeRow[1];
cleanrow(prevRow, thisRow, nextRow, outRow, cols, cmdline.minneighbors,
cmdline.flipWhite, cmdline.flipBlack, &nFlipped);
*nFlippedP += nFlipped;
pbm_writepbmrow_packed(ofP, outRow, cols, 0) ;
}
pbm_freearray(buffer, 3);
pbm_freerow(edgeRow);
pbm_freerow(outRow);
}
struct PixQueueElt {
struct PixQueueElt * nextP;
pm_pixelcoord coord;
};
typedef struct {
/*----------------------------------------------------------------------------
A queue of pixel locations.
-----------------------------------------------------------------------------*/
unsigned int size;
struct PixQueueElt * headP;
struct PixQueueElt * tailP;
} PixQueue;
static void
pixQueue_init(PixQueue * const queueP) {
queueP->size = 0;
queueP->headP = NULL;
queueP->tailP = NULL;
}
static unsigned int
pixQueue_size(PixQueue * const queueP) {
return queueP->size;
}
static bool
pixQueue_isEmpty(PixQueue * const queueP) {
return !queueP->headP;
}
static void
pixQueue_push(PixQueue * const queueP,
pm_pixelcoord const newValue) {
struct PixQueueElt * newEltP;
MALLOCVAR(newEltP);
if (!newEltP)
pm_error("Out of memory putting a pixel on a queue");
newEltP->coord = newValue;
newEltP->nextP = NULL;
if (queueP->tailP)
queueP->tailP->nextP = newEltP;
queueP->tailP = newEltP;
if (!queueP->headP)
queueP->headP = newEltP;
++queueP->size;
}
static pm_pixelcoord
pixQueue_pop(PixQueue * const queueP) {
/*----------------------------------------------------------------------------
Pop and return the pixel location at the head of queue *queueP.
-----------------------------------------------------------------------------*/
struct PixQueueElt * const newHeadP = queueP->headP->nextP;
pm_pixelcoord retval;
assert(queueP->headP);
retval = queueP->headP->coord;
if (queueP->tailP == queueP->headP)
queueP->tailP = NULL;
free(queueP->headP);
queueP->headP = newHeadP;
--queueP->size;
return retval;
}
static void
pixQueue_term(PixQueue * const queueP) {
struct PixQueueElt * p;
struct PixQueueElt * nextP;
for (p = queueP->headP; p; p = nextP) {
nextP = p->nextP;
free(p);
}
}
static void
queueNeighbors(pm_pixelcoord const center,
bit ** const pixels,
unsigned int const cols,
unsigned int const rows,
bool ** const visited,
PixQueue * const queueP) {
/*----------------------------------------------------------------------------
Add to queue *queueP all the pixels in 'pixels' that touch 'center' and are
the same color as 'center'.
But ignore pixels that 'visited' says have already been queued and
mark everything we queue as visited.
-----------------------------------------------------------------------------*/
bit const blobColor = pixels[center.row][center.col];
int row;
/* Row number of a neighbor; might be off the canvas; even negative */
/* Note that we consider the center pixel here, but it has necessarily
already been visited, so we don't queue it.
*/
for (row = (int)center.row - 1; row <= (int)center.row + 1; ++row) {
int col; /* Analogous to 'row' */
for (col = (int)center.col - 1; col <= (int)center.col + 1; ++col) {
if (row < 0 || row >= rows || col < 0 || col >= cols) {
/* It's off the canvas; nothing to queue */
} else {
if (pixels[row][col] == blobColor) {
if (visited[row][col]) {
/* We've already explored this one */
} else {
/* Queue it! */
pm_pixelcoord neighbor;
neighbor.row = row;
neighbor.col = col;
pixQueue_push(queueP, neighbor);
visited[row][col] = true;
}
}
}
}
}
}
static void
setColor(PixQueue * const blobP,
bit ** const pixels,
bit const newColor) {
/*----------------------------------------------------------------------------
Change all the pixels in (blobP) to 'newColor'. More precisely, change
the pixels in 'pixels' that are listed in *blobP.
-----------------------------------------------------------------------------*/
while (!pixQueue_isEmpty(blobP)) {
pm_pixelcoord const thisPix = pixQueue_pop(blobP);
pixels[thisPix.row][thisPix.col] = newColor;
}
}
static void
processBlob(pm_pixelcoord const start,
bit ** const pixels,
unsigned int const cols,
unsigned int const rows,
unsigned int const trivialSize,
bool ** const visited,
double * const nFlippedP) {
/*----------------------------------------------------------------------------
Process the blob that contains the pixel at 'start'.
That pixel is part of a blob. A blob is a maximal set of contiguous
pixels of the same color.
None of the blob is marked visited in visited[][].
If the blob has fewer than 'trivialSize' pixels, erase it (flip its color).
Update visited[][] to flag all pixels of the blob as visited.
Return as *nFlippedP how many pixels we flipped (i.e. either zero or the
size of the blob).
-----------------------------------------------------------------------------*/
/* In addition to putting output in it, we use visited[][] for working
memory. It indicates pixels of the blob that we've queued for
processing so far.
*/
PixQueue toExplore;
PixQueue blob;
pixQueue_init(&toExplore);
pixQueue_init(&blob);
pixQueue_push(&toExplore, start);
visited[start.row][start.col] = true;
while (!pixQueue_isEmpty(&toExplore)) {
pm_pixelcoord const thisPix = pixQueue_pop(&toExplore);
pixQueue_push(&blob, thisPix);
queueNeighbors(thisPix, pixels, cols, rows, visited, &toExplore);
}
if (pixQueue_size(&blob) <= trivialSize) {
bit const blobColor = pixels[start.row][start.col];
*nFlippedP = pixQueue_size(&blob);
setColor(&blob, pixels,
blobColor == PBM_WHITE ? PBM_BLACK : PBM_WHITE);
} else
*nFlippedP = 0;
pixQueue_term(&blob);
pixQueue_term(&toExplore);
}
static void
setAllNotVisited(bool ** const visited,
unsigned int const cols,
unsigned int const rows) {
unsigned int row;
for (row = 0; row < rows; ++row) {
unsigned int col;
for (col = 0; col < cols; ++col)
visited[row][col] = false;
}
}
static void
cleanPixels(bit ** const pixels,
unsigned int const cols,
unsigned int const rows,
bit const foregroundColor,
unsigned int const trivialSize,
double * const nFlippedP) {
/*----------------------------------------------------------------------------
Same as cleanExtended(), except we work on the pixels 'pixels' instead
of input and output files.
-----------------------------------------------------------------------------*/
pm_pixelcoord thisPix;
bool ** visited; /* malloced */
/* visited[row][col] means we have processed the pixel at (row, col)
and flipped it if it needed to be flipped.
*/
MALLOCARRAY2(visited, rows, cols);
if (!visited)
pm_error("Could not allocate a %u x %u array for visited flags",
rows, cols);
setAllNotVisited(visited, cols, rows);
*nFlippedP = 0; /* initial value */
for (thisPix.row = 0; thisPix.row < rows; ++thisPix.row) {
for (thisPix.col = 0; thisPix.col < cols; ++thisPix.col) {
if (pixels[thisPix.row][thisPix.col] == foregroundColor
&& !visited[thisPix.row][thisPix.col]) {
double nFlipped;
processBlob(thisPix, pixels, cols, rows, trivialSize,
visited, &nFlipped);
*nFlippedP += nFlipped;
} else
visited[thisPix.row][thisPix.col] = true;
}
}
pm_freearray2((void **)visited);
}
static void
cleanExtended(FILE * const ifP,
FILE * const ofP,
bit const foregroundColor,
unsigned int const trivialSize,
double * const nFlippedP) {
/*----------------------------------------------------------------------------
Clean the image on *ifP and write the result to *ofP.
Look at arbitrarily shaped and sized blobs to determine what to erase.
A blob is a contiguous set of pixels of the foreground color
('foregroundColor') which is not contiguous with any other pixels of that
color.
We erase (flip) every pixel in every trivial blob. A trivial blob is
one with 'trivialSize' pixels or fewer.
-----------------------------------------------------------------------------*/
bit ** pixels;
int cols, rows;
pixels = pbm_readpbm(ifP, &cols, &rows);
cleanPixels(pixels, cols, rows, foregroundColor, trivialSize, nFlippedP);
pbm_writepbm(ofP, pixels, cols, rows, 0);
pbm_freearray(pixels, rows);
}
static void
pbmclean(FILE * const ifP,
FILE * const ofP,
struct CmdlineInfo const cmdline,
double * const nFlippedP) {
if (cmdline.extended) {
bit const foregroundColor = cmdline.flipWhite ? PBM_WHITE : PBM_BLACK;
assert(cmdline.flipWhite + cmdline.flipBlack == 1);
cleanExtended(ifP, ofP, foregroundColor, cmdline.minneighbors,
nFlippedP);
} else
cleanSimple(ifP, ofP, cmdline, nFlippedP);
}
int
main(int argc, const char *argv[]) {
struct CmdlineInfo cmdline;
FILE * ifP;
double nFlipped;
/* Number of pixels we have flipped so far. Use type double to
prevent overflow.
*/
pm_proginit(&argc, argv);
parseCommandLine(argc, argv, &cmdline);
ifP = pm_openr(cmdline.inputFileName);
pbmclean(ifP, stdout, cmdline, &nFlipped);
if (cmdline.verbose)
pm_message("%f pixels flipped", nFlipped);
pm_close(ifP);
return 0;
}
|