1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
|
/* ----------------------------------------------------------------------
*
* Convert a single-image stereogram to a red/cyan anaglyphic image
*
* By Scott Pakin <scott+pbm@pakin.org>
*
* ----------------------------------------------------------------------
*
* Copyright (C) 2009-2022 Scott Pakin <scott+pbm@pakin.org>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see http://www.gnu.org/licenses/.
*
* ----------------------------------------------------------------------
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "mallocvar.h"
#include "nstring.h"
#include "shhopt.h"
#include "pam.h"
struct cmdlineInfo {
/* This structure represents all of the information the user
supplied in the command line but in a form easy for the program
to use.
*/
int separation;
/* Exact separation in pixels between the left and right eye,
or -1
*/
int minSeparation;
/* Minimum separation in pixels between the left and right eye */
gray maxGrayVal;
/* Maximum grayscale value to which to scale the image */
int swapEyes;
/* 0=left red, right cyan; 1=left cyan, right red */
const char *inputFilename; /* '-' if stdin */
};
static void
parseCommandLine( int argc, const char ** const argv,
struct cmdlineInfo * const cmdlineP ) {
/*--------------------------------------------------------------------
Parse the command line into a structure.
----------------------------------------------------------------------*/
optEntry * option_def;
/* Instructions to OptParseOptions3 on how to parse our options */
optStruct3 opt;
unsigned int option_def_index;
int maxgrayval;
maxgrayval = 63; /* default */
MALLOCARRAY(option_def, 100);
option_def_index = 0; /* Incremented by OPTENTRY */
MEMSZERO(cmdlineP);
cmdlineP->separation = -1;
OPTENT3('s', "sep", OPT_INT, &cmdlineP->separation, NULL, 0);
OPTENT3('g', "gray", OPT_INT, &maxgrayval, NULL, 0);
OPTENT3('i', "invert", OPT_FLAG, &cmdlineP->swapEyes, NULL, 0);
OPTENT3('m', "minsep", OPT_INT, &cmdlineP->minSeparation, NULL, 0);
opt.opt_table = option_def;
opt.short_allowed = 1;
opt.allowNegNum = 0;
pm_optParseOptions3( &argc, (char **)argv, opt, sizeof(opt), 0 );
if (argc-1 < 1)
cmdlineP->inputFilename = "-";
else {
cmdlineP->inputFilename = argv[1];
if (argc-1 > 1)
pm_error("Too many arguments: %u. The only argument is the "
"optional input file name", argc-1);
}
cmdlineP->maxGrayVal = (gray) maxgrayval;
}
static gray **
readAsGray( const char * const fileName,
gray const maxGrayVal,
struct pam * const pamP) {
/*--------------------------------------------------------------------
Read the input image and convert it to grayscale to reduce the
number of "almost but not quite" equal pixels. Return the
grayscale array and the initialized PAM structure.
----------------------------------------------------------------------*/
FILE * fileP;
tuple * tuplerow;
gray ** grayArray;
unsigned int row;
fileP = pm_openr( fileName );
pnm_readpaminit( fileP, pamP, PAM_STRUCT_SIZE(tuple_type) );
tuplerow = pnm_allocpamrow( pamP );
grayArray = pgm_allocarray( pamP->width, pamP->height );
for (row = 0; row < pamP->height; ++row) {
unsigned int col;
pnm_readpamrow( pamP, tuplerow );
for (col = 0; col < pamP->width; ++col) {
double YP, CbP, CrP;
if (pamP->depth >= 3)
pnm_YCbCrtuple(tuplerow[col], &YP, &CbP, &CrP);
else
YP = (double) tuplerow[col][0];
grayArray[row][col] = (gray)
(YP * maxGrayVal / (double)pamP->maxval);
}
}
pnm_freepamrow( tuplerow );
pm_close( fileP );
return grayArray;
}
static int
bestEyeSepWeEncountered(int const bestSeparation[3],
int const altBestSeparation) {
int i;
for (i = 2; i >= 0; --i) {
if (bestSeparation[i] != 0)
return bestSeparation[i];
}
return altBestSeparation;
}
static int
findRegionEyeSeparation( gray ** const grayArray,
int const width,
int const height ) {
/*----------------------------------------------------------------------
Determine the number of pixels that corresponds to the separation
between the viewer's left eye and right eye. We do this by counting
the number of pixels that match N pixels ahead in the image for all
N in [1, W/2]. The first big spike in the number of matched pixels
determines the N to use for the eye separation. More specifically,
if a spike that exceeds 3*stdev+mean is found, the corresponding
value of N is taken as the eye separation; otherwise, a spike
exceeding 2*stdev+mean is used, then 1*stdev+mean, and finally, the
eye separation that produces the minimum average distance between
matched pixels. A return value of zero indicates that no eye
separation could be determined.
------------------------------------------------------------------------*/
int bestSeparation[3];
/* Eye separation corresponding to spikes of N+1 standard deviations */
int hShift;
/* Current horizontal shift */
double sumMatches;
/* Sum of all matches seen so far */
double sumSqMatches;
/* Sum of the squares of all matches seen so far */
double meanMatches;
/* Mean of all matches seen so far */
double stdMatches;
/* Standard deviation of all matches seen so far */
double minAvgDist;
/* Min. average distance between matches */
int altBestSeparation;
/* Shift distance corresponding to the above */
unsigned int i;
/* Try in turn each horizontal shift value from 1 to width/2. A
shift of 0 is defined to be a perfect match. A shift of more
than width/2 implies that the right-eye image is truncated, which
is an unnatural way to construct a crosseyed stereogram.
*/
for (i = 0; i < 3; ++i)
bestSeparation[i] = 0;
altBestSeparation = 0;
sumMatches = sumSqMatches = 0.0;
meanMatches = stdMatches = minAvgDist = width * height;
for (hShift = 1; hShift <= width/2; ++hShift) {
unsigned int row;
unsigned long numMatches; /* Number of matched pixels */
double avgDist; /* Average distance between matches */
numMatches = 0; /* initial value */
/* Tally the number of matches for this shift distance. */
for (row = 0; row < height; ++row) {
unsigned int col;
for (col = 0; col < width - hShift; ++col)
if (grayArray[row][col] == grayArray[row][col + hShift])
++numMatches;
/* See if the number of matches exceeds the running mean plus N
standard deviations. Also, keep track of the shortest average
distance between matches seen so far.
*/
if (hShift > 1) {
int i;
for (i = 2; i >= 0; --i)
if (bestSeparation[i] == 0 &&
numMatches > meanMatches + (i+1)*stdMatches) {
bestSeparation[i] = hShift;
break;
}
}
avgDist = (height * (width-hShift)) / (double)numMatches;
if (minAvgDist > avgDist) {
minAvgDist = avgDist;
altBestSeparation = hShift;
}
/* Compute the new mean and standard deviation. */
sumMatches += (double)numMatches;
sumSqMatches += (double)numMatches * (double)numMatches;
meanMatches = sumMatches / (double)hShift;
stdMatches = sqrt(sumSqMatches/hShift - meanMatches*meanMatches);
}
}
return bestEyeSepWeEncountered(bestSeparation, altBestSeparation);
}
#ifndef LITERAL_FN_DEF_MATCH
static qsort_comparison_fn compareInts;
#endif
static int
compareInts(const void * const a,
const void * const b) {
const int * const firstP = a;
const int * const secondP = b;
int const first = *firstP;
int const second = *secondP;
int retval;
if (first < second)
retval = -1;
else if (first > second)
retval = +1;
else
retval = 0;
return retval;
}
static int
findEyeSeparation( struct pam * const pamP,
gray ** const grayArray,
int const minSeparation ) {
/*----------------------------------------------------------------------
Compute the eye separation for each row of the grayscale image.
Ignore rows for which the eye separation could not be determined and
return the median of the remaining rows, aborting with an error
message if there are no remaining rows. Out of laziness we use
qsort() to help find the median; if this turns out to be a
performance problem, it should be replaced with a linear-time median
finder.
------------------------------------------------------------------------*/
int bestSeparation; /* Best eye separation found */
/* First attempt: Find the best eye separation across the image as a
whole. This works well when the image consists of relatively
small foreground objects in front of a comparatively large
background plane.
*/
bestSeparation =
findRegionEyeSeparation( grayArray, pamP->width, pamP->height );
/* Second attempt: Compute the best eye separation for each row
independently and return the median of the best eye
separations.
*/
if (bestSeparation < minSeparation) {
int * rowSeparation; /* Per-row best separation distance */
unsigned int numValidRows;
/* Number of entries in the above (<= #rows) */
unsigned int row;
numValidRows = 0; /* initial value */
MALLOCARRAY_NOFAIL( rowSeparation, pamP->height );
for (row = 0; row < pamP->height; ++row) {
int const sep =
findRegionEyeSeparation( &grayArray[row], pamP->width, 1);
if (sep >= minSeparation)
rowSeparation[numValidRows++] = sep;
}
if (numValidRows > 0) {
qsort(rowSeparation, numValidRows, sizeof(int), compareInts);
bestSeparation = rowSeparation[numValidRows/2];
}
free( rowSeparation );
}
if (bestSeparation < minSeparation)
pm_error("Failed to determine the separation between "
"the left and right views");
return bestSeparation;
}
static void
writeAnaglyph( FILE * const ofP,
gray ** const grayArray,
gray const maxGrayVal,
int const eyeSep,
int const swapEyes,
struct pam * const pamP) {
/*----------------------------------------------------------------------
Output an anaglyphic stereogram from the given grayscale array and
eye-separation value.
------------------------------------------------------------------------*/
struct pam outPam;
tuple * tuplerow;
outPam.size = sizeof(struct pam);
outPam.len = PAM_STRUCT_SIZE(tuple_type);
outPam.file = ofP;
outPam.format = PAM_FORMAT;
outPam.plainformat = 0;
outPam.height = pamP->height;
outPam.width = pamP->width - eyeSep;
/* Avoid color bands on the left/right edges. */
outPam.depth = 3;
outPam.maxval = (sample) maxGrayVal;
strcpy(outPam.tuple_type, PAM_PPM_TUPLETYPE);
pnm_writepaminit( &outPam );
tuplerow = pnm_allocpamrow( &outPam );
if (swapEyes) {
unsigned int row;
for (row = 0; row < outPam.height; ++row) {
unsigned int col;
for (col = 0; col < outPam.width; ++col) {
tuplerow[col][PAM_RED_PLANE] = grayArray[row][col+eyeSep];
tuplerow[col][PAM_GRN_PLANE] = grayArray[row][col];
tuplerow[col][PAM_BLU_PLANE] = grayArray[row][col];
}
pnm_writepamrow( &outPam, tuplerow );
}
} else {
unsigned int row;
for (row = 0; row < outPam.height; ++row) {
unsigned int col;
for (col = 0; col < outPam.width; ++col) {
tuplerow[col][PAM_RED_PLANE] = grayArray[row][col];
tuplerow[col][PAM_GRN_PLANE] = grayArray[row][col+eyeSep];
tuplerow[col][PAM_BLU_PLANE] = grayArray[row][col+eyeSep];
}
pnm_writepamrow( &outPam, tuplerow );
}
}
pnm_freepamrow( tuplerow );
}
int
main(int argc, const char *argv[]) {
struct pam inPam;
gray ** inImage;
int eyeSep;
struct cmdlineInfo cmdline;
pm_proginit( &argc, argv );
parseCommandLine( argc, argv, &cmdline );
inImage = readAsGray( cmdline.inputFilename, cmdline.maxGrayVal, &inPam );
if (cmdline.separation >= 0)
eyeSep = cmdline.separation;
else {
int const minSeparation =
cmdline.minSeparation > 0
? cmdline.minSeparation : inPam.width / 10;
/* Minimum separation in pixels between eyes.
Heuristic: Eye separation must be at least 10% of image width.
*/
eyeSep = findEyeSeparation ( &inPam, inImage, minSeparation );
}
pm_message( "Separation between left/right views = %d pixels", eyeSep );
writeAnaglyph ( stdout, inImage, cmdline.maxGrayVal,
eyeSep, cmdline.swapEyes,
&inPam );
return 0;
}
|