about summary refs log tree commit diff
path: root/editor/pamscale.c
blob: 16c22f76d0fa95fab2fb4a87f344b1cb71163042 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
/* pamscale.c - rescale (resample) a PNM image

   This program evolved out of Jef Poskanzer's program Pnmscale from
   his Pbmplus package (which was derived from Poskanzer's 1989
   Ppmscale).  The resampling logic was taken from Michael Reinelt's
   program Pnmresample, somewhat recoded to follow Netpbm conventions.
   Michael submitted that for inclusion in Netpbm in December 2003.
   The frame of the program is by Bryan Henderson, and the old scaling
   algorithm is based on that in Jef Poskanzer's Pnmscale, but
   completely rewritten by Bryan Henderson ca. 2000.  Plenty of other
   people contributed code changes over the years.

   Copyright (C) 2003 by Michael Reinelt <reinelt@eunet.at>
  
   Copyright (C) 1989, 1991 by Jef Poskanzer.
  
   Permission to use, copy, modify, and distribute this software and its
   documentation for any purpose and without fee is hereby granted, provided
   that the above copyright notice appear in all copies and that both that
   copyright notice and this permission notice appear in supporting
   documentation.  This software is provided "as is" without express or
   implied warranty.
*/

#define _XOPEN_SOURCE   /* get M_PI in math.h */

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <assert.h>

#include "pm_c_util.h"
#include "mallocvar.h"
#include "shhopt.h"
#include "pam.h"


/****************************/
/****************************/
/********* filters **********/
/****************************/
/****************************/

/* Most of the filters are FIR (finite impulse respone), but some
** (sinc, bessel) are IIR (infinite impulse respone).
** They should be windowed with hanning, hamming, blackman or
** kaiser window.
** For sinc and bessel the blackman window will be used per default.
*/

#define EPSILON 1e-7



/* x^2 and x^3 helper functions */
static __inline__ double 
pow2(double const x) {
    return x * x;
}



static __inline__ double 
pow3(double const x) {
    return x * x * x;
}



/* box, pulse, Fourier window, */
/* box function also know as rectangle function */
/* 1st order (constant) b-spline */

#define radius_point (0.0)
#define radius_box (0.5)

static double 
filter_box(double const x) {

    double const absx = x < 0.0 ? -x : x;

    return (absx <= 0.5) ? 1.0 : 0.0;
}



/* triangle, Bartlett window, */
/* triangle function also known as lambda function */
/* 2nd order (linear) b-spline */

#define radius_triangle (1.0)

static double 
filter_triangle(double const x) {

    double const absx = x < 0.0 ? -x : x;

    return absx < 1.0 ? 1.0 - absx : 0.0;
}



/* 3rd order (quadratic) b-spline */

#define radius_quadratic (1.5)

static double 
filter_quadratic(double const x) {

    double const absx = x < 0.0 ? -x : x;

    return
        absx < 0.5 ? 0.75 - pow2(absx) :
        absx < 1.5 ? 0.50 * pow2(absx - 1.5) :
        0.0;
}



/* 4th order (cubic) b-spline */

#define radius_cubic (2.0)

static double 
filter_cubic(double const x) {

    double const absx = x < 0.0 ? -x : x;

    return
        absx < 1.0 ? 0.5 * pow3(absx) - pow2(absx) + 2.0/3.0 :
        absx < 2.0 ? pow3(2.0-absx)/6.0 :
        0.0;
}



/* Catmull-Rom spline, Overhauser spline */

#define radius_catrom (2.0)

static double 
filter_catrom(double const x) {

    double const absx = x < 0.0 ? -x : x;

    return
        absx < 1.0 ?  1.5 * pow3(absx) - 2.5 * pow2(absx)         + 1.0 :
        absx < 2.0 ? -0.5 * pow3(absx) + 2.5 * pow2(absx) - 4.0 * absx + 2.0 :
        0.0;
}



/* Mitchell & Netravali's two-param cubic */
/* see Mitchell&Netravali,  */
/* "Reconstruction Filters in Computer Graphics", SIGGRAPH 88 */

#define radius_mitchell (2.0)

static double 
filter_mitchell(double x)
{

    double const b = 1.0/3.0;
    double const c = 1.0/3.0;

    double const p0 = (  6.0 -  2.0*b         ) / 6.0;
    double const p2 = (-18.0 + 12.0*b +  6.0*c) / 6.0;
    double const p3 = ( 12.0 -  9.0*b -  6.0*c) / 6.0;
    double const q0 = (         8.0*b + 24.0*c) / 6.0;
    double const q1 = (      - 12.0*b - 48.0*c) / 6.0;
    double const q2 = (         6.0*b + 30.0*c) / 6.0;
    double const q3 = (      -      b -  6.0*c) / 6.0;

    double const absx = x < 0.0 ? -x : x;

    return
        absx <  1.0 ? p3 * pow3(absx) + p2 * pow2(absx)        + p0 :
        absx < 2.0 ? q3 * pow3(absx) + q2 * pow2(absx) + q1 * absx + q0 :
        0.0;
}



/* Gaussian filter (infinite) */

#define radius_gauss (1.25)

static double 
filter_gauss(double const x) {

    return exp(-2.0*pow2(x)) * sqrt(2.0/M_PI);
}



/* sinc, perfect lowpass filter (infinite) */

#define radius_sinc (4.0)

static double 
filter_sinc(double const x) {
    /* Note: Some people say sinc(x) is sin(x)/x.  Others say it's
       sin(PI*x)/(PI*x), a horizontal compression of the former which is
       zero at integer values.  We use the latter, whose Fourier transform
       is a canonical rectangle function (edges at -1/2, +1/2, height 1).
    */
    return 
        x == 0.0 ? 1.0 :
        sin(M_PI*x)/(M_PI*x);
}



/* Bessel (for circularly symm. 2-d filt, infinite) */
/* See Pratt "Digital Image Processing" p. 97 for Bessel functions */

#define radius_bessel (3.2383)

static double 
filter_bessel(double const x) {

    return 
        x == 0.0 ? M_PI/4.0 :
        j1(M_PI * x) / (2.0 * x);
}



/* Hanning window (infinite) */

#define radius_hanning (1.0)

static double 
filter_hanning(double const x) {

    return 0.5 * cos(M_PI * x) + 0.5;
}



/* Hamming window (infinite) */

#define radius_hamming (1.0)

static double 
filter_hamming(double const x) {
    return 0.46 * cos(M_PI * x) + 0.54;
}



/* Blackman window (infinite) */

#define radius_blackman (1.0)

static double 
filter_blackman(double const x) {
    return 0.5 * cos(M_PI * x) + 0.08 * cos(2.0 * M_PI * x) + 0.42;
}



/* parameterized Kaiser window (infinite) */
/* from Oppenheim & Schafer, Hamming */

#define radius_kaiser (1.0)

/* modified zeroth order Bessel function of the first kind. */
static double 
bessel_i0(double const x) {
  
    int i;
    double sum, y, t;
  
    sum = 1.0;
    y = pow2(x)/4.0;
    t = y;
    for (i=2; t>EPSILON; ++i) {
        sum += t;
        t   *= (double)y/pow2(i);
    }
    return sum;
}



static double 
filter_kaiser(double const x) {
    /* typically 4 < a < 9 */
    /* param a trades off main lobe width (sharpness) */
    /* for side lobe amplitude (ringing) */
  
    double const a   = 6.5;
    double const i0a = 1.0/bessel_i0(a);
  
    return i0a * bessel_i0(a * sqrt(1.0-pow2(x)));
}



/* normal distribution (infinite) */
/* Normal(x) = Gaussian(x/2)/2 */

#define radius_normal (1.0)

static double 
filter_normal(double const x) {
    return exp(-pow2(x)/2.0) / sqrt(2.0*M_PI);
}



/* Hermite filter */

#define radius_hermite  (1.0)

static double 
filter_hermite(double const x) {
    /* f(x) = 2|x|^3 - 3|x|^2 + 1, -1 <= x <= 1 */

    double const absx = x < 0.0 ? -x : x;

    return
        absx <  1.0 ? 2.0 * pow3(absx) - 3.0 * pow2(absx) + 1.0 :
        0.0;
}



/* Lanczos filter */

#define radius_lanczos (3.0)

static double 
filter_lanczos(double const x) {

    double const absx = x < 0.0 ? -x : x;

    return
        x <  3.0 ? filter_sinc(absx) * filter_sinc(absx/3.0) :
        0.0;
}



typedef struct {
    const char *name;
    double (*function)(double);
    double radius;
        /* This is how far from the Y axis (on either side) the
           function has significant value.  (You can use this to limit
           how much of your domain you bother to compute the function
           over).  
        */
    bool windowed;
} filter;


static filter Filters[] = {
    { "point",     filter_box,       radius_point,     FALSE },
    { "box",       filter_box,       radius_box,       FALSE },
    { "triangle",  filter_triangle,  radius_triangle,  FALSE },
    { "quadratic", filter_quadratic, radius_quadratic, FALSE },
    { "cubic",     filter_cubic,     radius_cubic,     FALSE },
    { "catrom",    filter_catrom,    radius_catrom,    FALSE },
    { "mitchell",  filter_mitchell,  radius_mitchell,  FALSE },
    { "gauss",     filter_gauss,     radius_gauss,     FALSE },
    { "sinc",      filter_sinc,      radius_sinc,      TRUE  },
    { "bessel",    filter_bessel,    radius_bessel,    TRUE  },
    { "hanning",   filter_hanning,   radius_hanning,   FALSE },
    { "hamming",   filter_hamming,   radius_hamming,   FALSE },
    { "blackman",  filter_blackman,  radius_blackman,  FALSE },
    { "kaiser",    filter_kaiser,    radius_kaiser,    FALSE },
    { "normal",    filter_normal,    radius_normal,    FALSE },
    { "hermite",   filter_hermite,   radius_hermite,   FALSE },
    { "lanczos",   filter_lanczos,   radius_lanczos,   FALSE },
   { NULL },
};


typedef double (*basicFunction_t)(double);


/****************************/
/****************************/
/****** end of filters ******/
/****************************/
/****************************/



enum scaleType {SCALE_SEPARATE, SCALE_BOXFIT, SCALE_BOXFILL, SCALE_PIXELMAX};
    /* This is a way of specifying the output dimensions.

       SCALE_SEPARATE means specify the horizontal and vertical scaling
       separately.  One or both may be unspecified.

       SCALE_BOXFIT means specify height and width of a box, and the
       image must be scaled, preserving aspect ratio, to the largest
       size that will fit in the box.  Some of the box may be empty.

       SCALE_BOXFILL means specify height and width of a box, and the
       image must be scaled, preserving aspect ratio, to the smallest
       size that completely fills the box.  Some of the image may be
       outside the box.

       SCALE_PIXELMAX means specify the maximum number of pixels the result
       should have and scale preserving aspect ratio and maximizing image
       size.
    */

struct cmdlineInfo {
    /* All the information the user supplied in the command line,
     * in a form easy for the program to use.
     */
    const char * inputFileName;  /* Filespec of input file */
    unsigned int nomix;
    basicFunction_t filterFunction; /* NULL if not using resample method */
    basicFunction_t windowFunction;
        /* Meaningful only when filterFunction != NULL */
    double filterRadius;           
        /* Meaningful only when filterFunction != NULL */
    enum scaleType scaleType;
    /* 'xsize' and 'ysize' are numbers of pixels.  Their meaning depends upon
       'scaleType'.  for SCALE_BOXFIT and SCALE_BOXFILL, they are the box 
       dimensions.  For SCALE_SEPARATE, they are the separate dimensions, or
       zero to indicate unspecified.  For SCALE_PIXELMAX, they are
       meaningless.
    */
    unsigned int xsize;
    unsigned int ysize;
    /* 'xscale' and 'yscale' are meaningful only for scaleType == 
       SCALE_SEPARATE and only where the corresponding xsize/ysize is
       unspecified.  0.0 means unspecified.
    */
    float xscale;
    float yscale;
    /* 'pixels' is meaningful only for scaleType == SCALE_PIXELMAX */
    unsigned int pixels; 
    unsigned int linear;
    unsigned int verbose;
};



static void
lookupFilterByName(const char * const filtername,
                   filter *     const filterP) {

    unsigned int i;
    bool found;

    found = FALSE;  /* initial assumption */

    for (i=0; Filters[i].name; ++i) {
        if (strcmp(filtername, Filters[i].name) == 0) {
            *filterP = Filters[i];
            found = TRUE;
        }
    }
    if (!found) {
        unsigned int i;
        char known_filters[1024];
        strcpy(known_filters, "");
        for (i = 0; Filters[i].name; ++i) {
            const char * const name = Filters[i].name;
            if (strlen(known_filters) + strlen(name) + 1 + 1 < 
                sizeof(known_filters)) {
                strcat(known_filters, name);
                strcat(known_filters, " ");
            }
        }
        pm_error("No such filter as '%s'.  Known filter names are: %s",
                 filtername, known_filters);
    }
}



static void
processFilterOptions(unsigned int const         filterSpec,
                     const char                 filterOpt[],
                     unsigned int const         windowSpec,
                     const char                 windowOpt[],
                     struct cmdlineInfo * const cmdlineP) {

    if (filterSpec) {
        filter baseFilter;
        lookupFilterByName(filterOpt, &baseFilter);
        cmdlineP->filterFunction = baseFilter.function; 
        cmdlineP->filterRadius   = baseFilter.radius;

        if (windowSpec) {
            filter windowFilter;
            lookupFilterByName(windowOpt, &windowFilter);
            
            if (cmdlineP->windowFunction == filter_box)
                cmdlineP->windowFunction = NULL;
            else
                cmdlineP->windowFunction = windowFilter.function;
        } else {
            /* Default for most filters is no window.  Those that _require_
               a window function get Blackman.
               */
            if (baseFilter.windowed)
                cmdlineP->windowFunction = filter_blackman;
            else
                cmdlineP->windowFunction = NULL;
        }
    } else
        cmdlineP->filterFunction = NULL;
}



static void
parseXyParms(int                  const argc, 
             const char **        const argv,
             struct cmdlineInfo * const cmdlineP) {

    /* parameters are box width (columns), box height (rows), and
       optional filespec 
    */
    if (argc-1 < 2)
        pm_error("You must supply at least two parameters with "
                 "-xyfit/xyfill/xysize: "
                 "x and y dimensions of the bounding box.");
    else if (argc-1 > 3)
        pm_error("Too many arguments.  With -xyfit/xyfill/xysize, "
                 "you need 2 or 3 arguments.");
    else {
        char * endptr;
        cmdlineP->xsize = strtol(argv[1], &endptr, 10);
        if (strlen(argv[1]) > 0 && *endptr != '\0')
            pm_error("horizontal size argument not an integer: '%s'", 
                     argv[1]);
        if (cmdlineP->xsize <= 0)
            pm_error("horizontal size argument is not positive: %d", 
                     cmdlineP->xsize);
        
        cmdlineP->ysize = strtol(argv[2], &endptr, 10);
        if (strlen(argv[2]) > 0 && *endptr != '\0')
            pm_error("vertical size argument not an integer: '%s'", 
                     argv[2]);
        if (cmdlineP->ysize <= 0)
            pm_error("vertical size argument is not positive: %d", 
                     cmdlineP->ysize);
        
        if (argc-1 < 3)
            cmdlineP->inputFileName = "-";
        else
            cmdlineP->inputFileName = argv[3];
    }
}



static void
parseScaleParms(int                   const argc, 
                const char **         const argv,
                struct cmdlineInfo  * const cmdlineP) {

    /* parameters are scale factor and optional filespec */
    if (argc-1 < 1)
        pm_error("With no dimension options, you must supply at least "
                 "one parameter: the scale factor.");
    else {
        cmdlineP->xscale = cmdlineP->yscale = atof(argv[1]);
        
        if (cmdlineP->xscale == 0.0)
            pm_error("The scale parameter %s is not a positive number.",
                     argv[1]);
        else {
            if (argc-1 < 2)
                cmdlineP->inputFileName = "-";
            else
                cmdlineP->inputFileName = argv[2];
        }
    }
}



static void
parseFilespecOnlyParms(int                   const argc, 
                       const char **         const argv,
                       struct cmdlineInfo  * const cmdlineP) {

    /* Only parameter allowed is optional filespec */
    if (argc-1 < 1)
        cmdlineP->inputFileName = "-";
    else
        cmdlineP->inputFileName = argv[1];
}


static void 
parseCommandLine(int argc, 
                 const char ** argv, 
                 struct cmdlineInfo  * const cmdlineP) {
/* --------------------------------------------------------------------------
   Parse program command line described in Unix standard form by argc
   and argv.  Return the information in the options as *cmdlineP.  

   If command line is internally inconsistent (invalid options, etc.),
   issue error message to stderr and abort program.

   Note that the strings we return are stored in the storage that
   was passed to us as the argv array.  We also trash *argv.
--------------------------------------------------------------------------*/
    optEntry *option_def;
    optStruct3 opt;
        /* Instructions to optParseOptions3 on how to parse our options. */
  
    unsigned int option_def_index;
    unsigned int xyfit, xyfill;
    int xsize, ysize, pixels;
    int reduce;
    float xscale, yscale;
    const char *filterOpt, *window;
    unsigned int filterSpec, windowSpec;

    MALLOCARRAY_NOFAIL(option_def, 100);

    option_def_index = 0;   /* incremented by OPTENT3 */
    OPTENT3(0, "xsize",     OPT_UINT,    &xsize,     NULL,                 0);
    OPTENT3(0, "width",     OPT_UINT,    &xsize,     NULL,                 0);
    OPTENT3(0, "ysize",     OPT_UINT,    &ysize,     NULL,                 0);
    OPTENT3(0, "height",    OPT_UINT,    &ysize,     NULL,                 0);
    OPTENT3(0, "xscale",    OPT_FLOAT,   &xscale,    NULL,                 0);
    OPTENT3(0, "yscale",    OPT_FLOAT,   &yscale,    NULL,                 0);
    OPTENT3(0, "pixels",    OPT_UINT,    &pixels,    NULL,                 0);
    OPTENT3(0, "reduce",    OPT_UINT,    &reduce,    NULL,                 0);
    OPTENT3(0, "xysize",    OPT_FLAG,    NULL,       &xyfit,               0);
    OPTENT3(0, "xyfit",     OPT_FLAG,    NULL,       &xyfit,               0);
    OPTENT3(0, "xyfill",    OPT_FLAG,    NULL,       &xyfill,              0);
    OPTENT3(0, "verbose",   OPT_FLAG,    NULL,       &cmdlineP->verbose,   0);
    OPTENT3(0, "filter",    OPT_STRING,  &filterOpt, &filterSpec,          0);
    OPTENT3(0, "window",    OPT_STRING,  &window,    &windowSpec,          0);
    OPTENT3(0, "nomix",     OPT_FLAG,    NULL,       &cmdlineP->nomix,     0);
    OPTENT3(0, "linear",    OPT_FLAG,    NULL,       &cmdlineP->linear,    0);
  
    /* Set the defaults. -1 = unspecified */

    /* (Now that we're using ParseOptions3, we don't have to do this -1
     * nonsense, but we don't want to risk screwing these complex 
     * option compatibilities up, so we'll convert that later.
     */
    xsize = -1;
    ysize = -1;
    xscale = -1.0;
    yscale = -1.0;
    pixels = -1;
    reduce = -1;
    
    opt.opt_table = option_def;
    opt.short_allowed = FALSE;  /* We have no short (old-fashioned) options */
    opt.allowNegNum = FALSE;   /* We have no parms that are negative numbers */

    optParseOptions3(&argc, (char **)argv, opt, sizeof(opt), 0);
    /* Uses and sets argc, argv, and some of *cmdlineP and others. */

    if (cmdlineP->nomix && filterSpec) 
        pm_error("You cannot specify both -nomix and -filter.");

    processFilterOptions(filterSpec, filterOpt, windowSpec, window,
                         cmdlineP);

    if (xsize == 0)
        pm_error("-xsize/width must be greater than zero.");
    if (ysize == 0)
        pm_error("-ysize/height must be greater than zero.");
    if (xscale != -1.0 && xscale <= 0.0)
        pm_error("-xscale must be greater than zero.");
    if (yscale != -1.0 && yscale <= 0.0)
        pm_error("-yscale must be greater than zero.");
    if (reduce <= 0 && reduce != -1)
        pm_error("-reduce must be greater than zero.");

    if (xsize != -1 && xscale != -1)
        pm_error("Cannot specify both -xsize/width and -xscale.");
    if (ysize != -1 && yscale != -1)
        pm_error("Cannot specify both -ysize/height and -yscale.");
    
    if ((xyfit || xyfill) &&
        (xsize != -1 || xscale != -1 || ysize != -1 || yscale != -1 || 
         reduce != -1 || pixels != -1) )
        pm_error("Cannot specify -xyfit/xyfill/xysize with other "
                 "dimension options.");
    if (xyfit && xyfill)
        pm_error("Cannot specify both -xyfit and -xyfill");
    if (pixels != -1 && 
        (xsize != -1 || xscale != -1 || ysize != -1 || yscale != -1 ||
         reduce != -1) )
        pm_error("Cannot specify -pixels with other dimension options.");
    if (reduce != -1 && 
        (xsize != -1 || xscale != -1 || ysize != -1 || yscale != -1) )
        pm_error("Cannot specify -reduce with other dimension options.");

    if (pixels == 0)
        pm_error("-pixels must be greater than zero");

    /* Get the program parameters */

    if (xyfit || xyfill) {
        cmdlineP->scaleType = xyfit ? SCALE_BOXFIT : SCALE_BOXFILL;
        parseXyParms(argc, argv, cmdlineP);
    } else if (reduce != -1) {
        cmdlineP->scaleType = SCALE_SEPARATE;
        parseFilespecOnlyParms(argc, argv, cmdlineP);
        cmdlineP->xsize = cmdlineP->ysize = 0;
        cmdlineP->xscale = cmdlineP->yscale = 
            ((double) 1.0) / ((double) reduce);
        pm_message("reducing by %d gives scale factor of %f.", 
                   reduce, cmdlineP->xscale);
    } else if (pixels != -1) {
        cmdlineP->scaleType = SCALE_PIXELMAX;
        parseFilespecOnlyParms(argc, argv, cmdlineP);
        cmdlineP->pixels = pixels;
    } else if (xsize == -1 && xscale == -1 && ysize == -1 && yscale == -1
               && pixels == -1 && reduce == -1) {
        cmdlineP->scaleType = SCALE_SEPARATE;
        parseScaleParms(argc, argv, cmdlineP);
        cmdlineP->xsize = cmdlineP->ysize = 0;
    } else {
        cmdlineP->scaleType = SCALE_SEPARATE;
        parseFilespecOnlyParms(argc, argv, cmdlineP);
        cmdlineP->xsize = xsize == -1 ? 0 : xsize;
        cmdlineP->ysize = ysize == -1 ? 0 : ysize;
        cmdlineP->xscale = xscale == -1.0 ? 0.0 : xscale;
        cmdlineP->yscale = yscale == -1.0 ? 0.0 : yscale;
    }
}



static void 
computeOutputDimensions(struct cmdlineInfo  const cmdline, 
                        unsigned int        const rows, 
                        unsigned int        const cols, 
                        int *               const newrowsP, 
                        int *               const newcolsP) {

    switch(cmdline.scaleType) {
    case SCALE_PIXELMAX: {
        if (rows * cols <= cmdline.pixels) {
            *newrowsP = rows;
            *newcolsP = cols;
        } else {
            const double scale =
                sqrt( (float) cmdline.pixels / ((float) cols * (float) rows));
            *newrowsP = rows * scale;
            *newcolsP = cols * scale;
        }
    } break;
    case SCALE_BOXFIT:
    case SCALE_BOXFILL: {
        double const aspect_ratio = (float) cols / (float) rows;
        double const box_aspect_ratio = 
            (float) cmdline.xsize / (float) cmdline.ysize;
        
        if ((box_aspect_ratio > aspect_ratio && 
             cmdline.scaleType == SCALE_BOXFIT) ||
            (box_aspect_ratio < aspect_ratio &&
             cmdline.scaleType == SCALE_BOXFILL)) {
            *newrowsP = cmdline.ysize;
            *newcolsP = *newrowsP * aspect_ratio + 0.5;
        } else {
            *newcolsP = cmdline.xsize;
            *newrowsP = *newcolsP / aspect_ratio + 0.5;
        }
    } break;
    case SCALE_SEPARATE: {
        if (cmdline.xsize)
            *newcolsP = cmdline.xsize;
        else if (cmdline.xscale)
            *newcolsP = cmdline.xscale * cols + .5;
        else if (cmdline.ysize)
            *newcolsP = cols * ((float) cmdline.ysize/rows) +.5;
        else
            *newcolsP = cols;

        if (cmdline.ysize)
            *newrowsP = cmdline.ysize;
        else if (cmdline.yscale)
            *newrowsP = cmdline.yscale * rows +.5;
        else if (cmdline.xsize)
            *newrowsP = rows * ((float) cmdline.xsize/cols) +.5;
        else
            *newrowsP = rows;
    }
    }

    /* If the calculations above yielded (due to rounding) a zero 
     * dimension, we fudge it up to 1.  We do this rather than considering
     * it a specification error (and dying) because it's friendlier to 
     * automated processes that work on arbitrary input.  It saves them
     * having to check their numbers to avoid catastrophe.
     */
  
    if (*newcolsP < 1) *newcolsP = 1;
    if (*newrowsP < 1) *newrowsP = 1;
}




/****************************/
/****************************/
/******* resampling *********/
/****************************/
/****************************/

/* The resample code was inspired by Paul Heckbert's zoom program.
** http://www.cs.cmu.edu/~ph/zoom
*/

struct filterFunction {
/*----------------------------------------------------------------------------
   A function to convolve with the samples.
-----------------------------------------------------------------------------*/
    basicFunction_t basicFunction;
        /* The basic shape of the function.  Its horizontal scale is
           designed to filter out frequencies greater than 1.
        */
    basicFunction_t windowFunction;
        /* A function to multiply by basicFunction().  NULL if none. */
    double windowScaler;
        /* Factor by which to compress windowFunction() horizontally */
    double horizontalScaler;
        /* Factor by which to compress basicFunction() *
           windowFunction horizontally.  Note that compressing
           horizontally in the sample domain is equivalent to
           expanding horizontally (and shrinking vertically) in the
           frequency domain.  I.e. values less than unity have the
           effect of chopping out high frequencies.
        */
    double radius;
        /* A final filter.  filterFunction(x) is zero for |x| > radius
           regardless of what the rest of the members say.

           Implementation note:  This is important because windowFunction(),
           out of laziness, doesn't do the whole job of windowing.  It is
           not zero beyond the cutoff points as it should be.  If not for
           that, radius would only be a hint to describe what the other
           members already do, so the convolver knows where to stop.
        */
};

typedef struct {
    /* A term of the linear combination of input rows that makes up an
       output row.  I.e. an input row and its weight.

       Alternatively, the analogous thing for a column.
    */
    int    position;    /* Row/column number in the input image */
    double weight;      /* Weight to be given to that row/col.  In [0, 1]. */
} WEIGHT;

typedef struct {
    /* A description of the linear combination of input rows that
       generates a particular output row.  An output row is a weighted
       average of some input rows.  E.g. Row 2 of the output might be
       composed of 50% of Row 2 of the input and 50% of Row 3 of the
       input.

       Alternatively, the analogous thing for columns.
    */
    unsigned int nWeight;
        /* Number of elements in 'Weight'.  They're consecutive, starting
           at index 0.
        */
    unsigned int allocWeight;
        /* Number of allocated frames in 'Weight' */ 
    WEIGHT *Weight;
        /* The terms of the linear combination.  Has 'nWeight' elements. 
           The coefficients (weights) of each add up to unity.
        */
} WLIST;

typedef struct {
    /* This identifies a row of the input image. */
    int rowNumber;
        /* The row number in the input image of the row.
           -1 means no row.
        */
    tuple *tuplerow;  
        /* The tuples of the row.
           If rowNumber = -1, these are arbitrary, but allocated, tuples.
        */
} SCANLINE;

typedef struct {
    /* A vertical window of a raster */
    int width;    /* Width of the window, in columns */
    int height;   /* Height of the window, in rows */
    SCANLINE *line;
        /* An array of 'height' elements, malloced.
           This identifies the lines of the input image that compose the
           window.  The index order is NOT the order of the rows in the
           image.  E.g. line[0] isn't always the topmost row of the window.
           Rather, the rows are arranged in a cycle and you have to know
           indpendently where the topmost one is.  E.g. the rows of a 5
           line window with topmost row at index 3 might be:

              line[0] = Row 24
              line[1] = Row 25
              line[2] = Row 26
              line[3] = Row 22
              line[4] = Row 23
        */
} SCAN;



static int
appendWeight(WLIST * const WList,
             int     const index,
             double  const weight) {
/*----------------------------------------------------------------------------
   Add a weighting of 'weight' for index 'index' to the weight list
   'WList'.
-----------------------------------------------------------------------------*/
    if (weight == 0.0) {
        /* A weight of 0 in the list is redundant, so we don't add it.
           A weight entry says "Add W fraction of the pixel at index I,"
           so where W is 0, it's the same as not having the entry at all.
        */
    } else {
        unsigned int const n = WList->nWeight;

        assert(WList->allocWeight >= n+1);
        
        WList->Weight[n].position = index;
        WList->Weight[n].weight   = weight;
        ++WList->nWeight;
    }
    return 0;
}



static sample
floatToSample(double const value,
              sample const maxval) {

    /* Take care here, the conversion of any floating point value <=
       -1.0 to an unsigned type is _undefined_.  See ISO 9899:1999
       section 6.3.1.4.  Not only is it undefined it also does the
       wrong thing in actual practice, EG on Darwin PowerPC (my iBook
       running OS X) negative values clamp to maxval.  We get negative
       values because some of the filters (EG catrom) have negative
       weights.  
    */

    return MIN(maxval, (sample)(MAX(0.0, (value + 0.5))));
}



static void
initWeightList(WLIST *      const weightListP,
               unsigned int const maxWeights) {

    weightListP->nWeight = 0;
    weightListP->allocWeight = maxWeights;
    MALLOCARRAY(weightListP->Weight, maxWeights);
    if (weightListP->Weight == NULL)
        pm_error("Out of memory allocating a %u-element weight list.",
                 maxWeights);
}



static void
createWeightList(unsigned int          const targetPos,
                 unsigned int          const sourceSize,
                 double                const scale,
                 struct filterFunction       filter,
                 WLIST *               const weightListP) {
/*----------------------------------------------------------------------------
   Create a weight list for computing target pixel number 'targetPos' from
   a set of source pixels.  These pixels are a line of pixels either 
   horizontally or vertically.  The weight list is a list of weights to give
   each source pixel in the set.
   
   The source pixel set is a window of source pixels centered on some
   point.  The weights are defined by the function 'filter' of
   the position within the window, and normalized to add up to 1.0.
   Technically, the window is infinite, but we know that the filter
   function is zero beyond a certain distance from the center of the
   window.

   For example, assume 'targetPos' is 5.  That means we're computing weights
   for either Column 5 or Row 5 of the target image.  Assume it's Column 5.
   Assume 'radius' is 1.  That means a window of two pixels' worth of a
   source row determines the color of the Column 5 pixel of a target
   row.  Assume 'filter' is a triangle function -- 1 at 0, sloping
   down to 0 at -1 and 1.

   Now assume that the scale factor is 2 -- the target image will be
   twice the size of the source image.  That means the two-pixel-wide
   window of the source row that affects Column 5 of the target row
   (centered at target position 5.5) goes from position 1.75 to
   3.75, centered at 2.75.  That means the window covers 1/4 of
   Column 1, all of Column 2, and 3/4 of Column 3 of the source row.

   We want to calculate 3 weights, one to be applied to each source pixel
   in computing the target pixel.  Ideally, we would compute the average
   height of the filter function over each source pixel region.  But 
   that's too hard.  So we approximate by assuming that the filter function
   is constant within each region, at the value the function has at the
   _center_ of the region.

   So for the Column 1 region, which goes from 1.75 to 2.00, centered
   -.875 from the center of the window, we assume a constant function
   value of triangle(-.875), which equals .125.  For the 2.00-3.00
   region, we get triangle(-.25) = .75.  For the 3.00-3.75 region, we
   get triangle(.125) = .875.  So the weights for the 3 regions, which
   we get by multiplying this constant function value by the width of
   the region and normalizing so they add up to 1 are:

      Source Column 1:  .125*.25 / 1.4375 = .022
      Source Column 2:  .75*1.00 / 1.4375 = .521
      Source Column 3:  .875*.75 / 1.4375 = .457

   These are the weights we return.  Thus, if we assume that the source
   pixel 1 has value 10, source pixel 2 has value 20, and source pixel 3
   has value 30, Caller would compute target pixel 5's value as

      10*.022 + 20*.521 + 30*.457 = 24

-----------------------------------------------------------------------------*/
    /* 'windowCenter', is the continous position within the source of
       the center of the window that will influence target pixel
       'targetPos'.  'left' and 'right' are the edges of the window.
       'leftPixel' and 'rightPixel' are the pixel positions of the
       pixels at the edges of that window.  Note that if we're
       doing vertical weights, "left" and "right" mean top and
       bottom.  
    */
    double const windowCenter = ((double)targetPos + 0.5) / scale;
    double left = MAX(0.0, windowCenter - filter.radius - EPSILON);
    unsigned int const leftPixel = floor(left);
    double right = MIN((double)sourceSize - EPSILON, 
                       windowCenter + filter.radius + EPSILON);
    unsigned int const rightPixel = floor(right);

    double norm;
    unsigned int j;

    initWeightList(weightListP, rightPixel - leftPixel + 1);

    /* calculate weights */
    norm = 0.0;  /* initial value */

    for (j = leftPixel; j <= rightPixel; ++j) {
        /* Calculate the weight that source pixel 'j' will have in the 
           value of target pixel 'targetPos'.
        */
        double const regionLeft   = MAX(left, (double)j);
        double const regionRight  = MIN(right, (double)(j + 1));
        double const regionWidth  = regionRight - regionLeft;
        double const regionCenter = (regionRight + regionLeft) / 2;
        double const dist         = regionCenter - windowCenter;
        double weight;

        weight = filter.basicFunction(filter.horizontalScaler * dist);
        if (filter.windowFunction)
            weight *= filter.windowFunction(
                filter.horizontalScaler * filter.windowScaler * dist);

        assert(regionWidth <= 1.0);
        weight *= regionWidth;
        norm += weight;
        appendWeight(weightListP, j, weight);
    }

    if (norm == 0.0)
        pm_error("INTERNAL ERROR: No source pixels contribute to target "
                 "pixel %u", targetPos);

    /* normalize the weights so they add up to 1.0 */
    if (norm != 1.0) {
        unsigned int n;
        for (n = 0; n < weightListP->nWeight; ++n) {
            weightListP->Weight[n].weight /= norm;
        }
    }
}



static void
createWeightListSet(unsigned int          const sourceSize,
                    unsigned int          const targetSize,
                    struct filterFunction const filterFunction,
                    WLIST **              const weightListSetP) {
/*----------------------------------------------------------------------------
   Create the set of weight lists that will effect the resample.

   This is where the actual work of resampling gets done.

   The weight list set is a bunch of factors one can multiply by the
   pixels in a region to effect a resampling.  Multiplying by these
   factors effects all of the following transformations on the
   original pixels:
   
   1) Filter out any frequencies that are artifacts of the
      original sampling.  We assume a perfect sampling was done,
      which means the original continuous dataset had a maximum
      frequency of 1/2 of the original sample rate and anything
      above that is an artifact of the sampling.  So we filter out
      anything above 1/2 of the original sample rate (sample rate
      == pixel resolution).
      
   2) Filter out any frequencies that are too high to be captured
      by the new sampling -- i.e. frequencies above 1/2 the new
      sample rate.  This is the information we must lose due to low
      sample rate.
      
   3) Sample the result at the new sample rate.

   We do all three of these steps in a single convolution of the
   original pixels.  Steps (1) and (2) can be combined into a
   single frequency domain rectangle function.  A frequency domain
   rectangle function is a pixel domain sinc function, which is
   what we assume 'filterFunction' is.  We get Step 3 by computing
   the convolution only at the new sample points.
   
   I don't know what any of this means when 'filterFunction' is
   not sinc.  Maybe it just means some approximation or additional
   filtering steps are happening.
-----------------------------------------------------------------------------*/
    double const scale = (double)targetSize / sourceSize;
    WLIST *weightListSet;  /* malloc'ed */
    unsigned int targetPos;

    MALLOCARRAY_NOFAIL(weightListSet, targetSize);
    
    for (targetPos = 0; targetPos < targetSize; ++targetPos)
        createWeightList(targetPos, sourceSize, scale, filterFunction,
                         &weightListSet[targetPos]);

    *weightListSetP = weightListSet;
}



static struct filterFunction
makeFilterFunction(double          const scale,
                   basicFunction_t       basicFunction,
                   double          const basicRadius,
                   basicFunction_t       windowFunction) {
/*----------------------------------------------------------------------------
   Create a function to convolve with the samples (so it isn't actually
   a filter function, but the Fourier transform of a filter function.
   A filter function is something you multiply by in the frequency domain)
   to create a function from which one can resample.

   Convolving with this function will achieve two goals:

   1) filter out high frequencies that are artifacts of the original
      sampling (i.e. the turning of a continuous function into a staircase
      function);
   2) filter out frequencies higher than half the resample rate, so that
      the resample will be a perfect sampling of it, and not have aliasing.


   To make the calculation even more efficient, we take advantage
   of the fact that the weight list doesn't depend on the
   particular old and new sample rates at all except -- all that's
   important is their ratio (which is 'scale').  So we assume the
   original sample rate is 1 and the new sample rate is 'scale'.

-----------------------------------------------------------------------------*/
    double const freqLimit = MIN(1.0, scale);
        /* We're going to cut out any frequencies above this, to accomplish
           Steps (1) and (2) above.
        */

    struct filterFunction retval;

    retval.basicFunction = basicFunction;
    retval.windowFunction = windowFunction;
    
    retval.horizontalScaler = freqLimit;

    /* Our 'windowFunction' argument is a function normalized to the
       domain (-1, 1).  We need to scale it horizontally to fit the
       basic filter function.  We assume the radius of the filter
       function is the area to which the window should fit (i.e. zero
       beyond the radius, nonzero inside the radius).  But that's
       really a misuse of radius, because radius is supposed to be
       just the distance beyond which we can assume for convenience
       that the filter function is zero, possibly giving up some
       precision.

       But note that 'windowFunction' isn't zero outside (-1, 1), even
       though the actual window function is supposed to be.  Hence,
       scaling the window function exactly to the radius stops our
       calculations from noticing the wrong values outside (-1, 1) --
       we'll never use them.
    */
    retval.windowScaler = 1/basicRadius;

    retval.radius = basicRadius / retval.horizontalScaler;

    return retval;
}
                   

                   
static void
destroyWeightListSet(WLIST *      const weightListSet, 
                     unsigned int const size) {

    unsigned int i;

    for (i = 0; i < size; ++i)
        free(weightListSet[i].Weight);

    free(weightListSet);
}



static void
createScanBuf(struct pam * const pamP,
              double       const maxRowWeights,
              bool         const verbose,
              SCAN *       const scanbufP) {

    SCAN scanbuf;
    unsigned int lineNumber;

    scanbuf.width = pamP->width;
    scanbuf.height = maxRowWeights;
    MALLOCARRAY_NOFAIL(scanbuf.line, scanbuf.height);
  
    for (lineNumber = 0; lineNumber < scanbuf.height; ++lineNumber) {
        scanbuf.line[lineNumber].rowNumber = -1;
        scanbuf.line[lineNumber].tuplerow = pnm_allocpamrow(pamP);
    }
  
    if (verbose)
        pm_message("scanline buffer: %d lines of %d pixels", 
                   scanbuf.height, scanbuf.width);

    *scanbufP = scanbuf;
}



static void
destroyScanbuf(SCAN const scanbuf) {

    unsigned int lineNumber;

    for (lineNumber = 0; lineNumber < scanbuf.height; ++lineNumber)
        pnm_freepamrow(scanbuf.line[lineNumber].tuplerow);

    free(scanbuf.line);
}



static void
resampleDimensionMessage(struct pam * const inpamP,
                         struct pam * const outpamP) {

    pm_message ("resampling from %d*%d to %d*%d (%f, %f)", 
                inpamP->width, inpamP->height, 
                outpamP->width, outpamP->height,
                (double)outpamP->width/inpamP->width, 
                (double)outpamP->height/inpamP->height);
}



static void
addInPixel(const struct pam * const pamP,
           tuple              const tuple,
           float              const weight,
           bool               const haveOpacity,
           unsigned int       const opacityPlane,
           double *           const accum) {
/*----------------------------------------------------------------------------
  Add into *accum the values from the tuple 'tuple', weighted by
  'weight'.

  Iff 'haveOpacity', Plane 'opacityPlane' of the tuple is an opacity
  (alpha, transparency) plane.
-----------------------------------------------------------------------------*/
    unsigned int plane;

    for (plane = 0; plane < pamP->depth; ++plane) {
        sample adjustedForOpacity;
        
        if (haveOpacity && plane != opacityPlane) {
            float const opacity = (float)tuple[opacityPlane]/pamP->maxval;
            float const unadjusted = (float)tuple[plane]/pamP->maxval;

            adjustedForOpacity = 
                floatToSample(unadjusted * opacity, pamP->maxval);
        } else
            adjustedForOpacity = tuple[plane];
        
        accum[plane] += (double)adjustedForOpacity * weight;
    }
}



static void
generateOutputTuple(const struct pam * const pamP,
                    double             const accum[],
                    bool               const haveOpacity, 
                    unsigned int       const opacityPlane,
                    tuple *            const tupleP) {
/*----------------------------------------------------------------------------
  Convert the values accum[] accumulated for a pixel by
  outputOneResampledRow() to a bona fide PAM tuple as *tupleP,
  as described by *pamP.
-----------------------------------------------------------------------------*/
    unsigned int plane;

    for (plane = 0; plane < pamP->depth; ++plane) {
        float opacityAdjustedSample;

        if (haveOpacity && plane != opacityPlane) {
            if (accum[opacityPlane] < EPSILON) {
                assert(accum[plane] < EPSILON);
                opacityAdjustedSample = 0.0;
            } else 
                opacityAdjustedSample = accum[plane] / accum[opacityPlane];
        } else
            opacityAdjustedSample = accum[plane];

        (*tupleP)[plane] = floatToSample(opacityAdjustedSample, pamP->maxval);
    }
}



static void
outputOneResampledRow(const struct pam * const outpamP,
                      SCAN               const scanbuf,
                      WLIST              const YW,
                      const WLIST *      const XWeight,
                      tuple *            const line,
                      double *           const accum) {
/*----------------------------------------------------------------------------
   From the data in 'scanbuf' and weights in 'YW' and 'XWeight', 
   generate one output row for the image described by *outpamP and
   output it.

   An output pixel is a weighted average of the pixels in a certain
   rectangle of the input.  'YW' and 'XWeight' describe those weights
   for each column of the row we are to output.

   'line' and 'accum' are just working space that Caller provides us
   with to save us the time of allocating it.  'line' is at least big
   enough to hold an output row; 'weight' is at least outpamP->depth
   big.
-----------------------------------------------------------------------------*/
    unsigned int col;

    bool haveOpacity;           /* There is an opacity plane */
    unsigned int opacityPlane;  /* Plane number of opacity plane, if any */

    pnm_getopacity(outpamP, &haveOpacity, &opacityPlane);

    for (col = 0; col < outpamP->width; ++col) {
        WLIST const XW = XWeight[col];

        unsigned int i;
        {
            unsigned int plane;
            for (plane = 0; plane < outpamP->depth; ++plane)
                accum[plane] = 0.0;
        }
        
        for (i = 0; i < YW.nWeight; ++i) {
            int   const yp   = YW.Weight[i].position;
            float const yw   = YW.Weight[i].weight;
            int   const slot = yp % scanbuf.height;

            unsigned int j;
            
            for (j = 0; j < XW.nWeight; ++j) {
                int   const xp    = XW.Weight[j].position;
                tuple const tuple = scanbuf.line[slot].tuplerow[xp];
                
                addInPixel(outpamP, tuple, yw * XW.Weight[j].weight, 
                           haveOpacity, opacityPlane,
                           accum);
            }
        }
        generateOutputTuple(outpamP, accum, haveOpacity, opacityPlane, 
                            &line[col]);
    }
    pnm_writepamrow(outpamP, line);
}



static bool
scanbufContainsTheRows(SCAN  const scanbuf,
                       WLIST const rowWeights) {
/*----------------------------------------------------------------------------
   Return TRUE iff scanbuf 'scanbuf' contains every row mentioned in
   'rowWeights'.

   It might contain additional rows besides.
-----------------------------------------------------------------------------*/
    bool missingRow;
    unsigned int i;
    
    for (i = 0, missingRow = FALSE;
         i < rowWeights.nWeight && !missingRow;
        ++i) {
        unsigned int const inputRow = rowWeights.Weight[i].position;
        unsigned int const slot = inputRow % scanbuf.height;
            /* This is the number of the slot in the scanbuf that would
               have the input row in question if the scanbuf has the
               row at all.
            */
        if (scanbuf.line[slot].rowNumber != inputRow) {
            /* Nope, this slot has some other row or no row at all.
               So the row we're looking for isn't in the scanbuf.
            */
            missingRow = TRUE;
        }
    }
    return !missingRow;
}



static void
createWeightLists(struct pam *     const inpamP,
                  struct pam *     const outpamP,
                  basicFunction_t  const filterFunction,
                  double           const filterRadius,
                  basicFunction_t  const windowFunction,
                  WLIST **         const horizWeightP,
                  WLIST **         const vertWeightP,
                  unsigned int *   const maxRowWeightsP) {
/*----------------------------------------------------------------------------
   This is the function that actually does the resampling.  Note that it
   does it without ever looking at the source or target pixels!  It produces
   a simple set of numbers that Caller can blindly apply to the source 
   pixels to get target pixels.
-----------------------------------------------------------------------------*/
    struct filterFunction horizFilter, vertFilter;

    horizFilter = makeFilterFunction(
        (double)outpamP->width/inpamP->width,
        filterFunction, filterRadius, windowFunction);

    createWeightListSet(inpamP->width, outpamP->width, horizFilter, 
                        horizWeightP);
    
    vertFilter = makeFilterFunction(
        (double)outpamP->height/inpamP->height,
        filterFunction, filterRadius, windowFunction);

    createWeightListSet(inpamP->height, outpamP->height, vertFilter, 
                        vertWeightP);

    *maxRowWeightsP = ceil(2.0*(vertFilter.radius+EPSILON) + 1 + EPSILON);
}



static void
resample(struct pam *     const inpamP,
         struct pam *     const outpamP,
         basicFunction_t  const filterFunction,
         double           const filterRadius,
         basicFunction_t  const windowFunction,
         bool             const verbose,
         bool             const linear) {
/*---------------------------------------------------------------------------
  Resample the image in the input file, described by *inpamP,
  so as to create the image in the output file, described by *outpamP.
  
  Input and output differ by height, width, and maxval only.

  Use the resampling filter function 'filterFunction', applied over
  radius 'filterRadius'.
  
  The input file is positioned past the header, to the beginning of the
  raster.  The output file is too.
---------------------------------------------------------------------------*/
    int inputRow, outputRow;
    WLIST * horizWeight;
    WLIST * vertWeight;
    SCAN scanbuf;
    unsigned int maxRowWeights;

    tuple * line;
        /* This is just work space for outputOneSampleRow() */
    double * weight;
        /* This is just work space for outputOneSampleRow() */

    if (linear)
        pm_error("You cannot use the resampling scaling method on "
                 "linear input.");
  
    createWeightLists(inpamP, outpamP, filterFunction, filterRadius,
                      windowFunction, &horizWeight, &vertWeight,
                      &maxRowWeights);

    createScanBuf(inpamP, maxRowWeights, verbose, &scanbuf);

    if (verbose)
        resampleDimensionMessage(inpamP, outpamP);

    line = pnm_allocpamrow(outpamP);
    MALLOCARRAY_NOFAIL(weight, outpamP->depth);

    outputRow = 0;
    for (inputRow = 0; inputRow < inpamP->height; ++inputRow) {
        bool needMoreInput;
            /* We've output as much as we can using the rows that are in
               the scanbuf; it's time to move the window.  Or fill it in
               the first place.
            */
        unsigned int scanbufSlot;

        /* Read source row; add it to the scanbuf */
        scanbufSlot = inputRow % scanbuf.height;
        scanbuf.line[scanbufSlot].rowNumber = inputRow;
        pnm_readpamrow(inpamP, scanbuf.line[scanbufSlot].tuplerow);

        /* Output all the rows we can make out of the current contents of
           the scanbuf.  Might be none.
        */
        needMoreInput = FALSE;  /* initial assumption */
        while (outputRow < outpamP->height && !needMoreInput) {
            WLIST const rowWeights = vertWeight[outputRow];
                /* The description of what makes up our current output row;
                   i.e. what fractions of which input rows combine to create
                   this output row.
                */
            assert(rowWeights.nWeight <= scanbuf.height); 

            if (scanbufContainsTheRows(scanbuf, rowWeights)) {
                outputOneResampledRow(outpamP, scanbuf, rowWeights, 
                                      horizWeight, line, weight);
                ++outputRow;
            } else
                needMoreInput = TRUE;
        }
    }

    if (outputRow != outpamP->height)
        pm_error("INTERNAL ERROR: assembled only %u of the required %u "
                 "output rows.", outputRow, outpamP->height);

    pnm_freepamrow(line);
    destroyScanbuf(scanbuf);
    destroyWeightListSet(horizWeight, outpamP->width);
    destroyWeightListSet(vertWeight, outpamP->height);
}


/****************************/
/****************************/
/**** end of resampling *****/
/****************************/
/****************************/



static void
zeroNewRow(struct pam * const pamP,
           tuplen *     const tuplenrow) {
    
    unsigned int col;

    for (col = 0; col < pamP->width; ++col) {
        unsigned int plane;

        for (plane = 0; plane < pamP->depth; ++plane)
            tuplenrow[col][plane] = 0.0;
    }
}



static void
accumOutputCol(struct pam * const pamP,
               tuplen       const intuplen,
               float        const fraction, 
               tuplen       const accumulator) {
/*----------------------------------------------------------------------------
   Add fraction 'fraction' of the pixel indicated by 'intuplen' to the
   pixel accumulator 'accumulator'.

   'intuplen' and 'accumulator' are not a standard libnetpbm tuplen.
   It is proportional to light intensity.  The foreground color
   component samples are proportional to light intensity, and have
   opacity factored in.
-----------------------------------------------------------------------------*/
    unsigned int plane;

    for (plane = 0; plane < pamP->depth; ++plane)
        accumulator[plane] += fraction * intuplen[plane];
}



static void
horizontalScale(tuplen *     const inputtuplenrow, 
                tuplen *     const newtuplenrow,
                struct pam * const inpamP,
                struct pam * const outpamP,
                float        const xscale,
                float *      const stretchP) {
/*----------------------------------------------------------------------------
  Take the input row 'inputtuplenrow', decribed by *inpamP, and scale
  it by a factor of 'xscale', to create the output row 'newtuplenrow',
  described by *outpamP.

  Due to arithmetic imprecision, we may have to stretch slightly the
  contents of the last pixel of the output row to make a full pixel.
  Return as *stretchP the fraction of a pixel by which we had to
  stretch in this way.

  Assume maxval and depth of input and output are the same.
-----------------------------------------------------------------------------*/
    float fraccoltofill, fraccolleft;
    unsigned int col;
    unsigned int newcol;

    newcol = 0;
    fraccoltofill = 1.0;  /* Output column is "empty" now */

    zeroNewRow(outpamP, newtuplenrow);

    for (col = 0; col < inpamP->width; ++col) {
        /* Process one tuple from input ('inputtuplenrow') */
        fraccolleft = xscale;
        /* Output all columns, if any, that can be filled using information
           from this input column, in addition to what's already in the output
           column.
        */
        while (fraccolleft >= fraccoltofill) {
            /* Generate one output pixel in 'newtuplerow'.  It will
               consist of anything accumulated from prior input pixels
               in accumulator[], plus a fraction of the current input
               pixel.  
            */
            assert(newcol < outpamP->width);
            accumOutputCol(inpamP, inputtuplenrow[col], fraccoltofill,
                           newtuplenrow[newcol]);

            fraccolleft -= fraccoltofill;

            /* Set up to start filling next output column */
            ++newcol;
            fraccoltofill = 1.0;
        }
        /* There's not enough left in the current input pixel to fill up 
           a whole output column, so just accumulate the remainder of the
           pixel into the current output column.  Due to rounding, we may
           have a tiny bit of pixel left and have run out of output pixels.
           In that case, we throw away what's left.
        */
        if (fraccolleft > 0.0 && newcol < outpamP->width) {
            accumOutputCol(inpamP, inputtuplenrow[col], fraccolleft,
                           newtuplenrow[newcol]);
            fraccoltofill -= fraccolleft;
        }
    }

    if (newcol < outpamP->width-1 || newcol > outpamP->width)
        pm_error("Internal error: last column filled is %d, but %d "
                 "is the rightmost output column.",
                 newcol, outpamP->width-1);

    if (newcol < outpamP->width) {
        /* We were still working on the last output column when we 
           ran out of input columns.  This would be because of rounding
           down, and we should be missing only a tiny fraction of that
           last output column.  Just fill in the missing color with the
           color of the rightmost input pixel.
        */
        accumOutputCol(inpamP, inputtuplenrow[inpamP->width-1], 
                       fraccoltofill, newtuplenrow[newcol]);
        
        *stretchP = fraccoltofill;
    } else 
        *stretchP = 0.0;
}



static void
zeroAccum(struct pam * const pamP,
          tuplen *     const accumulator) {

    unsigned int plane;

    for (plane = 0; plane < pamP->depth; ++plane) {
        unsigned int col;
        for (col = 0; col < pamP->width; ++col)
            accumulator[col][plane] = 0.0;
    }
}



static void
accumOutputRow(struct pam * const pamP,
               tuplen *     const tuplenrow, 
               float        const fraction, 
               tuplen *     const accumulator) {
/*----------------------------------------------------------------------------
   Take 'fraction' times the samples in row 'tuplenrow' and add it to 
   'accumulator' in the same way as accumOutputCol().

   'fraction' is less than 1.0.
-----------------------------------------------------------------------------*/
    unsigned int plane;

    for (plane = 0; plane < pamP->depth; ++plane) {
        unsigned int col;
        for (col = 0; col < pamP->width; ++col)
            accumulator[col][plane] += fraction * tuplenrow[col][plane];
    }
}



static void
readARow(struct pam *             const pamP,
         tuplen *                 const tuplenRow,
         const pnm_transformMap * const transform) {
/*----------------------------------------------------------------------------
  Read a row from the input file described by *pamP, as values (for the
  foreground color) proportional to light intensity, with opacity
  included.

  By contrast, a simple libnetpbm read would give the same numbers you
  find in a PAM: gamma-adjusted values for the foreground color
  component and scaled as if opaque.  The latter means that full red
  would have a red intensity of 1.0 even if the pixel is only 75%
  opaque.  We, on the other hand, would return red intensity of .75 in
  that case.

  The opacity plane we return is the same as a simple libnetpbm read
  would return.

  We ASSUME that the transform 'transform' is that necessary to effect
  the conversion to intensity-linear values and normalize.  If it is
  NULL, we ASSUME that they already are intensity-proportional and just
  need to be normalized.
-----------------------------------------------------------------------------*/
    tuple * tupleRow;

    tupleRow = pnm_allocpamrow(pamP);

    pnm_readpamrow(pamP, tupleRow);

    pnm_normalizeRow(pamP, tupleRow, transform, tuplenRow);

    pnm_applyopacityrown(pamP, tuplenRow);

    pnm_freepamrow(tupleRow);
}



static void
writeARow(struct pam *             const pamP,
          tuplen *                 const tuplenRow,
          const pnm_transformMap * const transform) {
/*----------------------------------------------------------------------------
  Write a row to the output file described by *pamP, from values
  proportional to light intensity with opacity included (i.e. the same
  kind of number you would get form readARow()).

  We ASSUME that the transform 'transform' is that necessary to effect
  the conversion to brightness-linear unnormalized values.  If it is
  NULL, we ASSUME that they already are brightness-proportional and just
  need to be unnormalized.

  We destroy *tuplenRow in the process.
-----------------------------------------------------------------------------*/
    tuple * tupleRow;

    tupleRow = pnm_allocpamrow(pamP);

    pnm_unapplyopacityrown(pamP, tuplenRow);

    pnm_unnormalizeRow(pamP, tuplenRow, transform, tupleRow);

    pnm_writepamrow(pamP, tupleRow);

    pnm_freepamrow(tupleRow);
}



static void
issueStretchWarning(bool   const verbose, 
                    double const fracrowtofill) {

    /* We need another input row to fill up this
       output row, but there aren't any more.
       That's because of rounding down on our
       scaling arithmetic.  So we go ahead with
       the data from the last row we read, which
       amounts to stretching out the last output
       row.  
    */
    if (verbose)
        pm_message("%f of bottom row stretched due to "
                   "arithmetic imprecision", 
                   fracrowtofill);
}



static void
scaleHorizontallyAndOutputRow(struct pam *             const inpamP,
                              struct pam *             const outpamP,
                              tuplen *                 const rowAccumulator,
                              const pnm_transformMap * const transform,
                              tuplen *                 const newtuplenrow,
                              float                    const xscale,
                              unsigned int             const row,
                              bool                     const verbose) {
/*----------------------------------------------------------------------------
   Scale the row in 'rowAccumulator' horizontally by factor 'xscale'
   and output it.

   'newtuplenrow' is work space Caller provides us.  It is at least
   wide enough to hold one output row.
-----------------------------------------------------------------------------*/
    if (outpamP->width == inpamP->width)    
        /* shortcut X scaling */
        writeARow(outpamP, rowAccumulator, transform);
            /* This destroys 'rowAccumulator' */
    else {
        float stretch;
            
        horizontalScale(rowAccumulator, newtuplenrow, inpamP, outpamP,
                        xscale, &stretch);
            
        if (verbose && row == 0)
            pm_message("%f of right column stretched due to "
                       "arithmetic imprecision", 
                       stretch);
            
        writeARow(outpamP, newtuplenrow, transform);
            /* This destroys 'newtuplenrow' */
    }
}



static void
createTransforms(struct pam *              const inpamP,
                 struct pam *              const outpamP,
                 bool                      const assumeLinear,
                 const pnm_transformMap ** const inputTransformP,
                 const pnm_transformMap ** const outputTransformP) {

    if (assumeLinear) {
        *inputTransformP  = NULL;
        *outputTransformP = NULL;
    } else {
        *inputTransformP  = pnm_createungammatransform(inpamP);
        *outputTransformP = pnm_creategammatransform(outpamP);
    }
}



static void
destroyTransforms(const pnm_transformMap * const inputTransform,
                  const pnm_transformMap * const outputTransform) {

    if (inputTransform)
        free((void*)inputTransform);
    
    if (outputTransform)
        free((void*)outputTransform);
}



static void
scaleWithMixing(struct pam * const inpamP,
                struct pam * const outpamP,
                float        const xscale, 
                float        const yscale,
                bool         const assumeLinear,
                bool         const verbose) {
/*----------------------------------------------------------------------------
  Scale the image described by *inpamP by xscale horizontally and
  yscale vertically and write the result as the image described by
  *outpamP.

  The input file is positioned past the header, to the beginning of the
  raster.  The output file is too.

  Mix colors from input rows together in the output rows.

  'assumeLinear' means to assume that the sample values in the input
  image vary from standard PAM in that they are proportional to
  intensity, (This makes the computation a lot faster, so you might
  use this even if the samples are actually standard PAM, to get
  approximate but fast results).

-----------------------------------------------------------------------------*/
    /* Here's how we think of the color mixing scaling operation:  
       
       First, I'll describe scaling in one dimension.  Assume we have
       a one row image.  A raster row is ordinarily a sequence of
       discrete pixels which have no width and no distance between
       them -- only a sequence.  Instead, think of the raster row as a
       bunch of pixels 1 unit wide adjacent to each other.  For
       example, we are going to scale a 100 pixel row to a 150 pixel
       row.  Imagine placing the input row right above the output row
       and stretching it so it is the same size as the output row.  It
       still contains 100 pixels, but they are 1.5 units wide each.
       Our goal is to make the output row look as much as possible
       like the stretched input row, while observing that a pixel can
       be only one color.

       Output Pixel 0 is completely covered by Input Pixel 0, so we
       make Output Pixel 0 the same color as Input Pixel 0.  Output
       Pixel 1 is covered half by Input Pixel 0 and half by Input
       Pixel 1.  So we make Output Pixel 1 a 50/50 mix of Input Pixels
       0 and 1.  If you stand back far enough, input and output will
       look the same.

       This works for all scale factors, both scaling up and scaling down.
       
       For images with an opacity plane, imagine Input Pixel 0's
       foreground is fully opaque red (1,0,0,1), and Input Pixel 1 is
       fully transparent (foreground irrelevant) (0,0,0,0).  We make
       Output Pixel 0's foreground fully opaque red as before.  Output
       Pixel 1 is covered half by Input Pixel 0 and half by Input
       Pixel 1, so it is 50% opaque; but its foreground color is still
       red: (1,0,0,0.5).  The output foreground color is the opacity
       and coverage weighted average of the input foreground colors,
       and the output opacity is the coverage weighted average of the
       input opacities.

       This program always stretches or squeezes the input row to be the
       same length as the output row; The output row's pixels are always
       1 unit wide.

       The same thing works in the vertical direction.  We think of
       rows as stacked strips of 1 unit height.  We conceptually
       stretch the image vertically first (same process as above, but
       in place of a single-color pixels, we have a vector of colors).
       Then we take each row this vertical stretching generates and
       stretch it horizontally.  
    */

    tuplen * tuplenrow;     /* An input row */
    tuplen * newtuplenrow;  /* Working space */
    float rowsleft;
    /* The number of rows of output that need to be formed from the
       current input row (the one in tuplerow[]), less the number that 
       have already been formed (either in accumulator[]
       or output to the file).  This can be fractional because of the
       way we define rows as having height.
    */
    float fracrowtofill;
        /* The fraction of the current output row (the one in vertScaledRow[])
           that hasn't yet been filled in from an input row.
        */
    tuplen * rowAccumulator;
        /* The red, green, and blue color intensities so far accumulated
           from input rows for the current output row.  The ultimate value
           of this is an output row after vertical scaling, but before
           horizontal scaling.
        */
    int rowsread;
        /* Number of rows of the input file that have been read */
    int row;
    const pnm_transformMap * inputTransform;
    const pnm_transformMap * outputTransform;
    
    tuplenrow = pnm_allocpamrown(inpamP); 
    rowAccumulator = pnm_allocpamrown(inpamP);

    rowsread = 0;
    rowsleft = 0.0;
    fracrowtofill = 1.0;

    newtuplenrow = pnm_allocpamrown(outpamP);

    createTransforms(inpamP, outpamP, assumeLinear,
                     &inputTransform, &outputTransform);

    for (row = 0; row < outpamP->height; ++row) {
        /* First scale Y from tuplerow[] into rowAccumulator[]. */

        zeroAccum(inpamP, rowAccumulator);

        if (outpamP->height == inpamP->height) {
            /* shortcut Y scaling */
            readARow(inpamP, rowAccumulator, inputTransform);
        } else {
            while (fracrowtofill > 0) {
                if (rowsleft <= 0.0) {
                    if (rowsread < inpamP->height) {
                        readARow(inpamP, tuplenrow, inputTransform);
                        ++rowsread;
                    } else
                        issueStretchWarning(verbose, fracrowtofill);
                    rowsleft = yscale;
                }
                if (rowsleft < fracrowtofill) {
                    accumOutputRow(inpamP, tuplenrow, rowsleft,
                                   rowAccumulator);
                    fracrowtofill -= rowsleft;
                    rowsleft = 0.0;
                } else {
                    accumOutputRow(inpamP, tuplenrow, fracrowtofill,
                                   rowAccumulator);
                    rowsleft = rowsleft - fracrowtofill;
                    fracrowtofill = 0.0;
                }
            }
            fracrowtofill = 1.0;
        }
        /* 'rowAccumulator' now contains the contents of a single
           output row, but not yet horizontally scaled.  Scale it now
           horizontally and write it out.
        */
        scaleHorizontallyAndOutputRow(inpamP, outpamP, rowAccumulator,
                                      outputTransform, newtuplenrow, xscale,
                                      row, verbose);
            /* Destroys rowAccumulator */

    }
    destroyTransforms(inputTransform, outputTransform);
    pnm_freepamrown(rowAccumulator);
    pnm_freepamrown(newtuplenrow);
    pnm_freepamrown(tuplenrow);
}



static void
scaleWithoutMixing(const struct pam * const inpamP,
                   const struct pam * const outpamP,
                   float              const xscale, 
                   float              const yscale) {
/*----------------------------------------------------------------------------
  Scale the image described by *inpamP by xscale horizontally and
  yscale vertically and write the result as the image described by
  *outpamP.

  The input file is positioned past the header, to the beginning of the
  raster.  The output file is too.
  
  Don't mix colors from different input pixels together in the output
  pixels.  Each output pixel is an exact copy of some corresponding 
  input pixel.
-----------------------------------------------------------------------------*/
    tuple * tuplerow;  /* An input row */
    tuple * newtuplerow;
    int row;
    int rowInInput;

    assert(outpamP->maxval == inpamP->maxval);
    assert(outpamP->depth  == inpamP->depth);

    tuplerow = pnm_allocpamrow(inpamP); 
    rowInInput = -1;

    newtuplerow = pnm_allocpamrow(outpamP);

    for (row = 0; row < outpamP->height; ++row) {
        int col;
        
        int const inputRow = (int) (row / yscale);

        for (; rowInInput < inputRow; ++rowInInput) 
            pnm_readpamrow(inpamP, tuplerow);
        
        for (col = 0; col < outpamP->width; ++col) {
            int const inputCol = (int) (col / xscale);
            
            pnm_assigntuple(inpamP, newtuplerow[col], tuplerow[inputCol]);
        }

        pnm_writepamrow(outpamP, newtuplerow);
    }
    pnm_freepamrow(tuplerow);
    pnm_freepamrow(newtuplerow);
}



static void
pamscale(FILE *             const ifP,
         FILE *             const ofP,
         struct cmdlineInfo const cmdline) {
    
    struct pam inpam, outpam;
    float xscale, yscale;

    pnm_readpaminit(ifP, &inpam, PAM_STRUCT_SIZE(tuple_type));

    outpam = inpam;  /* initial value */
    outpam.file = ofP;

    if (PNM_FORMAT_TYPE(inpam.format) == PBM_TYPE && !cmdline.nomix) {
        outpam.format = PGM_TYPE;
        outpam.maxval = PGM_MAXMAXVAL;
        pm_message("promoting from PBM to PGM");
    } else {
        outpam.format = inpam.format;
        outpam.maxval = inpam.maxval;
    }

    computeOutputDimensions(cmdline, inpam.height, inpam.width,
                            &outpam.height, &outpam.width);

    xscale = (float) outpam.width / inpam.width;
    yscale = (float) outpam.height / inpam.height;

    if (cmdline.verbose) {
        pm_message("Scaling by %f horizontally to %d columns.", 
                   xscale, outpam.width);
        pm_message("Scaling by %f vertically to %d rows.", 
                   yscale, outpam.height);
    }

    if (xscale * inpam.width < outpam.width - 1 ||
        yscale * inpam.height < outpam.height - 1) 
        pm_error("Arithmetic precision of this program is inadequate to "
                 "do the specified scaling.  Use a smaller input image "
                 "or a slightly different scale factor.");

    pnm_writepaminit(&outpam);

    if (cmdline.nomix) {
        if (cmdline.verbose)
            pm_message("Using nomix method");
        scaleWithoutMixing(&inpam, &outpam, xscale, yscale);
    } else if (!cmdline.filterFunction) {
        if (cmdline.verbose)
            pm_message("Using simple pixel mixing rescaling method");
        scaleWithMixing(&inpam, &outpam, xscale, yscale, 
                        cmdline.linear, cmdline.verbose);
    } else {
        if (cmdline.verbose)
            pm_message("Using general filter method");
        resample(&inpam, &outpam,
                 cmdline.filterFunction, cmdline.filterRadius,
                 cmdline.windowFunction, cmdline.verbose,
                 cmdline.linear);
    }
}



int
main(int argc, const char **argv ) {

    struct cmdlineInfo cmdline;
    FILE * ifP;
    bool eof;

    pm_proginit(&argc, argv);

    parseCommandLine(argc, argv, &cmdline);

    ifP = pm_openr(cmdline.inputFileName);

    eof = FALSE;
    while (!eof) {
        pamscale(ifP, stdout, cmdline);
        pnm_nextimage(ifP, &eof);
    }

    pm_close(ifP);
    pm_close(stdout);
    
    return 0;
}