1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
/*=============================================================================
pamflip_sse.c
===============================================================================
This is part of the Pamflip program. It contains code that exploits
the SSE facility of some CPUs.
This code was orginally written by Akira Urushibata ("Douso") in 2010 and is
contributed to the public domain by all authors.
The author makes the following request (which is not a reservation of legal
rights): Please study the code and make adjustments to meet specific needs.
This part is critical to performance. I have seen code copied from
elsewhere poorly implemented. A lot of work goes into the development of
free software. It is sad to see derivative work which fails to reach its
potential. Please put a comment in the code so people will know where it
came from.
=============================================================================*/
#include <assert.h>
#include "pm_config.h"
#include "pm_c_util.h"
#include "mallocvar.h"
#include "pam.h"
#include "flip.h"
#include "pamflip_sse.h"
#if HAVE_GCC_SSE2 && defined(__SSE2__)
/*----------------------------------------------------------------------------
This is a specialized routine for row-for-column PBM transformations.
(-cw, -ccw, -xy). It requires GCC (>= v. 4.2.0) and SSE2.
In each cycle, we read sixteen rows from the input. We process this band
left to right in blocks 8 pixels wide. We use the SSE2 instruction
pmovmskb128, which reports the MSB of each byte in a 16 byte array, for
fast processing. We place the 8x16 block into a 16 byte array, and
pmovmskb128 reports the 16 pixels on the left edge in one instruction
execution. pslldi128 shifts the array contents leftward.
The following routines can write both in both directions (left and right)
into the output rows. They do this by controlling the vertical stacking
order when they make the 8x16 blocks.
We do all transposition in 8x16 block units, adding padding to
the 8 row input buffer and the output plane raster as necessary.
doPartialBlockTop() or doPartialBlockBottom() handles the partial
input band. This part can come from either the top or bottom of the
vertical input column, but always goes to the right end of the output
rows.
As an enhancement, we clear the output raster to zero (=white) in the
beginning and flip only the 8x16 blocks that contain non-zero bits (=any
amount of black pixels). When we add padding to the edges, we initialize
it all to zero to prevent unnecessary transpositions.
All instructions unique to GCC/SSE are in transpose16Bitrows().
It is possible to write a non-SSE version by providing a generic
version of transpose16Bitrows() or one tuned for a specific
architecture. Use 8x8 blocks to avoid endian issues.
Further enhancement should be possible by employing wider bands,
larger blocks as wider SIMD registers become available. Clearing
the white parts after instead of before transposition is also a
possibility.
-----------------------------------------------------------------------------*/
typedef char v16qi __attribute__ ((vector_size (16)));
typedef int v4di __attribute__ ((vector_size (16)));
/* Beware when making modifications to code which involve SSE.
This is a sensitive part of GCC. Different compiler versions
respond differently to trivial matters such as the difference
between above v16qi, v4di and a union defined for handling both.
What can be placed into a register is another issue. Some
compilers issue warnings, others abort with error.
A char array cannot be loaded into v16qi by casting. A vector
variable must be vector from the beginning.
Changes for your local system are okay, but if you intend to
publish the them, please specify the compiler version you used.
This code has been tested on gcc versions: 4.2.0, 4.2.4, 4.3.2,
4.4.3, 4.4.4 and 4.5.0 .
*/
static void
transpose16Bitrows(unsigned int const cols,
unsigned int const rows,
const bit * const block[16],
uint16_t ** const outplane,
unsigned int const outcol16) {
/*--------------------------------------------------------------------------
Convert input rows to output columns. Works in units of 8x16.
Uses pre-calculated pointers ( block[i][col8] ) instead of
(xdir > 0) ? (i & 0x08) + 7 - (i & 0x07) : (24 - rows % 16 +i) % 16
for efficiency.
We load the block directly into a register. (using a union like:
union V16 {
v16qi v;
unsigned char i[16];
};
)
gcc (v. 4.2, 4.4) sees the suffix [x] of v16.i[x] and apparently decides
that the variable has to be addressable and therefore needs to be placed
into memory.)
---------------------------------------------------------------------------*/
unsigned int col;
register v16qi zero128; /* 16 bytes of zero, in a SSE register */
zero128 = zero128 ^ zero128;
for (col = 0; col < cols; col += 8) {
unsigned int const col8 = col / 8;
register v16qi vReg = {
block[0][col8], block[1][col8],
block[2][col8], block[3][col8],
block[4][col8], block[5][col8],
block[6][col8], block[7][col8],
block[8][col8], block[9][col8],
block[10][col8], block[11][col8],
block[12][col8], block[13][col8],
block[14][col8], block[15][col8] };
register v16qi const compare =__builtin_ia32_pcmpeqb128(vReg,zero128);
if (__builtin_ia32_pmovmskb128(compare) != 0xffff) {
/* There is some black content in this block; write to outplane */
unsigned int outrow;
unsigned int i;
outrow = col; /* initial value */
for (i = 0; i < 7; ++i) {
/* GCC (>=4.2) automatically unrolls this loop */
outplane[outrow++][outcol16] =
__builtin_ia32_pmovmskb128(vReg);
vReg = (v16qi)__builtin_ia32_pslldi128 ((v4di)vReg, 1);
}
outplane[outrow][outcol16] = __builtin_ia32_pmovmskb128(vReg);
} else {
/* The block is completely white; skip. */
}
}
}
static void
analyzeBlock(const struct pam * const inpamP,
bit ** const inrow,
int const xdir,
const bit ** const block,
const bit ** const blockPartial,
unsigned int * const topOfFullBlockP,
unsigned int * const outcol16P) {
/*--------------------------------------------------------------------------
Set up block[] pointer array. Provide for both directions and the two
"twists" brought about by Intel byte ordering which occur when:
(1) 16 bytes are loaded to a SSE register
(2) 16 bits are written to memory.
If 'rows' is not a multiple of 8, a partial input band appears at one edge.
Set *topOfFullBlockP accordingly. blockPartial[] is an adjusted "block" for
this partial band, brought up to a size of 8 rows. The extra pointers point
to a single row which doPartialBlockTop() and doPartialBlockBottom() clear
to white.
---------------------------------------------------------------------------*/
if (xdir > 0){
/* Write output columns left to right */
unsigned int i;
for (i = 0; i < 16; ++i){
unsigned int const index = (i & 0x8) + 7 - (i & 0x7);
/* Absorb little-endian "twists" */
block[i] = inrow[index];
blockPartial[i] = index < inpamP->height%16 ? block[i] : inrow[15];
}
*topOfFullBlockP = 0;
*outcol16P = 0;
} else {
/* Write output columns right to left */
unsigned int i;
for (i = 0; i < 16; ++i){
unsigned int const index = ((i & 0x8) ^ 0x8) + (i & 0x7);
/* Absorb little-endian "twists" */
block[i]= inrow[index];
blockPartial[i] = index < (16-inpamP->height%16)
? inrow[0]
: block[i];
}
*topOfFullBlockP = inpamP->height % 16;
if (inpamP->height >= 16) {
*outcol16P = inpamP->height/16 - 1;
} else
*outcol16P = 0;
}
}
static void
doPartialBlockTop(const struct pam * const inpamP,
bit ** const inrow,
const bit * const blockPartial[16],
unsigned int const topOfFullBlock,
uint16_t ** const outplane) {
if (topOfFullBlock > 0) {
unsigned int colChar, row;
unsigned int pad = 16 - topOfFullBlock;
for (colChar=0; colChar < pbm_packed_bytes(inpamP->width); ++colChar)
inrow[0][colChar] = 0x00;
for (row = 0; row < topOfFullBlock; ++row){
pbm_readpbmrow_packed(inpamP->file, inrow[row+pad],
inpamP->width, inpamP->format);
if (inpamP->width % 8 > 0){
/* Clear partial byte at end of input row */
int const lastByte = pbm_packed_bytes(inpamP->width) -1;
inrow[row+pad][lastByte] >>= (8 - inpamP->width % 8);
inrow[row+pad][lastByte] <<= (8 - inpamP->width % 8);
}
}
transpose16Bitrows(inpamP->width, inpamP->height, blockPartial,
outplane, inpamP->height /16);
/* Transpose partial rows on top of input. Place on right edge of
output.
*/
}
}
static void
doFullBlocks(const struct pam * const inpamP,
bit ** const inrow,
int const xdir,
const bit * const block[16],
unsigned int const topOfFullBlock,
unsigned int const initOutcol16,
uint16_t ** const outplane) {
unsigned int row;
unsigned int outcol16;
unsigned int modrow;
/* Number of current row within buffer */
for (row = topOfFullBlock, outcol16 = initOutcol16, modrow = 0;
row < inpamP->height;
++row) {
pbm_readpbmrow_packed(inpamP->file, inrow[modrow],
inpamP->width, inpamP->format);
if (inpamP->width % 8 > 0) {
/* Clear partial byte at end of input row */
int const lastByte = pbm_packed_bytes(inpamP->width) - 1;
inrow[modrow][lastByte] >>= (8 - inpamP->width % 8);
inrow[modrow][lastByte] <<= (8 - inpamP->width % 8);
}
++modrow;
if (modrow == 16) {
/* 16 row buffer is full. Transpose. */
modrow = 0;
transpose16Bitrows(inpamP->width, inpamP->height,
block, outplane, outcol16);
outcol16 += xdir;
}
}
}
static void
doPartialBlockBottom(const struct pam * const inpamP,
bit ** const inrow,
int const xdir,
const bit * const blockPartial[16],
uint16_t ** const outplane) {
if (xdir > 0 && inpamP->height % 16 > 0) {
unsigned int colChar;
for (colChar=0; colChar < pbm_packed_bytes(inpamP->width); ++colChar)
inrow[15][colChar] = 0x00;
transpose16Bitrows(inpamP->width, inpamP->height, blockPartial,
outplane, inpamP->height/16);
/* Transpose partial rows on bottom of input. Place on right edge
of output.
*/
}
}
static void
writeOut(const struct pam * const outpamP,
uint16_t ** const outplane,
int const ydir) {
unsigned int row;
for (row = 0; row < outpamP->height; ++row) {
unsigned int const outrow = (ydir > 0) ?
row :
outpamP->height - row - 1; /* reverse order */
pbm_writepbmrow_packed(stdout, (bit *)outplane[outrow],
outpamP->width, 0);
}
}
static void
clearOutplane(const struct pam * const outpamP,
uint16_t ** const outplane) {
unsigned int row;
for (row = 0; row < outpamP->height; ++row) {
unsigned int col16; /* column divided by 16 */
for (col16 = 0; col16 < (outpamP->width + 15)/16; ++col16)
outplane[row][col16] = 0x0000;
}
}
void
pamflip_transformRowsToColumnsPbmSse(const struct pam * const inpamP,
const struct pam * const outpamP,
struct xformCore const xformCore) {
/*----------------------------------------------------------------------------
This is a specialized routine for row-for-column PBM transformations.
(-cw, -ccw, -xy).
-----------------------------------------------------------------------------*/
int const xdir = xformCore.c;
/* Input top => output left (+1)/ right (-1) */
int const ydir = xformCore.b;
/* Input left => output top (+1)/ bottom (-1) */
int const blocksPerRow = ((unsigned int) outpamP->width + 15) /16;
bit ** inrow;
uint16_t ** outplane;
const bit * block[16];
const bit * blockPartial[16];
unsigned int topOfFullBlock;
unsigned int outcol16;
inrow = pbm_allocarray_packed( inpamP->width, 16);
MALLOCARRAY2(outplane, outpamP->height + 7, blocksPerRow);
if (outplane == NULL)
pm_error("Could not allocate %u x %u array of 16 bit units",
blocksPerRow, outpamP->height + 7);
/* We write to the output array in 16 bit units. Add margin. */
clearOutplane(outpamP, outplane);
analyzeBlock(inpamP, inrow, xdir, block, blockPartial,
&topOfFullBlock, &outcol16);
doPartialBlockTop(inpamP, inrow, blockPartial, topOfFullBlock, outplane);
doFullBlocks(inpamP, inrow, xdir, block,
topOfFullBlock, outcol16, outplane);
doPartialBlockBottom(inpamP, inrow, xdir, blockPartial, outplane);
writeOut(outpamP, outplane, ydir);
pbm_freearray(outplane, outpamP->height + 7);
pbm_freearray(inrow, 16);
}
#else /* SSE functions exist */
void
pamflip_transformRowsToColumnsPbmSse(const struct pam * const inpamP,
const struct pam * const outpamP,
struct xformCore const xformCore) {
/* Nobody is supposed to call this */
assert(false);
}
#endif
|