about summary refs log tree commit diff
path: root/editor/pamflip/pamflip.c
blob: e6f1d6ed40e2123d7a30d01491d7d2c9c8856aaf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
/* pamflip.c - perform one or more flip operations on a Netpbm image
**
** Copyright (C) 1989 by Jef Poskanzer.
**
** Permission to use, copy, modify, and distribute this software and its
** documentation for any purpose and without fee is hereby granted, provided
** that the above copyright notice appear in all copies and that both that
** copyright notice and this permission notice appear in supporting
** documentation.  This software is provided "as is" without express or
** implied warranty.
*/

/*
   transformNonPbmChunk() is the general transformation function.
   It can transform anything, albeit slowly and expensively.
   
   The following are enhancements for specific cases:
   
     transformRowByRowPbm():
       PBM image with left-right or null transformation
     transformRowsBottomTopPbm()
       PBM image with bottom-top transformation
     transformRowByRowNonPbm()
       non-PBM image with left-right or null transformation
       (also works for PBM, but we don't use it)
     transformRowsBottomTopNonPbm()
       non-PBM image with bottom-top transformation
       (also works for PBM, but we don't use it)
     transformRowsToColumnsPbmSse()
       PBM image with column-for-row transformation
       requires Intel/AMD x86 SSE2
       (can only do 90 degree/xy flips)
     transformPbm()
       PBM image with column-for-row transformation
       (also works for all other transformations, but we don't use it)
     transformNonPbmWhole()
       non-PBM column-for-row transformation
       (also works for PBM, but we don't use it)

   Except we don't use any of the above if we can't fit the entire image
   into the amount of memory the user gave us to work with.  In that
   case, we fall back to transformNonPbmChunk().

   Note that while virtual memory can be limited (e.g. sometimes the
   machine's 32 bit address space itself is a limit), real memory is
   also a concern.  With a row-for-column transformation
   (e.g. -transpose), if we can't fit the entire image into _real_
   memory, we will page thrash within an inch our lives.  So we count
   on the user to tell us how much real memory we should expect to
   get -- his -memsize option is the lesser of the available virtual
   and real memory.

   Before Netpbm 10.42 (March 2008), we had a different method for
   dealing with memory shortage.  We didn't worry about virtual memory
   at all, and always kept the whole target image in memory.  We did
   not use temporary files.  But to avoid page thrashing in a
   column-for-row transformation, we transformed in column stripes of
   the source image, reading the input image through multiple times.
*/

#define _DEFAULT_SOURCE 1  /* New name for SVID & BSD source defines */
#define _BSD_SOURCE 1      /* Make sure strdup() is in string.h */
#define _XOPEN_SOURCE 500  /* Make sure strdup() is in string.h */

#include <assert.h>
#include <limits.h>
#include <string.h>

#include "pm_c_util.h"
#include "pam.h"
#include "shhopt.h"
#include "mallocvar.h"
#include "nstring.h"
#include "bitreverse.h"

#include "config.h"  /* Defines SSE_PBM_XY_FLIP */
#include "flip.h"
#include "pamflip_sse.h"

enum xformType {LEFTRIGHT, TOPBOTTOM, TRANSPOSE};

static void
parseXformOpt(const char *     const xformOpt,
              unsigned int  *  const xformCountP,
              enum xformType * const xformList) {
/*----------------------------------------------------------------------------
   Translate the -xform option string into an array of transform types.

   Return the array as xformList[], which is preallocated for at least
   10 elements.
-----------------------------------------------------------------------------*/
    unsigned int xformCount;
    char * xformOptWork;
    char * cursor;
    bool eol;
    
    xformOptWork = strdup(xformOpt);
    cursor = &xformOptWork[0];
    
    eol = FALSE;    /* initial value */
    xformCount = 0; /* initial value */
    while (!eol && xformCount < 10) {
        const char * token;
        token = pm_strsep(&cursor, ",");
        if (token) {
            if (streq(token, "leftright"))
                xformList[xformCount++] = LEFTRIGHT;
            else if (streq(token, "topbottom"))
                xformList[xformCount++] = TOPBOTTOM;
            else if (streq(token, "transpose"))
                xformList[xformCount++] = TRANSPOSE;
            else if (streq(token, ""))
            { /* ignore it */}
            else
                pm_error("Invalid transform type in -xform option: '%s'",
                         token );
        } else
            eol = TRUE;
    }
    free(xformOptWork);

    *xformCountP = xformCount;
}



/* See transformPoint() for an explanation of the transform matrix types.  The
   difference between xformCore and xformMatrix is that 'xformCore' is
   particular to the source image dimensions and can be used to do the
   transformation, while 'xformCore' is independent of the source image and
   just tells what kind of transformation.
*/

struct xformMatrix {
    /* a b 0
       c d 0
       e f 1
    */
    int a;  /* -1, 0, or 1 */
    int b;  /* -1, 0, or 1 */
    int c;  /* -1, 0, or 1 */
    int d;  /* -1, 0, or 1 */
    int e;  /* 0 or maximum column number in target image */
    int f;  /* 0 or maximum row number in target image */
};



static void
leftright(struct xformCore * const xformP) {
    xformP->a = - xformP->a;
    xformP->c = - xformP->c;
}



static void
topbottom(struct xformCore * const xformP) {
    xformP->b = - xformP->b;
    xformP->d = - xformP->d;
}



static void
swap(int * const xP, int * const yP) {

    int const t = *xP;

    *xP = *yP;
    *yP = t;
}



static void
transpose(struct xformCore * const xformP) {
    swap(&xformP->a, &xformP->b);
    swap(&xformP->c, &xformP->d);
}



static void
computeXformCore(unsigned int       const xformCount,
                 enum xformType     const xformType[],
                 struct xformCore * const xformP) {
    
    struct xformCore const nullTransform = {1, 0, 0, 1};

    unsigned int i;

    *xformP = nullTransform;   /* initial value */

    for (i = 0; i < xformCount; ++i) {
        switch (xformType[i]) {
        case LEFTRIGHT: 
            leftright(xformP);
            break;
        case TOPBOTTOM:
            topbottom(xformP);
            break;
        case TRANSPOSE:
            transpose(xformP);
            break;
        }
    }
}



static void
xformDimensions(struct xformCore const xform,
                unsigned int     const inCols,
                unsigned int     const inRows,
                unsigned int *   const outColsP,
                unsigned int *   const outRowsP) {
/*----------------------------------------------------------------------------
   Compute the output dimensions from the input dimensions given a
   matrix that describes a transformation.

   E.g. if it's a 90 degree rotation of a 10 x 20 image, the output is
   a 20 x 10 image.
-----------------------------------------------------------------------------*/
    *outColsP = abs(xform.a * inCols + xform.c * inRows);
    *outRowsP = abs(xform.b * inCols + xform.d * inRows);
}



static void
computeXformMatrix(struct xformMatrix * const xformP, 
                   unsigned int         const sourceCols,
                   unsigned int         const sourceRows,
                   struct xformCore     const xformCore) {

    int colMax = xformCore.a * (sourceCols-1) + xformCore.c * (sourceRows-1);
    int rowMax = xformCore.b * (sourceCols-1) + xformCore.d * (sourceRows-1);

    xformP->a = xformCore.a;
    xformP->b = xformCore.b;
    xformP->c = xformCore.c;
    xformP->d = xformCore.d;
    xformP->e = colMax < 0 ? -colMax : 0;
    xformP->f = rowMax < 0 ? -rowMax : 0;
}



struct cmdlineInfo {
    /* All the information the user supplied in the command line,
       in a form easy for the program to use.
    */
    const char * inputFilespec;  /* Filespec of input file */
    struct xformCore xform;
        /* Handy mathematical representation of all of transform options */
    size_t availableMemory;
    unsigned int pageSize;
    unsigned int verbose;
};



static void
interpretMemorySize(unsigned int const memsizeSpec,
                    unsigned int const memsizeOpt,
                    size_t *     const availableMemoryP) {

    size_t const sizeMax = (size_t)(-1);
    unsigned int const Meg = 1024 * 1024;

    if (memsizeSpec) {
        if (memsizeOpt > sizeMax / Meg)
            pm_error("-memsize value too large: %u MiB.  Maximum this program "
                     "can handle is %u MiB", 
                     memsizeOpt, (unsigned)sizeMax / Meg);
        *availableMemoryP = memsizeOpt * Meg;
    } else
        *availableMemoryP = sizeMax;
}



static void
parseCommandLine(int argc, char ** const argv,
                 struct cmdlineInfo * const cmdlineP) {
/*----------------------------------------------------------------------------
   Note that the file spec array we return is stored in the storage that
   was passed to us as the argv array.
-----------------------------------------------------------------------------*/
    optEntry * option_def;
        /* Instructions to OptParseOptions3 on how to parse our options.
         */
    optStruct3 opt;

    unsigned int option_def_index;

    unsigned int lr, tb, xy, r90, r270, r180, null;
    unsigned int memsizeSpec, pagesizeSpec, xformSpec;
    unsigned int memsizeOpt;
    const char * xformOpt;
    unsigned int xformCount;
        /* Number of transforms in the 'xformType' array */
    enum xformType xformList[10];
        /* Array of transforms to be applied, in order */

    MALLOCARRAY(option_def, 100);

    option_def_index = 0;   /* incremented by OPTENTRY */
    OPTENT3(0, "lr",        OPT_FLAG,    NULL, &lr,      0);
    OPTENT3(0, "leftright", OPT_FLAG,    NULL, &lr,      0);
    OPTENT3(0, "tb",        OPT_FLAG,    NULL, &tb,      0);
    OPTENT3(0, "topbottom", OPT_FLAG,    NULL, &tb,      0);
    OPTENT3(0, "xy",        OPT_FLAG,    NULL, &xy,      0);
    OPTENT3(0, "transpose", OPT_FLAG,    NULL, &xy,      0);
    OPTENT3(0, "r90",       OPT_FLAG,    NULL, &r90,     0);
    OPTENT3(0, "rotate90",  OPT_FLAG,    NULL, &r90,     0);
    OPTENT3(0, "ccw",       OPT_FLAG,    NULL, &r90,     0);
    OPTENT3(0, "r180",      OPT_FLAG,    NULL, &r180,    0);
    OPTENT3(0, "rotate180", OPT_FLAG,    NULL, &r180,    0);
    OPTENT3(0, "r270",      OPT_FLAG,    NULL, &r270,    0);
    OPTENT3(0, "rotate270", OPT_FLAG,    NULL, &r270,    0);
    OPTENT3(0, "cw",        OPT_FLAG,    NULL, &r270,    0);
    OPTENT3(0, "null",      OPT_FLAG,    NULL, &null,    0);
    OPTENT3(0, "verbose",   OPT_FLAG,    NULL, &cmdlineP->verbose,       0);
    OPTENT3(0, "memsize",   OPT_UINT,    &memsizeOpt, 
            &memsizeSpec,       0);
    OPTENT3(0, "pagesize",  OPT_UINT,    &cmdlineP->pageSize,
            &pagesizeSpec,      0);
    OPTENT3(0, "xform",     OPT_STRING,  &xformOpt, 
            &xformSpec, 0);

    opt.opt_table = option_def;
    opt.short_allowed = FALSE;  /* We have no short (old-fashioned) options */
    opt.allowNegNum = FALSE;  /* We don't parms that are negative numbers */

    pm_optParseOptions3(&argc, argv, opt, sizeof(opt), 0);
        /* Uses and sets argc, argv, and some of *cmdlineP and others. */

    if (lr + tb + xy + r90 + r180 + r270 + null > 1)
        pm_error("You may specify only one type of flip.");
    if (lr + tb + xy + r90 + r180 + r270 + null == 1) {
        if (lr) {
            xformCount = 1;
            xformList[0] = LEFTRIGHT;
        } else if (tb) {
            xformCount = 1;
            xformList[0] = TOPBOTTOM;
        } else if (xy) {
            xformCount = 1;
            xformList[0] = TRANSPOSE;
        } else if (r90) {
            xformCount = 2;
            xformList[0] = TRANSPOSE;
            xformList[1] = TOPBOTTOM;
        } else if (r180) {
            xformCount = 2;
            xformList[0] = LEFTRIGHT;
            xformList[1] = TOPBOTTOM;
        } else if (r270) {
            xformCount = 2;
            xformList[0] = TRANSPOSE;
            xformList[1] = LEFTRIGHT;
        } else if (null) {
            xformCount = 0;
        }
    } else if (xformSpec) 
        parseXformOpt(xformOpt, &xformCount, xformList);
    else
        pm_error("You must specify an option such as -topbottom to indicate "
                 "what kind of flip you want.");

    computeXformCore(xformCount, xformList, &cmdlineP->xform);
    
    interpretMemorySize(memsizeSpec, memsizeOpt, &cmdlineP->availableMemory);

    if (!pagesizeSpec)
        cmdlineP->pageSize = 4*1024;         

    if (argc-1 == 0) 
        cmdlineP->inputFilespec = "-";
    else if (argc-1 != 1)
        pm_error("Program takes zero or one argument (filename).  You "
                 "specified %d", argc-1);
    else
        cmdlineP->inputFilespec = argv[1];

    free(option_def);
}



static void
bitOrderReverse(unsigned char * const bitrow, 
                unsigned int    const cols) {
/*----------------------------------------------------------------------------
  Reverse the bits in a packed pbm row (1 bit per pixel).  I.e. the leftmost
  bit becomes the rightmost, etc.

  Exchange pixels in units of eight.  If both are zero, skip instead of
  exchanging zeros.
-----------------------------------------------------------------------------*/
    unsigned int const lastfullByteIdx = cols/8 - 1;

    if (cols == 0 || bitrow == NULL )
        pm_error("Invalid arguments passed to bitOrderReverse");

    if (cols <= 8)
        bitrow[0] = bitreverse[bitrow[0]] << (8-cols);
    else if (cols % 8 == 0) {
        unsigned int i, j;
        for (i = 0, j = lastfullByteIdx; i <= j; ++i, --j)
            if ((bitrow[j] | bitrow[i]) == 0) {
                /* Both are 0x00 - skip */
            } else {
                unsigned char const t = bitreverse[bitrow[j]]; 
                bitrow[j] = bitreverse[bitrow[i]];
                bitrow[i] = t;
            }
    } else {
        unsigned int const m = cols % 8; 

        unsigned int i, j;
            /* Cursors into bitrow[].  i moves from left to center;
               j moves from right to center as bits of bitrow[] are exchanged.
            */
        unsigned char th, tl;  /* 16 bit temp ( th << 8 | tl ) */
        tl = 0;
        for (i = 0, j = lastfullByteIdx+1; i <= lastfullByteIdx/2; ++i, --j) {
            if( (tl | bitrow[i] | bitrow[j] | bitrow[j-1]) != 0) {
                /* Skip if both are 0x00 */
                th = bitreverse[bitrow[i]];
                bitrow[i] =
                    bitreverse[0xff & ((bitrow[j-1] << 8 
                                        | bitrow[j]) >> (8-m))];
                bitrow[j] = 0xff & ((th << 8 | tl) >> m);
                tl = th;
            }
        }
        if (i == j && (bitrow[i] | tl) != 0) {
            /* bitrow[] has an odd number of bytes (an even number of
               full bytes; lastfullByteIdx is odd), so we did all but
               the center byte above.  We do the center byte now.
            */
            bitrow[j] = 0xff & ((bitreverse[bitrow[i]] << 8 | tl) >> m);
        }
    }
}



static void
transformRowByRowPbm(struct pam * const inpamP, 
                     struct pam * const outpamP,
                     bool         const reverse) {
/*----------------------------------------------------------------------------
  Transform a PBM raster either by flipping it left for right, or just
  leaving it alone, as indicated by 'reverse'.  Read the raster from
  *inpamP; write the transformed raster to *outpamP.

  Process the image one row at a time and use fast packed PBM bit
  reverse algorithm (where required).
-----------------------------------------------------------------------------*/
    unsigned char * bitrow;
    unsigned int row;

    bitrow = pbm_allocrow_packed(outpamP->width); 

    for (row = 0; row < inpamP->height; ++row) {
        pbm_readpbmrow_packed(inpamP->file,  bitrow, inpamP->width,
                              inpamP->format);

        if (reverse)
            bitOrderReverse(bitrow, inpamP->width);

        pbm_writepbmrow_packed(outpamP->file, bitrow, outpamP->width, 0);
    }
    pbm_freerow_packed(bitrow);
}



static void
transformRowByRowNonPbm(struct pam * const inpamP, 
                        struct pam * const outpamP,
                        bool         const reverse) {
/*----------------------------------------------------------------------------
  Flip a raster left for right or leave it alone.  Read the raster
  from *inpamP; write the transformed raster to *outpamP.

  Process one row at a time.

  This works on any image, but is slower and uses more memory than the
  PBM-only transformRowByRowPbm().
-----------------------------------------------------------------------------*/
    tuple * tuplerow;
    tuple * newtuplerow;
        /* This is not a full tuple row.  It is either an array of pointers
           to the tuples in 'tuplerow' (in reverse order) or just 'tuplerow'
           itself.
        */
    tuple * scratchTuplerow;
    
    unsigned int row;
    
    tuplerow = pnm_allocpamrow(inpamP);
    
    if (reverse) {
        /* Set up newtuplerow[] to point to the tuples of tuplerow[] in
           reverse order.
        */
        unsigned int col;
        
        MALLOCARRAY_NOFAIL(scratchTuplerow, inpamP->width);

        for (col = 0; col < inpamP->width; ++col) 
            scratchTuplerow[col] = tuplerow[inpamP->width - col - 1];
        newtuplerow = scratchTuplerow;
    } else {
        scratchTuplerow = NULL;
        newtuplerow = tuplerow;
    }
    for (row = 0; row < inpamP->height ; ++row) {
        pnm_readpamrow(inpamP, tuplerow);
        pnm_writepamrow(outpamP, newtuplerow);
    }
    
    if (scratchTuplerow)
        free(scratchTuplerow);
    pnm_freepamrow(tuplerow);
}



static void
transformRowsBottomTopPbm(struct pam * const inpamP,
                          struct pam * const outpamP,
                          bool         const reverse) { 
/*----------------------------------------------------------------------------
  Flip a PBM raster top for bottom; read the raster from *inpamP;
  write the flipped raster to *outpamP.

  Read complete image into memory in packed PBM format; Use fast
  packed PBM bit reverse algorithm (where required).
-----------------------------------------------------------------------------*/
    unsigned int const rows=inpamP->height;

    unsigned char ** bitrow;
    unsigned int row;
        
    bitrow = pbm_allocarray_packed(outpamP->width, outpamP->height);
        
    for (row = 0; row < rows; ++row)
        pbm_readpbmrow_packed(inpamP->file, bitrow[row], 
                              inpamP->width, inpamP->format);

    for (row = 0; row < rows; ++row) {
        if (reverse) 
            bitOrderReverse(bitrow[rows-row-1], inpamP->width);

        pbm_writepbmrow_packed(outpamP->file, bitrow[rows - row - 1],
                               outpamP->width, 0);
    }
    pbm_freearray_packed(bitrow, outpamP->height);
}



static void
transformRowsBottomTopNonPbm(struct pam * const inpamP, 
                             struct pam * const outpamP) {
/*----------------------------------------------------------------------------
  Do a simple vertical flip.  Read the raster from *inpamP; write the
  flipped raster to *outpamP.

  We do this faster than the more general subroutines because we just
  move the row pointers.

  But we must fit the entire image into memory at once.

  This works on PBM, but the PBM-specific subroutine is faster.
-----------------------------------------------------------------------------*/
    tuple ** tuplerows;
    unsigned int row;

    tuplerows = pnm_allocpamarray(outpamP);

    for (row = 0; row < inpamP->height ; ++row)
        pnm_readpamrow(inpamP, tuplerows[row]);

    for (row = 0; row < inpamP->height; ++row) {
        tuple * const tuplerow = tuplerows[inpamP->height - row - 1];

        pnm_writepamrow(outpamP, tuplerow);
    }
    
    pnm_freepamarray(tuplerows, outpamP);
}



static void __inline__
transformPoint(int                const col, 
               int                const row, 
               struct xformMatrix const xform, 
               unsigned int *     const newcolP, 
               unsigned int *     const newrowP ) {
/*----------------------------------------------------------------------------
   Compute the location in the output of a pixel that is at row 'row',
   column 'col' in the input.  Assume the output image is 'newcols' by
   'newrows' and the transformation is as described by 'xform'.

   Return the output image location of the pixel as *newcolP and *newrowP.
-----------------------------------------------------------------------------*/
    /* The transformation is:
     
                 [ a b 0 ]
       [ x y 1 ] [ c d 0 ] = [ x2 y2 1 ]
                 [ e f 1 ]

       Where (x, y) is the source pixel location and (x2, y2) is the
       target pixel location.

       Note that this is more of a logical computation than an arithmetic
       one: a, b, c, and d are -1, 0, or 1.  e is the maximum column number
       in the target image or 0; f is the maximum row number or 0.
    */
    *newcolP = xform.a * col + xform.c * row + xform.e * 1;
    *newrowP = xform.b * col + xform.d * row + xform.f * 1;

    assert(*newcolP >= 0);
    assert(*newrowP >= 0);
}



static void
writeRaster(struct pam *    const pamP,
            tuple * const * const tuples) {

    unsigned int outRow;

    for (outRow = 0; outRow < pamP->height; ++ outRow)
        pnm_writepamrow(pamP, tuples[outRow]);
}







static void
transformPbmGen(struct pam *     const inpamP,
                struct pam *     const outpamP,
                struct xformCore const xformCore) { 
/*----------------------------------------------------------------------------
   This is the same as transformGen, except that it uses less 
   memory, since the PBM buffer format uses one bit per pixel instead
   of twelve bytes + pointer space

   This can do any PBM transformation, but is slower and uses more
   memory than the more restricted transformRowByRowPbm() and
   transformRowsBottomTopPbm().
-----------------------------------------------------------------------------*/
    bit * bitrow;
    bit ** newbits;
    struct xformMatrix xform;
    unsigned int row;
            
    computeXformMatrix(&xform, inpamP->width, inpamP->height, xformCore);
    
    bitrow = pbm_allocrow_packed(inpamP->width);
    newbits = pbm_allocarray_packed( outpamP->width, outpamP->height );
            
    /* Initialize entire array to zeroes.  One bits will be or'ed in later */
    for (row = 0; row < outpamP->height; ++row) {
        unsigned int col;
        for (col = 0; col < pbm_packed_bytes(outpamP->width); ++col) 
            newbits[row][col] = 0; 
    }
    
    for (row = 0; row < inpamP->height; ++row) {
        unsigned int col;

        pbm_readpbmrow_packed(inpamP->file, bitrow,
                              inpamP->width, inpamP->format);
        for (col = 0; col < inpamP->width; ) {
            if (bitrow[col/8] == 0x00) 
                col += 8;  /* Blank.   Skip to next byte. */
            else {      /* Examine each pixel. */
                unsigned int const colLimit = MIN(col+8, inpamP->width);
                unsigned int i;

                for (i = 0; col < colLimit; ++i, ++col) {
                    bool const bitIsOne = (bitrow[col/8] >> (7-i)) & 0x01;
                    if (bitIsOne) {
                        /* Write in only the one bits. */  
                        unsigned int newcol, newrow;
                        transformPoint(col, row, xform, &newcol, &newrow);
                        newbits[newrow][newcol/8] |= 0x01 << (7 - newcol % 8);
                            /* Use of "|=" patterned after
                               pbm_readpbmrow_packed().
                            */
                    }
                }
            }
        }
    }

    for (row = 0; row < outpamP->height; ++row)
        pbm_writepbmrow_packed(outpamP->file, newbits[row], outpamP->width, 0);
    
    pbm_freearray(newbits, outpamP->height);
    pbm_freerow(bitrow);
}



static void
transformNonPbmWhole(struct pam *     const inpamP,
                     struct pam *     const outpamP,
                     struct xformCore const xformCore,
                     bool             const verbose) {
/*----------------------------------------------------------------------------
  Do the transform using "pam" library functions, as opposed to "pbm"
  ones.

  Read the raster from *inpamP; write the transformed raster to *outpamP.

  Assume input file is positioned to the raster (just after the
  header).

  This can do any transformation, but is slower and uses more memory
  than some of the alternatives which are usable only for certain
  cases.  But we do require a certain amount of virtual and real memory;
  transformNonPbmChunk() is even more general in that it doesn't.
-----------------------------------------------------------------------------*/
    tuple * tuplerow;
    tuple ** newtuples;
    struct xformMatrix xform;
    unsigned int row;

    computeXformMatrix(&xform, inpamP->width, inpamP->height, xformCore);
    
    tuplerow = pnm_allocpamrow(inpamP);
    newtuples = pnm_allocpamarray(outpamP);
    
    for (row = 0; row < inpamP->height; ++row) {
        unsigned int col;
        pnm_readpamrow(inpamP, tuplerow);
        
        for (col = 0; col < inpamP->width; ++col) {
            unsigned int newcol, newrow;

            transformPoint(col, row, xform, &newcol, &newrow);

            assert(newcol < outpamP->width);
            assert(newrow < outpamP->height);

            pnm_assigntuple(inpamP, newtuples[newrow][newcol],
                            tuplerow[col]);
        }
    }
    
    writeRaster(outpamP, newtuples);
    
    pnm_freepamarray(newtuples, outpamP);
    pnm_freepamrow(tuplerow);
}



typedef struct {
/*----------------------------------------------------------------------------
   A description of the quilt of cells that make up the output image.
-----------------------------------------------------------------------------*/
    unsigned int rankCt, fileCt;
        /* Dimensions of the output image in cells */
    struct pam ** pam;
        /* pam[y][x] is the pam structure for the cell at rank y, file x
           in the output.
        */

    /* Each of the cells corresponds to a temporary file; the 'file'
       member of its pam structure identifies it.  But it is not a normal
       Netpbm file; it contains only the raster portion.  The program
       writes the raster to the file, starting at offset zero, then rewinds
       and reads it out later.  The header is unnecessary because the pam
       structure is still available at readback time.
    */
} outputMap;



static void
initOutCell(struct pam *     const outCellPamP,
            unsigned int     const inCellWidth,
            unsigned int     const inCellHeight,
            struct pam *     const inpamP,
            struct xformCore const xformCore) {
/*----------------------------------------------------------------------------
   Set up an output cell.  Create and open a temporary file to hold its
   raster.  Figure out the dimensions of the cell.  Return a PAM structure
   that describes the cell (including identifying that temporary file).
-----------------------------------------------------------------------------*/
    unsigned int outCellFileCt, outCellRankCt;

    *outCellPamP = *inpamP;  /* initial value */

    outCellPamP->len  = PAM_STRUCT_SIZE(tuple_type);

    outCellPamP->file = pm_tmpfile();

    xformDimensions(xformCore, inCellWidth, inCellHeight,
                    &outCellFileCt, &outCellRankCt);

    outCellPamP->width = outCellFileCt;
    outCellPamP->height = outCellRankCt;
}



static outputMap *
createOutputMap(struct pam *       const inpamP,
                unsigned int       const maxRows,
                struct xformMatrix const cellXform,
                struct xformCore   const xformCore) {
/*----------------------------------------------------------------------------
   Create and return the output map.  That's a map of all the output cells
   (from which the output image can be assembled, once those cells are filled
   in).

   The map contains the dimensions of each output cell as well as file
   stream handles for the temporary files containing the pixels of each
   cell.  We create and open those files.

   Note that a complexity of determining cell dimensions (which we handle)
   is that the input image isn't necessarily a whole multiple of the input
   cell size, so the last cell may be short.

   The map does not contain the mapping from input cells to output cells
   (e.g. in a top-bottom transformation of a 10-cell image, input cell
   0 maps to output cell 9); caller can compute that when needed from
   'cellXform'.
-----------------------------------------------------------------------------*/
    unsigned int const inCellFileCt = 1;
    unsigned int const inCellRankCt = (inpamP->height + maxRows - 1) / maxRows;

    outputMap * mapP;
    unsigned int outCellRank;
    unsigned int inCellRank;

    MALLOCVAR_NOFAIL(mapP);

    xformDimensions(xformCore, inCellFileCt, inCellRankCt,
                    &mapP->fileCt, &mapP->rankCt);

    MALLOCARRAY(mapP->pam, mapP->rankCt);
    if (mapP->pam == NULL)
        pm_error("Could not allocate a cell array for %u ranks of cells.",
                 mapP->rankCt);

    for (outCellRank = 0; outCellRank < mapP->rankCt; ++outCellRank) {

        MALLOCARRAY(mapP->pam[outCellRank], mapP->fileCt);

        if (mapP->pam[outCellRank] == NULL)
            pm_error("Failed to allocate rank %u of the cell array, "
                     "%u cells wide", outCellRank, mapP->fileCt);
    }

    for (inCellRank = 0; inCellRank < inCellRankCt; ++inCellRank) {
        unsigned int const inCellFile = 0;
        unsigned int const inCellStartRow = inCellRank * maxRows;
        unsigned int const inCellRowCt =
            MIN(inpamP->height - inCellStartRow, maxRows);

        unsigned int outCellFile, outCellRank;
        transformPoint(inCellFile, inCellRank, cellXform,
                       &outCellFile, &outCellRank);
    
        initOutCell(&mapP->pam[outCellRank][outCellFile],
                    inpamP->width, inCellRowCt,
                    inpamP, xformCore);
    }
    return mapP;
}
                


static void
destroyOutputMap(outputMap * const mapP) {

    unsigned int outCellRank;

    for (outCellRank = 0; outCellRank < mapP->rankCt; ++outCellRank)
        free(mapP->pam[outCellRank]);

    free(mapP->pam);

    free(mapP);
}



static void
rewindCellFiles(outputMap * const outputMapP) {

    unsigned int outCellRank;

    for (outCellRank = 0; outCellRank < outputMapP->rankCt; ++outCellRank) {
        unsigned int outCellFile;
        for (outCellFile = 0; outCellFile < outputMapP->fileCt; ++outCellFile)
            pm_seek(outputMapP->pam[outCellRank][outCellFile].file, 0);
    }
}



static void
closeCellFiles(outputMap * const outputMapP) {

    unsigned int outCellRank;

    for (outCellRank = 0; outCellRank < outputMapP->rankCt; ++outCellRank) {
        unsigned int outCellFile;
        for (outCellFile = 0; outCellFile < outputMapP->fileCt; ++outCellFile)
            pm_close(outputMapP->pam[outCellRank][outCellFile].file);
    }
}



static void
transformCell(struct pam *     const inpamP,
              struct pam *     const outpamP,
              struct xformCore const xformCore) {

    struct xformMatrix xform;
    tuple * inTupleRow;
    tuple ** outTuples;
    unsigned int inRow;

    computeXformMatrix(&xform, inpamP->width, inpamP->height, xformCore);

    inTupleRow = pnm_allocpamrow(inpamP);

    outTuples = pnm_allocpamarray(outpamP);

    for (inRow = 0; inRow < inpamP->height; ++inRow) {
        unsigned int inCol;

        pnm_readpamrow(inpamP, inTupleRow);
        
        for (inCol = 0; inCol < inpamP->width; ++inCol) {
            unsigned int outCol, outRow;

            transformPoint(inCol, inRow, xform, &outCol, &outRow);

            assert(outCol < outpamP->width);
            assert(outRow < outpamP->height);

            pnm_assigntuple(inpamP,
                            outTuples[outRow][outCol], inTupleRow[inCol]);
        }
    }
    pnm_freepamrow(inTupleRow);

    writeRaster(outpamP, outTuples);

    pnm_freepamarray(outTuples, outpamP);
}



static void
stitchCellsToOutput(outputMap *  const outputMapP,
                    struct pam * const outpamP) {

    unsigned int outRank;
    tuple * tupleRow;

    tupleRow = pnm_allocpamrow(outpamP);

    for (outRank = 0; outRank < outputMapP->rankCt; ++outRank) {
        unsigned int const cellRows = outputMapP->pam[outRank][0].height;
            /* Number of rows in every cell in this rank */

        unsigned int cellRow;

        for (cellRow = 0; cellRow < cellRows; ++cellRow) {
            unsigned int outFile;
            unsigned int outCol;

            outCol = 0;

            for (outFile = 0; outFile < outputMapP->fileCt; ++outFile) {
                struct pam * const outCellPamP = 
                    &outputMapP->pam[outRank][outFile];

                assert(outCellPamP->height == cellRows);

                assert(outCol < outpamP->width);
                pnm_readpamrow(outCellPamP, &tupleRow[outCol]);

                outCol += outCellPamP->width;
            }

            assert(outCol = outpamP->width);

            pnm_writepamrow(outpamP, tupleRow);
        }
    }
    pnm_freepamrow(tupleRow);
}



static void
transformNonPbmChunk(struct pam *     const inpamP,
                     struct pam *     const outpamP,
                     struct xformCore const xformCore,
                     unsigned int     const maxRows,
                     bool             const verbose) {
/*----------------------------------------------------------------------------
  Same as transformNonPbmWhole(), except we read 'maxRows' rows of the
  input into memory at a time, storing intermediate results in temporary
  files, to limit our use of virtual and real memory.

  Assume input file is positioned to the raster (just after the
  header).

  We call the strip of 'maxRows' rows that we read a source cell.  We
  transform that cell according to 'xformCore' to create a
  target cell.  We store all the target cells in temporary files.
  We consider the target cells to be arranged in a column matrix the
  same as the source cells within the source image; we transform that
  matrix according to 'xformCore'.  The resulting cell matrix is the
  target image.
-----------------------------------------------------------------------------*/
    /* The cells of the source image ("inCell") are in a 1-column matrix.
       "rank" is the vertical position of a cell in that matrix; "file" is
       the horizontal position (always 0, of course).
    */
    unsigned int const inCellFileCt = 1;
    unsigned int const inCellRankCt = (inpamP->height + maxRows - 1) / maxRows;

    struct xformMatrix cellXform;
    unsigned int inCellRank;
    outputMap * outputMapP;

    if (verbose)
        pm_message("Transforming in %u chunks, using temp files",
                   inCellRankCt);

    computeXformMatrix(&cellXform, inCellFileCt, inCellRankCt, xformCore);

    outputMapP = createOutputMap(inpamP, maxRows, cellXform, xformCore);

    for (inCellRank = 0; inCellRank < inCellRankCt; ++inCellRank) {
        unsigned int const inCellFile = 0;
        unsigned int const inCellStartRow = inCellRank * maxRows;
        unsigned int const inCellRows =
            MIN(inpamP->height - inCellStartRow, maxRows);

        struct pam inCellPam;
        struct pam * outCellPamP;
        unsigned int outCellFile, outCellRank;

        transformPoint(inCellFile, inCellRank, cellXform,
                       &outCellFile, &outCellRank);
    
        outCellPamP = &outputMapP->pam[outCellRank][outCellFile];

        /* Input cell is just the next 'inCellRows' rows of input image */
        inCellPam = *inpamP;
        inCellPam.height = inCellRows;

        transformCell(&inCellPam, outCellPamP, xformCore);
    }    

    rewindCellFiles(outputMapP);

    stitchCellsToOutput(outputMapP, outpamP);

    closeCellFiles(outputMapP);

    destroyOutputMap(outputMapP);
}



static unsigned int
maxRowsThatFit(struct pam * const pamP,
               size_t       const availableMemory) {

    unsigned long const otherNeeds = 100*1024;
        /* A wild guess at how much memory (from the same pool as the
           input rows) is needed for things other than the input rows
        */
    unsigned long const availForRows =
        availableMemory > otherNeeds ? availableMemory - otherNeeds : 0;
    unsigned int const bytesPerTuple =
        pamP->depth * sizeof(sample) + sizeof(tuple *);
    unsigned int const bytesPerRow =
        pamP->width * bytesPerTuple + sizeof(tuple **);

    unsigned long const maxRows = availForRows / bytesPerRow;

    if (maxRows < 1)
        pm_error("You haven't allowed enough memory to fit even one row "
                 "of the source image in memory.  The minimum chunk size "
                 "is one row; we need at least %lu bytes.",
                 otherNeeds + bytesPerRow);

    return (unsigned int)MIN(maxRows, UINT_MAX);
}



static void
transformPbm(struct pam *     const inpamP,
             struct pam *     const outpamP,
             struct xformCore const xform,
             bool             const verbose) {

    if (xform.b == 0 && xform.c == 0) {
        /* Rows of input map to rows of target; no column-for-row */
        if (xform.d == 1)
            /* Row N of the output is based only on Row N of the
               input, so we can transform row by row and avoid
               in-memory buffering altogether.
            */
            transformRowByRowPbm(inpamP, outpamP, xform.a == -1);
        else
            /* Row N of the output is based only on Row ~N of the
               input.  We need all the rows in memory, but have to pass
               through them only twice, so there is no page thrashing concern.
            */
            transformRowsBottomTopPbm(inpamP, outpamP, xform.a == -1);
    } else {
        /* This is a column-for-row type of transformation, which requires
           complex traversal of an in-memory image.
        */
        if (SSE_PBM_XY_FLIP)
            pamflip_transformRowsToColumnsPbmSse(inpamP, outpamP, xform);
        else
            transformPbmGen(inpamP, outpamP, xform);
    }
}



static void
transformNonPbm(struct pam *     const inpamP,
                struct pam *     const outpamP,
                struct xformCore const xform,
                unsigned int     const availableMemory,
                bool             const verbose) {

    if (xform.b == 0 && xform.c == 0 && xform.d == 1) {
        /* Row N of the output is based only on Row N of the
           input, so we can transform row by row and avoid
           in-memory buffering altogether.
        */
        if (verbose)
            pm_message("Transforming row by row");
        transformRowByRowNonPbm(inpamP, outpamP, xform.a == -1);
    } else {
        unsigned int const maxRows = maxRowsThatFit(inpamP, availableMemory);
        if (maxRows >= inpamP->height) {
            /* We can fit the whole image in memory at once and avoid
               temporary files.
            */
            if (xform.b == 0 && xform.c == 0 && xform.d == -1 &&
                xform.a == 1) {
                /* This is just a vertical flip;  We can move whole rows
                   instead of individual pixels and save time.
                */
                if (verbose)
                    pm_message("Transforming whole rows, all in memory");

                transformRowsBottomTopNonPbm(inpamP, outpamP);
            } else {
                if (verbose)
                    pm_message("Transforming whole image at once, "
                               "pixel by pixel");
                transformNonPbmWhole(inpamP, outpamP, xform, verbose);
            }
        } else
            /* No optimizations possible */
            transformNonPbmChunk(inpamP, outpamP, xform, maxRows, verbose);
    }
}



int
main(int argc, char * argv[]) {
    struct cmdlineInfo cmdline;
    struct pam inpam;
    struct pam outpam;
    unsigned int cols, rows;
    FILE * ifP;

    pnm_init(&argc, argv);

    parseCommandLine(argc, argv, &cmdline);

    if (cmdline.availableMemory < UINT_MAX)
        ifP = pm_openr_seekable(cmdline.inputFilespec);
    else
        ifP = pm_openr(cmdline.inputFilespec);
    
    pnm_readpaminit(ifP, &inpam, PAM_STRUCT_SIZE(tuple_type));

    outpam = inpam;  /* initial value */

    outpam.file = stdout;
    xformDimensions(cmdline.xform, inpam.width, inpam.height, &cols, &rows);
    outpam.width = cols; outpam.height = rows;

    pnm_writepaminit(&outpam);

    switch (PNM_FORMAT_TYPE(inpam.format)) {
    case PBM_TYPE:
        transformPbm(&inpam, &outpam, cmdline.xform, cmdline.verbose);
        break;
    default:
        transformNonPbm(&inpam, &outpam, cmdline.xform,
                        cmdline.availableMemory, cmdline.verbose);
    }
    pm_close(inpam.file);
    pm_close(outpam.file);
    
    return 0;
}