1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
|
/*
**
** Add gaussian, multiplicative gaussian, impulse, laplacian or
** poisson noise to a Netpbm image
**
** Version 1.0 November 1995
**
** Copyright (C) 1995 by Mike Burns (burns@cac.psu.edu)
**
** Adapted to Netpbm 2005.08.09, by Bryan Henderson
**
** Permission to use, copy, modify, and distribute this software and its
** documentation for any purpose and without fee is hereby granted, provided
** that the above copyright notice appear in all copies and that both that
** copyright notice and this permission notice appear in supporting
** documentation. This software is provided "as is" without express or
** implied warranty.
*/
/* References
** ----------
** "Adaptive Image Restoration in Signal-Dependent Noise" by R. Kasturi
** Institute for Electronic Science, Texas Tech University 1982
**
** "Digital Image Processing Algorithms" by Ioannis Pitas
** Prentice Hall, 1993 ISBN 0-13-145814-0
*/
#define _XOPEN_SOURCE 500 /* get M_PI in math.h */
#include <assert.h>
#include <math.h>
#include "pm_c_util.h"
#include "mallocvar.h"
#include "rand.h"
#include "shhopt.h"
#include "pm_gamma.h"
#include "pam.h"
static double const EPSILON = 1.0e-5;
static double const SIGMA1_DEFAULT = 4.0;
static double const SIGMA2_DEFAULT = 20.0;
static double const MGSIGMA_DEFAULT = 0.5;
static double const LSIGMA_DEFAULT = 10.0;
static double const TOLERANCE_DEFAULT = 0.10;
static double const SALT_RATIO_DEFAULT = 0.5;
static double const LAMBDA_DEFAULT = 12.0;
enum NoiseType {
NOISETYPE_GAUSSIAN,
NOISETYPE_IMPULSE, /* aka salt and pepper noise */
NOISETYPE_LAPLACIAN,
NOISETYPE_MULTIPLICATIVE_GAUSSIAN,
NOISETYPE_POISSON
};
struct CmdlineInfo {
/* All the information the user supplied in the command line,
in a form easy for the program to use.
*/
const char * inputFileName;
enum NoiseType noiseType;
unsigned int seedSpec;
unsigned int seed;
float lambda;
float lsigma;
float mgsigma;
float sigma1;
float sigma2;
float tolerance;
float saltRatio;
};
static enum NoiseType
typeFmName(const char * const name) {
enum NoiseType retval;
if (false)
assert(false);
else if (pm_keymatch(name, "gaussian", 1))
retval = NOISETYPE_GAUSSIAN;
else if (pm_keymatch(name, "impulse", 1))
retval = NOISETYPE_IMPULSE;
else if (pm_keymatch(name, "laplacian", 1))
retval = NOISETYPE_LAPLACIAN;
else if (pm_keymatch(name, "multiplicative_gaussian", 1))
retval = NOISETYPE_MULTIPLICATIVE_GAUSSIAN;
else if (pm_keymatch(name, "poisson", 1))
retval = NOISETYPE_POISSON;
else
pm_error("Unrecognized -type value '%s'. "
"We recognize 'gaussian', 'impulse', 'laplacian', "
"'multiplicative_gaussian', and 'poisson'", name);
return retval;
}
static void
parseCommandLine(int argc, const char ** const argv,
struct CmdlineInfo * const cmdlineP) {
/*----------------------------------------------------------------------------
Note that the file spec array we return is stored in the storage that
was passed to us as the argv array.
-----------------------------------------------------------------------------*/
optEntry * option_def;
/* Instructions to OptParseOptions3 on how to parse our options. */
optStruct3 opt;
unsigned int option_def_index;
unsigned int typeSpec, lambdaSpec, lsigmaSpec, mgsigmaSpec,
sigma1Spec, sigma2Spec, toleranceSpec, saltRatioSpec;
const char * type;
MALLOCARRAY(option_def, 100);
option_def_index = 0; /* incremented by OPTENT3 */
OPTENT3(0, "type", OPT_STRING, &type,
&typeSpec, 0);
OPTENT3(0, "seed", OPT_UINT, &cmdlineP->seed,
&cmdlineP->seedSpec, 0);
OPTENT3(0, "lambda", OPT_FLOAT, &cmdlineP->lambda,
&lambdaSpec, 0);
OPTENT3(0, "lsigma", OPT_FLOAT, &cmdlineP->lsigma,
&lsigmaSpec, 0);
OPTENT3(0, "mgsigma", OPT_FLOAT, &cmdlineP->mgsigma,
&mgsigmaSpec, 0);
OPTENT3(0, "sigma1", OPT_FLOAT, &cmdlineP->sigma1,
&sigma1Spec, 0);
OPTENT3(0, "sigma2", OPT_FLOAT, &cmdlineP->sigma2,
&sigma2Spec, 0);
OPTENT3(0, "tolerance", OPT_FLOAT, &cmdlineP->tolerance,
&toleranceSpec, 0);
OPTENT3(0, "salt", OPT_FLOAT, &cmdlineP->saltRatio,
&saltRatioSpec, 0);
opt.opt_table = option_def;
opt.short_allowed = FALSE; /* We have no short (old-fashioned) options */
opt.allowNegNum = FALSE; /* We have no parms that are negative numbers */
pm_optParseOptions3(&argc, (char **)argv, opt, sizeof(opt), 0);
/* Uses and sets argc, argv, and some of *cmdlineP and others. */
if (!typeSpec)
cmdlineP->noiseType = NOISETYPE_GAUSSIAN;
else
cmdlineP->noiseType = typeFmName(type);
if (sigma1Spec) {
if (cmdlineP->noiseType != NOISETYPE_GAUSSIAN)
pm_error("-sigma1 is valid only with -type=gaussian");
else if (cmdlineP->sigma1 < 0)
pm_error("-sigma1 value must be non-negative. You specified %f",
cmdlineP->sigma1);
}
if (sigma2Spec) {
if (cmdlineP->noiseType != NOISETYPE_GAUSSIAN)
pm_error("-sigma2 is valid only with -type=gaussian");
else if (cmdlineP->sigma2 < 0)
pm_error("-sigma2 value must be non-negative. You specified %f",
cmdlineP->sigma2);
}
if (mgsigmaSpec) {
if (cmdlineP->noiseType != NOISETYPE_MULTIPLICATIVE_GAUSSIAN)
pm_error("-mgsigma is valid only with -type=multiplicative_guassian");
else if (cmdlineP->mgsigma < 0)
pm_error("-mgsigma value must be non-negative. You specified %f",
cmdlineP->mgsigma);
}
if (toleranceSpec) {
if (cmdlineP->noiseType != NOISETYPE_IMPULSE)
pm_error("-tolerance is valid only with -type=impulse");
else if (cmdlineP->tolerance < 0 || cmdlineP->tolerance > 1.0)
pm_error("-tolerance value must be between 0.0 and 1.0. "
"You specified %f", cmdlineP->tolerance);
}
if (saltRatioSpec) {
if (cmdlineP->noiseType != NOISETYPE_IMPULSE)
pm_error("-salt is valid only with -type=impulse");
else if (cmdlineP->saltRatio < 0 || cmdlineP->saltRatio > 1.0)
pm_error("-salt value must be between 0.0 and 1.0. "
"You specified %f", cmdlineP->saltRatio);
}
if (lsigmaSpec) {
if (cmdlineP->noiseType != NOISETYPE_LAPLACIAN)
pm_error("-lsigma is valid only with -type=laplacian");
else if (cmdlineP->lsigma <= 0)
pm_error("-lsigma value must be positive. You specified %f",
cmdlineP->lsigma);
}
if (lambdaSpec) {
if (cmdlineP->noiseType != NOISETYPE_POISSON)
pm_error("-lambda is valid only with -type=poisson");
else if (cmdlineP->lambda <= 0)
pm_error("-lambda value must be positive. You specified %f",
cmdlineP->lambda);
}
if (!lambdaSpec)
cmdlineP->lambda = LAMBDA_DEFAULT;
if (!lsigmaSpec)
cmdlineP->lsigma = LSIGMA_DEFAULT;
if (!mgsigmaSpec)
cmdlineP->mgsigma = MGSIGMA_DEFAULT;
if (!sigma1Spec)
cmdlineP->sigma1 = SIGMA1_DEFAULT;
if (!sigma2Spec)
cmdlineP->sigma2 = SIGMA2_DEFAULT;
if (!toleranceSpec)
cmdlineP->tolerance = TOLERANCE_DEFAULT;
if (!saltRatioSpec)
cmdlineP->saltRatio = SALT_RATIO_DEFAULT;
if (!cmdlineP->seedSpec)
cmdlineP->seed = pm_randseed();
if (argc-1 > 1)
pm_error("Too many arguments (%u). File spec is the only argument.",
argc-1);
if (argc-1 < 1)
cmdlineP->inputFileName = "-";
else
cmdlineP->inputFileName = argv[1];
free(option_def);
}
static void
addGaussianNoise(sample const maxval,
sample const origSample,
sample * const newSampleP,
float const sigma1,
float const sigma2,
struct pm_randSt * const randStP) {
/*----------------------------------------------------------------------------
Add Gaussian noise.
Based on Kasturi/Algorithms of the ACM
-----------------------------------------------------------------------------*/
double grnd1, grnd2; /* Gaussian random numbers. mean=0 sigma=1 */
double rawNewSample;
pm_gaussrand2(randStP, &grnd1, &grnd2);
rawNewSample =
origSample + (sqrt((double) origSample) * sigma1 * grnd1) + (sigma2 * grnd2);
*newSampleP = MAX(MIN((int)rawNewSample, maxval), 0);
}
static void
addImpulseNoise(sample const maxval,
sample const origSample,
sample * const newSampleP,
float const tolerance,
double const saltRatio,
struct pm_randSt * const randStP) {
/*----------------------------------------------------------------------------
Add impulse (salt and pepper) noise
-----------------------------------------------------------------------------*/
double const pepperRatio = 1.0 - saltRatio;
double const loTolerance = tolerance * pepperRatio;
double const hiTolerance = 1.0 - tolerance * saltRatio;
double const sap = pm_drand(randStP);
*newSampleP =
sap < loTolerance ? 0 :
sap >= hiTolerance? maxval :
origSample;
}
static void
addLaplacianNoise(sample const maxval,
double const infinity,
sample const origSample,
sample * const newSampleP,
float const lsigma,
struct pm_randSt * const randStP) {
/*----------------------------------------------------------------------------
Add Laplacian noise
From Pitas' book.
-----------------------------------------------------------------------------*/
double const u = pm_drand(randStP);
double rawNewSample;
if (u <= 0.5) {
if (u <= EPSILON)
rawNewSample = origSample - infinity;
else
rawNewSample = origSample + lsigma * log(2.0 * u);
} else {
double const u1 = 1.0 - u;
if (u1 <= 0.5 * EPSILON)
rawNewSample = origSample + infinity;
else
rawNewSample = origSample - lsigma * log(2.0 * u1);
}
*newSampleP = MIN(MAX((int)rawNewSample, 0), maxval);
}
static void
addMultiplicativeGaussianNoise(sample const maxval,
double const infinity,
sample const origSample,
sample * const newSampleP,
float const mgsigma,
struct pm_randSt * const randStP) {
/*----------------------------------------------------------------------------
Add multiplicative Gaussian noise
From Pitas' book.
-----------------------------------------------------------------------------*/
double rawNewSample;
rawNewSample = origSample + (origSample * mgsigma * pm_gaussrand(randStP));
*newSampleP = MIN(MAX((int)rawNewSample, 0), maxval);
}
static double
poissonPmf(double const lambda,
unsigned int const k) {
/*----------------------------------------------------------------------------
This is the probability mass function (PMF) of a discrete random variable
with lambda 'lambda'.
I.e. it gives the probability that a value sampled from a Poisson
distribution with lambda 'lambda' has the value 'k'.
That means it's the probability that in a Poisson stream of events in which
the mean number of events in an interval of a certains size is 'lambda' that
'k' events happen.
-----------------------------------------------------------------------------*/
double x;
unsigned int i;
/* We're computing the formula
(pow(lamda, k) * exp(-lambda)) / fact(k).
Note that k is ordinarily quite small.
*/
x = exp(-lambda);
for (i = 1; i <= k; ++i) {
x *= lambda;
x /= i;
}
return x;
}
static void
addPoissonNoise(struct pam * const pamP,
sample const origSample,
sample * const newSampleP,
float const lambdaOfMaxval,
struct pm_randSt * const randStP) {
/*----------------------------------------------------------------------------
Add Poisson noise
-----------------------------------------------------------------------------*/
samplen const origSamplen = pnm_normalized_sample(pamP, origSample);
float const origSampleIntensity = pm_ungamma709(origSamplen);
double const lambda = origSampleIntensity * lambdaOfMaxval;
double const u = pm_drand(randStP);
/* We now apply the inverse CDF (cumulative distribution function) of the
Poisson distribution to uniform random variable 'u' to get a Poisson
random variable. Unfortunately, we have no algebraic equation for the
inverse of the CDF, but the random variable is discrete, so we can just
iterate.
*/
unsigned int k;
double cumProb;
for (k = 0, cumProb = 0.0; k < lambdaOfMaxval; ++k) {
cumProb += poissonPmf(lambda, k);
if (cumProb >= u)
break;
}
{
samplen const newSamplen = pm_gamma709(k/lambdaOfMaxval);
*newSampleP = pnm_unnormalized_sample(pamP, newSamplen);
}
}
int
main(int argc, const char ** argv) {
FILE * ifP;
struct CmdlineInfo cmdline;
struct pam inpam;
struct pam outpam;
tuple * tuplerow;
const tuple * newtuplerow;
unsigned int row;
double infinity;
struct pm_randSt randSt;
pm_proginit(&argc, argv);
parseCommandLine(argc, argv, &cmdline);
pm_randinit(&randSt);
pm_srand2(&randSt, cmdline.seedSpec, cmdline.seed);
ifP = pm_openr(cmdline.inputFileName);
pnm_readpaminit(ifP, &inpam, PAM_STRUCT_SIZE(tuple_type));
outpam = inpam;
outpam.file = stdout;
pnm_writepaminit(&outpam);
tuplerow = pnm_allocpamrow(&inpam);
newtuplerow = pnm_allocpamrow(&inpam);
infinity = (double) inpam.maxval;
for (row = 0; row < inpam.height; ++row) {
unsigned int col;
pnm_readpamrow(&inpam, tuplerow);
for (col = 0; col < inpam.width; ++col) {
unsigned int plane;
for (plane = 0; plane < inpam.depth; ++plane) {
switch (cmdline.noiseType) {
case NOISETYPE_GAUSSIAN:
addGaussianNoise(inpam.maxval,
tuplerow[col][plane],
&newtuplerow[col][plane],
cmdline.sigma1, cmdline.sigma2,
&randSt);
break;
case NOISETYPE_IMPULSE:
addImpulseNoise(inpam.maxval,
tuplerow[col][plane],
&newtuplerow[col][plane],
cmdline.tolerance, cmdline.saltRatio,
&randSt);
break;
case NOISETYPE_LAPLACIAN:
addLaplacianNoise(inpam.maxval, infinity,
tuplerow[col][plane],
&newtuplerow[col][plane],
cmdline.lsigma,
&randSt);
break;
case NOISETYPE_MULTIPLICATIVE_GAUSSIAN:
addMultiplicativeGaussianNoise(inpam.maxval, infinity,
tuplerow[col][plane],
&newtuplerow[col][plane],
cmdline.mgsigma,
&randSt);
break;
case NOISETYPE_POISSON:
addPoissonNoise(&inpam,
tuplerow[col][plane],
&newtuplerow[col][plane],
cmdline.lambda,
&randSt);
break;
}
}
}
pnm_writepamrow(&outpam, newtuplerow);
}
pm_randterm(&randSt);
pnm_freepamrow(newtuplerow);
pnm_freepamrow(tuplerow);
return 0;
}
|