1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
|
/*
* approx.c: Approximation of range images with matching pursuit
*
* Written by: Ullrich Hafner
*
* This file is part of FIASCO («F»ractal «I»mage «A»nd «S»equence «CO»dec)
* Copyright (C) 1994-2000 Ullrich Hafner <hafner@bigfoot.de>
*/
/*
* $Date: 2000/06/14 20:50:51 $
* $Author: hafner $
* $Revision: 5.1 $
* $State: Exp $
*/
#include "config.h"
#include <math.h>
#include "types.h"
#include "macros.h"
#include "error.h"
#include "cwfa.h"
#include "ip.h"
#include "rpf.h"
#include "domain-pool.h"
#include "misc.h"
#include "list.h"
#include "approx.h"
#include "coeff.h"
#include "wfalib.h"
/*****************************************************************************
local variables
*****************************************************************************/
typedef struct mp
{
word_t exclude [MAXEDGES];
word_t indices [MAXEDGES + 1];
word_t into [MAXEDGES + 1];
real_t weight [MAXEDGES];
real_t matrix_bits;
real_t weights_bits;
real_t err;
real_t costs;
} mp_t;
/*****************************************************************************
prototypes
*****************************************************************************/
static void
orthogonalize (unsigned index, unsigned n, unsigned level, real_t min_norm,
const word_t *domain_blocks, const coding_t *c);
static void
matching_pursuit (mp_t *mp, bool_t full_search, real_t price,
unsigned max_edges, int y_state, const range_t *range,
const domain_pool_t *domain_pool, const coeff_t *coeff,
const wfa_t *wfa, const coding_t *c);
/*****************************************************************************
public code
*****************************************************************************/
real_t
approximate_range (real_t max_costs, real_t price, int max_edges,
int y_state, range_t *range, domain_pool_t *domain_pool,
coeff_t *coeff, const wfa_t *wfa, const coding_t *c)
/*
* Approximate image block 'range' by matching pursuit. This functions
* calls the matching pursuit algorithm several times (with different
* parameters) in order to find the best approximation. Refer to function
* 'matching_pursuit()' for more details about parameters.
*
* Return value:
* approximation costs
*/
{
mp_t mp;
bool_t success = NO;
/*
* First approximation attempt: default matching pursuit algorithm.
*/
mp.exclude [0] = NO_EDGE;
matching_pursuit (&mp, c->options.full_search, price, max_edges,
y_state, range, domain_pool, coeff, wfa, c);
/*
* Next approximation attempt: remove domain block mp->indices [0]
* from domain pool (vector with smallest costs) and run the
* matching pursuit again.
*/
if (c->options.second_domain_block)
{
mp_t tmp_mp = mp;
tmp_mp.exclude [0] = tmp_mp.indices [0];
tmp_mp.exclude [1] = NO_EDGE;
matching_pursuit (&tmp_mp, c->options.full_search, price, max_edges,
y_state, range, domain_pool, coeff, wfa, c);
if (tmp_mp.costs < mp.costs) /* success */
{
success = YES;
mp = tmp_mp;
}
}
/*
* Next approximation attempt: check whether some coefficients have
* been quantized to zero. Vectors causing the underflow are
* removed from the domain pool and then the matching pursuit
* algorithm is run again (until underflow doesn't occur anymore).
*/
if (c->options.check_for_underflow)
{
int iteration = -1;
mp_t tmp_mp = mp;
do
{
int i;
iteration++;
tmp_mp.exclude [iteration] = NO_EDGE;
for (i = 0; isdomain (tmp_mp.indices [i]); i++)
if (tmp_mp.weight [i] == 0)
{
tmp_mp.exclude [iteration] = tmp_mp.indices [i];
break;
}
if (isdomain (tmp_mp.exclude [iteration])) /* try again */
{
tmp_mp.exclude [iteration + 1] = NO_EDGE;
matching_pursuit (&tmp_mp, c->options.full_search, price,
max_edges, y_state, range, domain_pool,
coeff, wfa, c);
if (tmp_mp.costs < mp.costs) /* success */
{
success = YES;
mp = tmp_mp;
}
}
} while (isdomain (tmp_mp.exclude [iteration])
&& iteration < MAXEDGES - 1);
}
/*
* Next approximation attempt: check whether some coefficients have
* been quantized to +/- max-value. Vectors causing the overflow are
* removed from the domain pool and then the matching pursuit
* algorithm is run again (until overflow doesn't occur anymore).
*/
if (c->options.check_for_overflow)
{
int iteration = -1;
mp_t tmp_mp = mp;
do
{
int i;
iteration++;
tmp_mp.exclude [iteration] = NO_EDGE;
for (i = 0; isdomain (tmp_mp.indices [i]); i++)
{
rpf_t *rpf = tmp_mp.indices [i] ? coeff->rpf : coeff->dc_rpf;
if (tmp_mp.weight [i] == btor (rtob (200, rpf), rpf)
|| tmp_mp.weight [i] == btor (rtob (-200, rpf), rpf))
{
tmp_mp.exclude [iteration] = tmp_mp.indices [i];
break;
}
}
if (isdomain (tmp_mp.exclude [iteration])) /* try again */
{
tmp_mp.exclude [iteration + 1] = NO_EDGE;
matching_pursuit (&tmp_mp, c->options.full_search, price,
max_edges, y_state, range, domain_pool,
coeff, wfa, c);
if (tmp_mp.costs < mp.costs) /* success */
{
success = YES;
mp = tmp_mp;
}
}
} while (isdomain (tmp_mp.exclude [iteration])
&& iteration < MAXEDGES - 1);
}
/*
* Finally, check whether the best approximation has costs
* smaller than 'max_costs'.
*/
if (mp.costs < max_costs)
{
int edge;
bool_t overflow = NO;
bool_t underflow = NO;
int new_index, old_index;
new_index = 0;
for (old_index = 0; isdomain (mp.indices [old_index]); old_index++)
if (mp.weight [old_index] != 0)
{
rpf_t *rpf = mp.indices [old_index] ? coeff->rpf : coeff->dc_rpf;
if (mp.weight [old_index] == btor (rtob (200, rpf), rpf)
|| mp.weight [old_index] == btor (rtob (-200, rpf), rpf))
overflow = YES;
mp.indices [new_index] = mp.indices [old_index];
mp.into [new_index] = mp.into [old_index];
mp.weight [new_index] = mp.weight [old_index];
new_index++;
}
else
underflow = YES;
mp.indices [new_index] = NO_EDGE;
mp.into [new_index] = NO_EDGE;
/*
* Update of probability models
*/
{
word_t *domain_blocks = domain_pool->generate (range->level, y_state,
wfa,
domain_pool->model);
domain_pool->update (domain_blocks, mp.indices,
range->level, y_state, wfa, domain_pool->model);
coeff->update (mp.weight, mp.into, range->level, coeff);
Free (domain_blocks);
}
for (edge = 0; isedge (mp.indices [edge]); edge++)
{
range->into [edge] = mp.into [edge];
range->weight [edge] = mp.weight [edge];
}
range->into [edge] = NO_EDGE;
range->matrix_bits = mp.matrix_bits;
range->weights_bits = mp.weights_bits;
range->err = mp.err;
}
else
{
range->into [0] = NO_EDGE;
mp.costs = MAXCOSTS;
}
return mp.costs;
}
/*****************************************************************************
local variables
*****************************************************************************/
static real_t norm_ortho_vector [MAXSTATES];
/*
* Square-norm of the i-th vector of the orthogonal basis (OB)
* ||o_i||^2; i = 0, ... ,n
*/
static real_t ip_image_ortho_vector [MAXEDGES];
/*
* Inner product between the i-th vector of the OB and the given range:
* <b, o_i>; i = 0, ... ,n
*/
static real_t ip_domain_ortho_vector [MAXSTATES][MAXEDGES];
/*
* Inner product between the i-th vector of the OB and the image of domain j:
* <s_j, o_i>; j = 0, ... , wfa->states; i = 0, ... ,n,
*/
static real_t rem_denominator [MAXSTATES];
static real_t rem_numerator [MAXSTATES];
/*
* At step n of the orthogonalization the comparative value
* (numerator_i / denominator_i):= <b, o_n>^2 / ||o_n|| ,
* is computed for every domain i,
* where o_n := s_i - \sum(k = 0, ... , n-1) {(<s_i, o_k> / ||o_k||^2) o_k}
* To avoid computing the same values over and over again,
* the constant (remaining) parts of every domain are
* stored in 'rem_numerator' and 'rem_denominator' separately
*/
static bool_t used [MAXSTATES];
/*
* Shows whether a domain image was already used in a
* linear combination (YES) or not (NO)
*/
/*****************************************************************************
private code
*****************************************************************************/
static void
matching_pursuit (mp_t *mp, bool_t full_search, real_t price,
unsigned max_edges, int y_state, const range_t *range,
const domain_pool_t *domain_pool, const coeff_t *coeff,
const wfa_t *wfa, const coding_t *c)
/*
* Find an approximation of the current 'range' with a linear
* combination of vectors of the 'domain_pool'. The linear
* combination is generated step by step with the matching pursuit
* algorithm. If flag 'full_search' is set then compute complete set
* of linear combinations with n = {0, ..., 'max_edges'} vectors and
* return the best one. Otherwise abort the computation as soon as
* costs (LC (n + 1)) exceed costs ( LC (n)) and return the
* sub-optimal solution. 'price' is the langrange multiplier
* weighting rate and distortion. 'band' is the current color band
* and 'y_state' the corresponding state in the Y component at same
* pixel position. 'domain_pool' gives the set of available vectors,
* and 'coeff' the model for the linear factors. The number of
* elements in the linear combination is limited by 'max_edges'. In
* 'mp', vectors may be specified which should be excluded during the
* approximation.
*
* No return value.
*
* Side effects:
* vectors, factors, rate, distortion and costs are stored in 'mp'
*/
{
unsigned n; /* current vector of the OB */
int index; /* best fitting domain image */
unsigned domain; /* counter */
real_t norm; /* norm of range image */
real_t additional_bits; /* bits for mc, nd, and tree */
word_t *domain_blocks; /* current set of domain images */
const real_t min_norm = 2e-3; /* lower bound of norm */
unsigned best_n = 0;
unsigned size = size_of_level (range->level);
/*
* Initialize domain pool and inner product arrays
*/
domain_blocks = domain_pool->generate (range->level, y_state, wfa,
domain_pool->model);
for (domain = 0; domain_blocks [domain] >= 0; domain++)
{
used [domain] = NO;
rem_denominator [domain] /* norm of domain */
= get_ip_state_state (domain_blocks [domain], domain_blocks [domain],
range->level, c);
if (rem_denominator [domain] / size < min_norm)
used [domain] = YES; /* don't use domains with small norm */
else
rem_numerator [domain] /* inner product <s_domain, b> */
= get_ip_image_state (range->image, range->address,
range->level, domain_blocks [domain], c);
if (!used [domain] && fabs (rem_numerator [domain]) < min_norm)
used [domain] = YES;
}
/*
* Exclude all domain blocks given in array 'mp->exclude'
*/
for (n = 0; isdomain (mp->exclude [n]); n++)
used [mp->exclude [n]] = YES;
/*
* Compute the approximation costs if 'range' is approximated with
* no linear combination, i.e. the error is equal to the square
* of the image norm and the size of the automaton is determined by
* storing only zero elements in the current matrix row
*/
for (norm = 0, n = 0; n < size; n++)
norm += square (c->pixels [range->address * size + n]);
additional_bits = range->tree_bits + range->mv_tree_bits
+ range->mv_coord_bits + range->nd_tree_bits
+ range->nd_weights_bits;
mp->err = norm;
mp->weights_bits = 0;
mp->matrix_bits = domain_pool->bits (domain_blocks, NULL, range->level,
y_state, wfa, domain_pool->model);
mp->costs = (mp->matrix_bits + mp->weights_bits
+ additional_bits) * price + mp->err;
n = 0;
do
{
/*
* Current approximation is: b = d_0 o_0 + ... + d_(n-1) o_(n-1)
* with corresponding costs 'range->err + range->bits * p'.
* For all remaining state images s_i (used[s_i] == NO) set
* o_n : = s_i - \sum(k = 0, ... , n-1) {(<s_i, o_k> / ||o_k||^2) o_k}
* and try to beat current costs.
* Choose that vector for the next orthogonalization step,
* which has minimal costs: s_index.
* (No progress is indicated by index == -1)
*/
real_t min_matrix_bits = 0;
real_t min_weights_bits = 0;
real_t min_error = 0;
real_t min_weight [MAXEDGES];
real_t min_costs = full_search ? MAXCOSTS : mp->costs;
for (index = -1, domain = 0; domain_blocks [domain] >= 0; domain++)
if (!used [domain])
{
real_t matrix_bits, weights_bits;
/*
* To speed up the search through the domain images,
* the costs of using domain image 'domain' as next vector
* can be approximated in a first step:
* improvement of image quality
* <= square (rem_numerator[domain]) / rem_denominator[domain]
*/
{
word_t vectors [MAXEDGES + 1];
word_t states [MAXEDGES + 1];
real_t weights [MAXEDGES + 1];
unsigned i, k;
for (i = 0, k = 0; k < n; k++)
if (mp->weight [k] != 0)
{
vectors [i] = mp->indices [k];
states [i] = domain_blocks [vectors [i]];
weights [i] = mp->weight [k];
i++;
}
vectors [i] = domain;
states [i] = domain_blocks [domain];
weights [i] = 0.5;
vectors [i + 1] = -1;
states [i + 1] = -1;
weights_bits = coeff->bits (weights, states, range->level,
coeff);
matrix_bits = domain_pool->bits (domain_blocks, vectors,
range->level, y_state,
wfa, domain_pool->model);
}
if (((matrix_bits + weights_bits + additional_bits) * price +
mp->err -
square (rem_numerator [domain]) / rem_denominator [domain])
< min_costs)
{
/*
* 1.) Compute the weights (linear factors) c_i of the
* linear combination
* b = c_0 v_0 + ... + c_(n-1) v_(n-1) + c_n v_'domain'
* Use backward substitution to obtain c_i from the linear
* factors of the lin. comb. b = d_0 o_0 + ... + d_n o_n
* of the corresponding orthogonal vectors {o_0, ..., o_n}.
* Vector o_n of the orthogonal basis is obtained by using
* vector 'v_domain' in step n of the Gram Schmidt
* orthogonalization (see above for definition of o_n).
* Recursive formula for the coefficients c_i:
* c_n := <b, o_n> / ||o_n||^2
* for i = n - 1, ... , 0:
* c_i := <b, o_i> / ||o_i||^2 +
* \sum (k = i + 1, ... , n){ c_k <v_k, o_i>
* / ||o_i||^2 }
* 2.) Because linear factors are stored with reduced precision
* factor c_i is rounded with the given precision in step i
* of the recursive formula.
*/
unsigned k; /* counter */
int l; /* counter */
real_t m_bits; /* number of matrix bits to store */
real_t w_bits; /* number of weights bits to store */
real_t r [MAXEDGES]; /* rounded linear factors */
real_t f [MAXEDGES]; /* linear factors */
int v [MAXEDGES]; /* mapping of domains to vectors */
real_t costs; /* current approximation costs */
real_t m_err; /* current approximation error */
f [n] = rem_numerator [domain] / rem_denominator [domain];
v [n] = domain; /* corresponding mapping */
for (k = 0; k < n; k++)
{
f [k] = ip_image_ortho_vector [k] / norm_ortho_vector [k];
v [k] = mp->indices [k];
}
for (l = n; l >= 0; l--)
{
rpf_t *rpf = domain_blocks [v [l]]
? coeff->rpf : coeff->dc_rpf;
r [l] = f [l] = btor (rtob (f [l], rpf), rpf);
for (k = 0; k < (unsigned) l; k++)
f [k] -= f [l] * ip_domain_ortho_vector [v [l]][k]
/ norm_ortho_vector [k] ;
}
/*
* Compute the number of output bits of the linear combination
* and store the weights with reduced precision. The
* resulting linear combination is
* b = r_0 v_0 + ... + r_(n-1) v_(n-1) + r_n v_'domain'
*/
{
word_t vectors [MAXEDGES + 1];
word_t states [MAXEDGES + 1];
real_t weights [MAXEDGES + 1];
int i;
for (i = 0, k = 0; k <= n; k++)
if (f [k] != 0)
{
vectors [i] = v [k];
states [i] = domain_blocks [v [k]];
weights [i] = f [k];
i++;
}
vectors [i] = -1;
states [i] = -1;
w_bits = coeff->bits (weights, states, range->level, coeff);
m_bits = domain_pool->bits (domain_blocks, vectors,
range->level, y_state,
wfa, domain_pool->model);
}
/*
* To compute the approximation error, the corresponding
* linear factors of the linear combination
* b = r_0 o_0 + ... + r_(n-1) o_(n-1) + r_n o_'domain'
* with orthogonal vectors must be computed with following
* formula:
* r_i := r_i +
* \sum (k = i + 1, ... , n) { r_k <v_k, o_i>
* / ||o_i||^2 }
*/
for (l = 0; (unsigned) l <= n; l++)
{
/*
* compute <v_n, o_n>
*/
real_t a;
a = get_ip_state_state (domain_blocks [v [l]],
domain_blocks [domain],
range->level, c);
for (k = 0; k < n; k++)
a -= ip_domain_ortho_vector [v [l]][k]
/ norm_ortho_vector [k]
* ip_domain_ortho_vector [domain][k];
ip_domain_ortho_vector [v [l]][n] = a;
}
norm_ortho_vector [n] = rem_denominator [domain];
ip_image_ortho_vector [n] = rem_numerator [domain];
for (k = 0; k <= n; k++)
for (l = k + 1; (unsigned) l <= n; l++)
r [k] += ip_domain_ortho_vector [v [l]][k] * r [l]
/ norm_ortho_vector [k];
/*
* Compute approximation error:
* error := ||b||^2 +
* \sum (k = 0, ... , n){r_k^2 ||o_k||^2 - 2 r_k <b, o_k>}
*/
m_err = norm;
for (k = 0; k <= n; k++)
m_err += square (r [k]) * norm_ortho_vector [k]
- 2 * r [k] * ip_image_ortho_vector [k];
if (m_err < 0) /* TODO: return MAXCOSTS */
warning ("Negative image norm: %f"
" (current domain: %d, level = %d)",
(double) m_err, domain, range->level);
costs = (m_bits + w_bits + additional_bits) * price + m_err;
if (costs < min_costs) /* found a better approximation */
{
index = domain;
min_costs = costs;
min_matrix_bits = m_bits;
min_weights_bits = w_bits;
min_error = m_err;
for (k = 0; k <= n; k++)
min_weight [k] = f [k];
}
}
}
if (index >= 0) /* found a better approximation */
{
if (min_costs < mp->costs)
{
unsigned k;
mp->costs = min_costs;
mp->err = min_error;
mp->matrix_bits = min_matrix_bits;
mp->weights_bits = min_weights_bits;
for (k = 0; k <= n; k++)
mp->weight [k] = min_weight [k];
best_n = n + 1;
}
mp->indices [n] = index;
mp->into [n] = domain_blocks [index];
used [index] = YES;
/*
* Gram-Schmidt orthogonalization step n
*/
orthogonalize (index, n, range->level, min_norm, domain_blocks, c);
n++;
}
}
while (n < max_edges && index >= 0);
mp->indices [best_n] = NO_EDGE;
mp->costs = (mp->matrix_bits + mp->weights_bits + additional_bits) * price
+ mp->err;
Free (domain_blocks);
}
static void
orthogonalize (unsigned index, unsigned n, unsigned level, real_t min_norm,
const word_t *domain_blocks, const coding_t *c)
/*
* Step 'n' of the Gram-Schmidt orthogonalization procedure:
* vector 'index' is orthogonalized with respect to the set
* {u_[0], ... , u_['n' - 1]}. The size of the image blocks is given by
* 'level'. If the denominator gets smaller than 'min_norm' then
* the corresponding domain is excluded from the list of available
* domain blocks.
*
* No return value.
*
* Side effects:
* The remainder values (numerator and denominator) of
* all 'domain_blocks' are updated.
*/
{
unsigned domain;
ip_image_ortho_vector [n] = rem_numerator [index];
norm_ortho_vector [n] = rem_denominator [index];
/*
* Compute inner products between all domain images and
* vector n of the orthogonal basis:
* for (i = 0, ... , wfa->states)
* <s_i, o_n> := <s_i, v_n> -
* \sum (k = 0, ... , n - 1){ <v_n, o_k> <s_i, o_k> / ||o_k||^2}
* Moreover the denominator and numerator parts of the comparative
* value are updated.
*/
for (domain = 0; domain_blocks [domain] >= 0; domain++)
if (!used [domain])
{
unsigned k;
real_t tmp = get_ip_state_state (domain_blocks [index],
domain_blocks [domain], level, c);
for (k = 0; k < n; k++)
tmp -= ip_domain_ortho_vector [domain][k] / norm_ortho_vector [k]
* ip_domain_ortho_vector [index][k];
ip_domain_ortho_vector [domain][n] = tmp;
rem_denominator [domain] -= square (tmp) / norm_ortho_vector [n];
rem_numerator [domain] -= ip_image_ortho_vector [n]
/ norm_ortho_vector [n]
* ip_domain_ortho_vector [domain][n] ;
/*
* Exclude vectors with small denominator
*/
if (!used [domain])
if (rem_denominator [domain] / size_of_level (level) < min_norm)
used [domain] = YES;
}
}
|