1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
|
/* pgmtexture.c - calculate textural features of a PGM image
**
*/
#include <assert.h>
#include <math.h>
#include "pm_c_util.h"
#include "mallocvar.h"
#include "pgm.h"
#define RADIX 2.0
#define EPSILON 0.000000001
#define BL "Angle "
#define F1 "Angular Second Moment "
#define F2 "Contrast "
#define F3 "Correlation "
#define F4 "Variance "
#define F5 "Inverse Diff Moment "
#define F6 "Sum Average "
#define F7 "Sum Variance "
#define F8 "Sum Entropy "
#define F9 "Entropy "
#define F10 "Difference Variance "
#define F11 "Difference Entropy "
#define F12 "Meas of Correlation-1 "
#define F13 "Meas of Correlation-2 "
#define F14 "Max Correlation Coeff "
#define SWAP(a,b) do {float const y=(a);(a)=(b);(b)=y;} while (0)
static float
sign(float const x,
float const y) {
return y < 0 ? -fabs(x) : fabs(x);
}
static bool const sortit = FALSE;
static float *
vector(unsigned int const nl,
unsigned int const nh) {
float * v;
assert(nh >= nl);
MALLOCARRAY(v, (unsigned) (nh - nl + 1));
if (v == NULL)
pm_error("Unable to allocate memory for a vector.");
return v - nl;
}
static float **
matrix (unsigned int const nrl,
unsigned int const nrh,
unsigned int const ncl,
unsigned int const nch) {
/*----------------------------------------------------------------------------
Allocate a float matrix with range [nrl..nrh][ncl..nch]
We do some seedy C here, subtracting an arbitrary integer from a pointer and
calling the result a pointer. It normally works because the only way we'll
use that pointer is by adding that same integer or something greater to it.
The point of this is not to allocate memory for matrix elements that will
never be referenced (row < nrl or column < ncl).
-----------------------------------------------------------------------------*/
unsigned int i;
float ** m;
assert(nrh >= nrl);
/* allocate pointers to rows */
MALLOCARRAY(m, (unsigned) (nrh - nrl + 1));
if (m == NULL)
pm_error("Unable to allocate memory for a matrix.");
m -= ncl;
assert (nch >= ncl);
/* allocate rows and set pointers to them */
for (i = nrl; i <= nrh; ++i) {
MALLOCARRAY(m[i], (unsigned) (nch - ncl + 1));
if (m[i] == NULL)
pm_error("Unable to allocate memory for a matrix row.");
m[i] -= ncl;
}
/* return pointer to array of pointers to rows */
return m;
}
static void
results (const char * const name,
const float * const a) {
unsigned int i;
fprintf(stdout, "%s", name);
for (i = 0; i < 4; ++i)
fprintf(stdout, "% 1.3e ", a[i]);
fprintf(stdout, "% 1.3e\n", (a[0] + a[1] + a[2] + a[3]) / 4);
}
static void
simplesrt (unsigned int const n,
float * const arr) {
unsigned int j;
float a;
for (j = 2; j <= n; ++j) {
unsigned int i;
a = arr[j];
i = j;
while (i > 1 && arr[i-1] > a) {
arr[i] = arr[i-1];
--i;
}
arr[i] = a;
}
}
static void
mkbalanced (float ** const a,
unsigned int const n) {
float const sqrdx = SQR(RADIX);
unsigned int last, i;
float s, r, g, f, c;
last = 0;
while (last == 0) {
last = 1;
for (i = 1; i <= n; ++i) {
unsigned int j;
r = c = 0.0;
for (j = 1; j <= n; ++j) {
if (j != i) {
c += fabs (a[j][i]);
r += fabs (a[i][j]);
}
}
if (c && r) {
g = r / RADIX;
f = 1.0;
s = c + r;
while (c < g) {
f *= RADIX;
c *= sqrdx;
}
g = r * RADIX;
while (c > g) {
f /= RADIX;
c /= sqrdx;
}
if ((c + r) / f < 0.95 * s) {
unsigned int j;
last = 0;
g = 1.0 / f;
for (j = 1; j <= n; ++j)
a[i][j] *= g;
for (j = 1; j <= n; ++j)
a[j][i] *= f;
}
}
}
}
}
static void
reduction (float ** const a,
unsigned int const n) {
unsigned int m;
for (m = 2; m < n; ++m) {
unsigned int j;
unsigned int i;
float x;
x = 0.0;
i = m;
for (j = m; j <= n; ++j) {
if (fabs(a[j][m - 1]) > fabs(x)) {
x = a[j][m - 1];
i = j;
}
}
if (i != m) {
for (j = m - 1; j <= n; ++j)
SWAP(a[i][j], a[m][j]);
for (j = 1; j <= n; j++)
SWAP(a[j][i], a[j][m]);
a[j][i] = a[j][i];
}
if (x != 0.0) {
unsigned int i;
for (i = m + 1; i <= n; ++i) {
float y;
y = a[i][m - 1];
if (y) {
y /= x;
a[i][m - 1] = y;
for (j = m; j <= n; ++j)
a[i][j] -= y * a[m][j];
for (j = 1; j <= n; ++j)
a[j][m] += y * a[j][i];
}
}
}
}
}
static float
norm(float ** const a,
unsigned int const n) {
float anorm;
unsigned int i;
for (i = 2, anorm = fabs(a[1][1]); i <= n; ++i) {
unsigned int j;
for (j = (i - 1); j <= n; ++j)
anorm += fabs(a[i][j]);
}
return anorm;
}
static void
hessenberg(float ** const a,
unsigned int const n,
float * const wr,
float * const wi) {
float const anorm = norm(a, n);
int nn;
float t;
assert(n >= 1);
for (nn = n, t = 0.0; nn >= 1; ) {
unsigned int its;
int l;
its = 0;
do {
float x;
for (l = nn; l >= 2; --l) {
float s;
s = fabs (a[l - 1][l - 1]) + fabs (a[l][l]);
if (s == 0.0)
s = anorm;
if ((float) (fabs (a[l][l - 1]) + s) == s)
break;
}
assert(nn >= 1);
x = a[nn][nn];
if (l == nn) {
wr[nn] = x + t;
wi[nn--] = 0.0;
} else {
float w, y;
y = a[nn - 1][nn - 1]; /* initial value */
w = a[nn][nn - 1] * a[nn - 1][nn]; /* initial value */
if (l == (nn - 1)) {
float const p = 0.5 * (y - x);
float const q = p * p + w;
float const z = sqrt(fabs(q));
x += t;
if (q >= 0.0) {
float const z2 = p + sign(z, p);
wr[nn - 1] = wr[nn] = x + z2;
if (z2)
wr[nn] = x - w / z2;
wi[nn - 1] = wi[nn] = 0.0;
} else {
wr[nn - 1] = wr[nn] = x + p;
wi[nn - 1] = -(wi[nn] = z);
}
nn -= 2;
} else {
int i, k, m;
float p, q, r;
if (its == 30)
pm_error("Too many iterations to required "
"to find %s. Giving up", F14);
if (its == 10 || its == 20) {
int i;
float s;
t += x;
for (i = 1; i <= nn; ++i)
a[i][i] -= x;
s = fabs(a[nn][nn - 1]) + fabs(a[nn - 1][nn - 2]);
y = x = 0.75 * s;
w = -0.4375 * s * s;
}
++its;
for (m = (nn - 2); m >= l; --m) {
float const z = a[m][m];
float s, u, v;
r = x - z;
s = y - z;
p = (r * s - w) / a[m + 1][m] + a[m][m + 1];
q = a[m + 1][m + 1] - z - r - s;
r = a[m + 2][m + 1];
s = fabs(p) + fabs(q) + fabs(r);
p /= s;
q /= s;
r /= s;
if (m == l)
break;
u = fabs(a[m][m - 1]) * (fabs(q) + fabs(r));
v = fabs(p) * (fabs(a[m - 1][m - 1]) + fabs(z) +
fabs(a[m + 1][m + 1]));
if (u + v == v)
break;
}
for (i = m + 2; i <= nn; ++i) {
a[i][i - 2] = 0.0;
if (i != (m + 2))
a[i][i - 3] = 0.0;
}
for (k = m; k <= nn - 1; ++k) {
float s;
if (k != m) {
p = a[k][k - 1];
q = a[k + 1][k - 1];
r = 0.0;
if (k != (nn - 1))
r = a[k + 2][k - 1];
if ((x = fabs(p) + fabs(q) + fabs(r))) {
p /= x;
q /= x;
r /= x;
}
}
s = sign(sqrt(SQR(p) + SQR(q) + SQR(r)), p);
if (s) {
int const mmin = nn < k + 3 ? nn : k + 3;
float z;
int j;
if (k == m) {
if (l != m)
a[k][k - 1] = -a[k][k - 1];
} else
a[k][k - 1] = -s * x;
p += s;
x = p / s;
y = q / s;
z = r / s;
q /= p;
r /= p;
for (j = k; j <= nn; ++j) {
p = a[k][j] + q * a[k + 1][j];
if (k != (nn - 1)) {
p += r * a[k + 2][j];
a[k + 2][j] -= p * z;
}
a[k + 1][j] -= p * y;
a[k][j] -= p * x;
}
for (i = l; i <= mmin; ++i) {
p = x * a[i][k] + y * a[i][k + 1];
if (k != (nn - 1)) {
p += z * a[i][k + 2];
a[i][k + 2] -= p * r;
}
a[i][k + 1] -= p * q;
a[i][k] -= p;
}
}
}
}
}
} while (l < nn - 1);
}
}
static float
f1_a2m(float ** const p,
unsigned int const ng) {
/*----------------------------------------------------------------------------
Angular Second Moment
The angular second-moment feature (ASM) f1 is a measure of homogeneity of
the image. In a homogeneous image, there are very few dominant gray-tone
transitions. Hence the P matrix for such an image will have fewer entries of
large magnitude.
-----------------------------------------------------------------------------*/
unsigned int i;
float sum;
for (i = 0, sum = 0.0; i < ng; ++i) {
unsigned int j;
for (j = 0; j < ng; ++j)
sum += p[i][j] * p[i][j];
}
return sum;
}
static float
f2_contrast(float ** const p,
unsigned int const ng) {
/*----------------------------------------------------------------------------
Contrast
The contrast feature is a difference moment of the P matrix and is a
measure of the contrast or the amount of local variations present in an
image.
-----------------------------------------------------------------------------*/
unsigned int n;
float bigsum;
for (n = 0, bigsum = 0.0; n < ng; ++n) {
unsigned int i;
float sum;
for (i = 0, sum = 0.0; i < ng; ++i) {
unsigned int j;
for (j = 0; j < ng; ++j) {
if ((i - j) == n || (j - i) == n)
sum += p[i][j];
}
}
bigsum += SQR(n) * sum;
}
return bigsum;
}
static float
f3_corr(float ** const p,
unsigned int const ng) {
/*----------------------------------------------------------------------------
Correlation
This correlation feature is a measure of gray-tone linear-dependencies in
the image.
-----------------------------------------------------------------------------*/
unsigned int i;
float sumSqrx;
float tmp;
float * px;
float meanx, meany, stddevx, stddevy;
sumSqrx = 0.0;
meanx = 0.0; meany = 0.0;
px = vector(0, ng);
for (i = 0; i < ng; ++i)
px[i] = 0;
/* px[i] is the (i-1)th entry in the marginal probability matrix obtained
by summing the rows of p[i][j]
*/
for (i = 0; i < ng; ++i) {
unsigned int j;
for (j = 0; j < ng; ++j)
px[i] += p[i][j];
}
/* Now calculate the means and standard deviations of px and py */
for (i = 0; i < ng; ++i) {
meanx += px[i] * i;
sumSqrx += px[i] * SQR(i);
}
meany = meanx;
stddevx = sqrt(sumSqrx - (SQR(meanx)));
stddevy = stddevx;
/* Finally, the correlation ... */
for (i = 0, tmp = 0; i < ng; ++i) {
unsigned int j;
for (j = 0; j < ng; ++j)
tmp += i * j * p[i][j];
}
return (tmp - meanx * meany) / (stddevx * stddevy);
}
static float
f4_var (float ** const p,
unsigned int const ng) {
/*----------------------------------------------------------------------------
Sum of Squares: Variance
-----------------------------------------------------------------------------*/
unsigned int i;
float mean, var;
for (i = 0, mean = 0.0; i < ng; ++i) {
unsigned int j;
for (j = 0; j < ng; ++j)
mean += i * p[i][j];
}
for (i = 0, var = 0.0; i < ng; ++i) {
unsigned int j;
for (j = 0; j < ng; ++j)
var += (i + 1 - mean) * (i + 1 - mean) * p[i][j];
}
return var;
}
static float
f5_idm (float ** const p,
unsigned int const ng) {
/*----------------------------------------------------------------------------
Inverse Difference Moment
-----------------------------------------------------------------------------*/
unsigned int i;
float idm;
for (i = 0, idm = 0.0; i < ng; ++i) {
unsigned int j;
for (j = 0; j < ng; ++j)
idm += p[i][j] / (1 + (i - j) * (i - j));
}
return idm;
}
static float
f6_savg (float ** const p,
unsigned int const ng) {
/*----------------------------------------------------------------------------
Sum Average
-----------------------------------------------------------------------------*/
float pxpy[2 * (PGM_MAXMAXVAL+1) + 1];
unsigned int i;
float savg;
assert(2*ng < ARRAY_SIZE(pxpy));
for (i = 0; i <= 2 * ng; ++i)
pxpy[i] = 0.0;
for (i = 0; i < ng; ++i) {
unsigned int j;
for (j = 0; j < ng; ++j)
pxpy[i + j + 2] += p[i][j];
}
for (i = 2, savg = 0.0; i <= 2 * ng; ++i)
savg += i * pxpy[i];
return savg;
}
static float
f7_svar (float ** const p,
unsigned int const ng,
float const s) {
/*----------------------------------------------------------------------------
Sum Variance
-----------------------------------------------------------------------------*/
float pxpy[2 * (PGM_MAXMAXVAL+1) + 1];
unsigned int i;
float var;
assert(2*ng < ARRAY_SIZE(pxpy));
for (i = 0; i <= 2 * ng; ++i)
pxpy[i] = 0;
for (i = 0; i < ng; ++i) {
unsigned int j;
for (j = 0; j < ng; ++j)
pxpy[i + j + 2] += p[i][j];
}
for (i = 2, var = 0.0; i <= 2 * ng; ++i)
var += (i - s) * (i - s) * pxpy[i];
return var;
}
static float
f8_sentropy (float ** const p,
unsigned int const ng) {
/*----------------------------------------------------------------------------
Sum Entropy
-----------------------------------------------------------------------------*/
float pxpy[2 * (PGM_MAXMAXVAL+1) + 1];
unsigned int i;
float sentropy;
assert(2*ng < ARRAY_SIZE(pxpy));
for (i = 0; i <= 2 * ng; ++i)
pxpy[i] = 0;
for (i = 0; i < ng; ++i) {
unsigned int j;
for (j = 0; j < ng; ++j)
pxpy[i + j + 2] += p[i][j];
}
for (i = 2, sentropy = 0.0; i <= 2 * ng; ++i)
sentropy -= pxpy[i] * log10(pxpy[i] + EPSILON);
return sentropy;
}
static float
f9_entropy (float ** const p,
unsigned int const ng) {
/*----------------------------------------------------------------------------
Entropy
-----------------------------------------------------------------------------*/
unsigned int i;
float entropy;
for (i = 0, entropy = 0.0; i < ng; ++i) {
unsigned int j;
for (j = 0; j < ng; ++j)
entropy += p[i][j] * log10(p[i][j] + EPSILON);
}
return -entropy;
}
static float
f10_dvar(float ** const p,
unsigned int const ng) {
/*----------------------------------------------------------------------------
Difference Variance
-----------------------------------------------------------------------------*/
double pxpy[PGM_MAXMAXVAL + 1];
unsigned int i;
double sqrNg; /* Square of 'ng' */
double sum;
double sumSqr;
double var;
assert(ng <= ARRAY_SIZE(pxpy));
for (i = 0; i < ng; ++i)
pxpy[i] = 0;
for (i = 0; i < ng; ++i) {
unsigned int j;
for (j = 0; j < ng; ++j)
pxpy[abs((int)i - (int)j)] += p[i][j];
}
/* Now calculate the variance of Pxpy (Px-y) */
for (i = 0, sum = 0.0, sumSqr = 0.0; i < ng; ++i) {
sum += pxpy[i];
sumSqr += SQR(pxpy[i]);
}
sqrNg = SQR(ng);
var = (sqrNg * sumSqr - SQR(sum)) / SQR(sqrNg);
return var;
}
static float
f11_dentropy (float ** const p,
unsigned int const ng) {
/*----------------------------------------------------------------------------
Difference Entropy
-----------------------------------------------------------------------------*/
float pxpy[2 * (PGM_MAXMAXVAL+1) + 1];
unsigned int i;
float sum;
assert(2*ng < ARRAY_SIZE(pxpy));
for (i = 0; i <= 2 * ng; ++i)
pxpy[i] = 0;
for (i = 0; i < ng; ++i) {
unsigned int j;
for (j = 0; j < ng; ++j)
pxpy[abs((int)i - (int)j)] += p[i][j];
}
for (i = 0, sum = 0.0; i < ng; ++i)
sum += pxpy[i] * log10(pxpy[i] + EPSILON);
return -sum;
}
static float
f12_icorr (float ** const p,
unsigned int const ng) {
/*----------------------------------------------------------------------------
Information Measures of Correlation
-----------------------------------------------------------------------------*/
unsigned int i;
float * px;
float * py;
float hx, hy, hxy, hxy1, hxy2;
px = vector(0, ng);
py = vector(0, ng);
/*
* px[i] is the (i-1)th entry in the marginal probability matrix obtained
* by summing the rows of p[i][j]
*/
for (i = 0; i < ng; ++i) {
unsigned int j;
for (j = 0; j < ng; ++j) {
px[i] += p[i][j];
py[j] += p[i][j];
}
}
hx = 0.0; hy = 0.0; hxy = 0.0; hxy1 = 0.0; hxy2 = 0.0;
for (i = 0; i < ng; ++i) {
unsigned int j;
for (j = 0; j < ng; ++j) {
hxy1 -= p[i][j] * log10(px[i] * py[j] + EPSILON);
hxy2 -= px[i] * py[j] * log10(px[i] * py[j] + EPSILON);
hxy -= p[i][j] * log10 (p[i][j] + EPSILON);
}
}
/* Calculate entropies of px and py - is this right? */
for (i = 0; i < ng; ++i) {
hx -= px[i] * log10(px[i] + EPSILON);
hy -= py[i] * log10(py[i] + EPSILON);
}
return (hxy - hxy1) / (hx > hy ? hx : hy);
}
static float
f13_icorr (float ** const p,
unsigned int const ng) {
/*----------------------------------------------------------------------------
Information Measures of Correlation
-----------------------------------------------------------------------------*/
unsigned int i;
float * px;
float * py;
float hx, hy, hxy, hxy1, hxy2;
px = vector(0, ng);
py = vector(0, ng);
/*
* px[i] is the (i-1)th entry in the marginal probability matrix obtained
* by summing the rows of p[i][j]
*/
for (i = 0; i < ng; ++i) {
unsigned int j;
for (j = 0; j < ng; ++j) {
px[i] += p[i][j];
py[j] += p[i][j];
}
}
hx = 0.0; hy = 0.0; hxy = 0.0; hxy1 = 0.0; hxy2 = 0.0;
for (i = 0; i < ng; ++i) {
unsigned int j;
for (j = 0; j < ng; ++j) {
hxy1 -= p[i][j] * log10(px[i] * py[j] + EPSILON);
hxy2 -= px[i] * py[j] * log10(px[i] * py[j] + EPSILON);
hxy -= p[i][j] * log10(p[i][j] + EPSILON);
}
}
/* Calculate entropies of px and py */
for (i = 0; i < ng; ++i) {
hx -= px[i] * log10 (px[i] + EPSILON);
hy -= py[i] * log10 (py[i] + EPSILON);
}
return sqrt(fabs(1 - exp (-2.0 * (hxy2 - hxy))));
}
static float
f14_maxcorr (float ** const p,
unsigned int const ng) {
/*----------------------------------------------------------------------------
The Maximal Correlation Coefficient
-----------------------------------------------------------------------------*/
unsigned int i;
float *px, *py;
float ** q;
float * x;
float * iy;
float tmp;
px = vector(0, ng);
py = vector(0, ng);
q = matrix(1, ng + 1, 1, ng + 1);
x = vector(1, ng);
iy = vector(1, ng);
/*
* px[i] is the (i-1)th entry in the marginal probability matrix obtained
* by summing the rows of p[i][j]
*/
for (i = 0; i < ng; ++i) {
unsigned int j;
for (j = 0; j < ng; ++j) {
px[i] += p[i][j];
py[j] += p[i][j];
}
}
/* Compute the Q matrix */
for (i = 0; i < ng; ++i) {
unsigned int j;
for (j = 0; j < ng; ++j) {
unsigned int k;
q[i + 1][j + 1] = 0;
for (k = 0; k < ng; ++k)
q[i + 1][j + 1] += p[i][k] * p[j][k] / px[i] / py[k];
}
}
/* Balance the matrix */
mkbalanced(q, ng);
/* Reduction to Hessenberg Form */
reduction(q, ng);
/* Finding eigenvalue for nonsymetric matrix using QR algorithm */
hessenberg(q, ng, x, iy);
if (sortit)
simplesrt(ng, x);
/* Return the sqrt of the second largest eigenvalue of q */
for (i = 2, tmp = x[1]; i <= ng; ++i)
tmp = (tmp > x[i]) ? tmp : x[i];
return sqrt(x[ng - 1]);
}
int
main (int argc, const char ** argv) {
FILE * ifP;
gray ** grays;
unsigned int tone[PGM_MAXMAXVAL+1];
unsigned int r0, r45, r90;
unsigned int d;
unsigned int x, y;
unsigned int row;
int rows, cols;
int argn;
unsigned int itone;
unsigned int toneCt;
float ** p_matrix0, ** p_matrix45, ** p_matrix90, ** p_matrix135;
float a2m[4], contrast[4], corr[4], var[4], idm[4], savg[4];
float sentropy[4], svar[4], entropy[4], dvar[4], dentropy[4];
float icorr[4], maxcorr[4];
gray maxval;
unsigned int i;
const char * const usage = "[-d <d>] [pgmfile]";
pm_proginit(&argc, argv);
argn = 1;
/* Check for flags. */
if ( argn < argc && argv[argn][0] == '-' )
{
if ( argv[argn][1] == 'd' )
{
++argn;
if ( argn == argc || sscanf( argv[argn], "%u", &d ) != 1 )
pm_usage( usage );
}
else
pm_usage( usage );
++argn;
}
if ( argn < argc )
{
ifP = pm_openr( argv[argn] );
++argn;
}
else
ifP = stdin;
if ( argn != argc )
pm_usage( usage );
d = 1;
grays = pgm_readpgm(ifP, &cols, &rows, &maxval);
pm_close (ifP);
/* Determine the number of different gray scales (not maxval) */
for (i = 0; i <= PGM_MAXMAXVAL; ++i)
tone[i] = -1;
for (row = 0; row < rows; ++row) {
unsigned int col;
for (col = 0; col < cols; ++col)
tone[grays[row][col]] = grays[row][col];
}
for (i = 0, toneCt = 0; i <= PGM_MAXMAXVAL; ++i) {
if (tone[i] != -1)
++toneCt;
}
pm_message("(Image has %u gray levels.)", toneCt);
/* Collapse array, taking out all zero values */
for (row = 0, itone = 0; row <= PGM_MAXMAXVAL; ++row)
if (tone[row] != -1)
tone[itone++] = tone[row];
/* Now array contains only the gray levels present (in ascending order) */
/* Allocate memory for gray-tone spatial dependence matrix */
p_matrix0 = matrix (0, toneCt, 0, toneCt);
p_matrix45 = matrix (0, toneCt, 0, toneCt);
p_matrix90 = matrix (0, toneCt, 0, toneCt);
p_matrix135 = matrix (0, toneCt, 0, toneCt);
for (row = 0; row < toneCt; ++row) {
unsigned int col;
for (col = 0; col < toneCt; ++col) {
p_matrix0 [row][col] = p_matrix45 [row][col] = 0;
p_matrix90[row][col] = p_matrix135[row][col] = 0;
}
}
if (d > cols)
pm_error("Image is narrower (%u columns) "
"than specified distance (%u)", cols, d);
/* Find gray-tone spatial dependence matrix */
pm_message("Computing spatial dependence matrix...");
for (row = 0; row < rows; ++row) {
unsigned int col;
for (col = 0; col < cols; ++col) {
unsigned int angle;
for (angle = 0, x = 0; angle <= 135; angle += 45) {
while (tone[x] != grays[row][col])
++x;
if (angle == 0 && col + d < cols) {
y = 0;
while (tone[y] != grays[row][col + d])
++y;
++p_matrix0[x][y];
++p_matrix0[y][x];
}
if (angle == 90 && row + d < rows) {
y = 0;
while (tone[y] != grays[row + d][col])
++y;
++p_matrix90[x][y];
++p_matrix90[y][x];
}
if (angle == 45 && row + d < rows && col >= d) {
y = 0;
while (tone[y] != grays[row + d][col - d])
++y;
++p_matrix45[x][y];
++p_matrix45[y][x];
}
if (angle == 135 && row + d < rows && col + d < cols) {
y = 0;
while (tone[y] != grays[row + d][col + d])
++y;
++p_matrix135[x][y];
++p_matrix135[y][x];
}
}
}
}
/* Gray-tone spatial dependence matrices are complete */
/* Find normalizing constants */
r0 = 2 * rows * (cols - d);
r45 = 2 * (rows - d) * (cols - d);
r90 = 2 * (rows - d) * cols;
/* Normalize gray-tone spatial dependence matrix */
for (itone = 0; itone < toneCt; ++itone) {
unsigned int jtone;
for (jtone = 0; jtone < toneCt; ++jtone) {
p_matrix0[itone][jtone] /= r0;
p_matrix45[itone][jtone] /= r45;
p_matrix90[itone][jtone] /= r90;
p_matrix135[itone][jtone] /= r45;
}
}
pm_message(" ...done.");
pm_message("Computing textural features ...");
fprintf(stdout, "\n");
fprintf(stdout,
"%s 0 45 90 135 Avg\n",
BL);
a2m[0] = f1_a2m(p_matrix0, toneCt);
a2m[1] = f1_a2m(p_matrix45, toneCt);
a2m[2] = f1_a2m(p_matrix90, toneCt);
a2m[3] = f1_a2m(p_matrix135, toneCt);
results(F1, a2m);
contrast[0] = f2_contrast(p_matrix0, toneCt);
contrast[1] = f2_contrast(p_matrix45, toneCt);
contrast[2] = f2_contrast(p_matrix90, toneCt);
contrast[3] = f2_contrast(p_matrix135, toneCt);
results(F2, contrast);
corr[0] = f3_corr(p_matrix0, toneCt);
corr[1] = f3_corr(p_matrix45, toneCt);
corr[2] = f3_corr(p_matrix90, toneCt);
corr[3] = f3_corr(p_matrix135, toneCt);
results(F3, corr);
var[0] = f4_var(p_matrix0, toneCt);
var[1] = f4_var(p_matrix45, toneCt);
var[2] = f4_var(p_matrix90, toneCt);
var[3] = f4_var(p_matrix135, toneCt);
results(F4, var);
idm[0] = f5_idm(p_matrix0, toneCt);
idm[1] = f5_idm(p_matrix45, toneCt);
idm[2] = f5_idm(p_matrix90, toneCt);
idm[3] = f5_idm(p_matrix135, toneCt);
results(F5, idm);
savg[0] = f6_savg(p_matrix0, toneCt);
savg[1] = f6_savg(p_matrix45, toneCt);
savg[2] = f6_savg(p_matrix90, toneCt);
savg[3] = f6_savg(p_matrix135, toneCt);
results(F6, savg);
svar[0] = f7_svar(p_matrix0, toneCt, savg[0]);
svar[1] = f7_svar(p_matrix45, toneCt, savg[1]);
svar[2] = f7_svar(p_matrix90, toneCt, savg[2]);
svar[3] = f7_svar(p_matrix135, toneCt, savg[3]);
results(F7, svar);
sentropy[0] = f8_sentropy(p_matrix0, toneCt);
sentropy[1] = f8_sentropy(p_matrix45, toneCt);
sentropy[2] = f8_sentropy(p_matrix90, toneCt);
sentropy[3] = f8_sentropy(p_matrix135, toneCt);
results(F8, sentropy);
entropy[0] = f9_entropy(p_matrix0, toneCt);
entropy[1] = f9_entropy(p_matrix45, toneCt);
entropy[2] = f9_entropy(p_matrix90, toneCt);
entropy[3] = f9_entropy(p_matrix135, toneCt);
results(F9, entropy);
dvar[0] = f10_dvar(p_matrix0, toneCt);
dvar[1] = f10_dvar(p_matrix45, toneCt);
dvar[2] = f10_dvar(p_matrix90, toneCt);
dvar[3] = f10_dvar(p_matrix135, toneCt);
results(F10, dvar);
dentropy[0] = f11_dentropy(p_matrix0, toneCt);
dentropy[1] = f11_dentropy(p_matrix45, toneCt);
dentropy[2] = f11_dentropy(p_matrix90, toneCt);
dentropy[3] = f11_dentropy(p_matrix135, toneCt);
results (F11, dentropy);
icorr[0] = f12_icorr(p_matrix0, toneCt);
icorr[1] = f12_icorr(p_matrix45, toneCt);
icorr[2] = f12_icorr(p_matrix90, toneCt);
icorr[3] = f12_icorr(p_matrix135, toneCt);
results(F12, icorr);
icorr[0] = f13_icorr(p_matrix0, toneCt);
icorr[1] = f13_icorr(p_matrix45, toneCt);
icorr[2] = f13_icorr(p_matrix90, toneCt);
icorr[3] = f13_icorr(p_matrix135, toneCt);
results(F13, icorr);
maxcorr[0] = f14_maxcorr(p_matrix0, toneCt);
maxcorr[1] = f14_maxcorr(p_matrix45, toneCt);
maxcorr[2] = f14_maxcorr(p_matrix90, toneCt);
maxcorr[3] = f14_maxcorr(p_matrix135, toneCt);
results(F14, maxcorr);
pm_message(" ...done.");
return 0;
}
/*
** Author: James Darrell McCauley
** Texas Agricultural Experiment Station
** Department of Agricultural Engineering
** Texas A&M University
** College Station, Texas 77843-2117 USA
**
** Code written partially taken from pgmtofs.c in the PBMPLUS package
** by Jef Poskanzer.
**
** Algorithms for calculating features (and some explanatory comments) are
** taken from:
**
** Haralick, R.M., K. Shanmugam, and I. Dinstein. 1973. Textural features
** for image classification. IEEE Transactions on Systems, Man, and
** Cybertinetics, SMC-3(6):610-621.
**
** Copyright (C) 1991 Texas Agricultural Experiment Station, employer for
** hire of James Darrell McCauley
**
** Permission to use, copy, modify, and distribute this software and its
** documentation for any purpose and without fee is hereby granted, provided
** that the above copyright notice appear in all copies and that both that
** copyright notice and this permission notice appear in supporting
** documentation. This software is provided "as is" without express or
** implied warranty.
**
** THE TEXAS AGRICULTURAL EXPERIMENT STATION (TAES) AND THE TEXAS A&M
** UNIVERSITY SYSTEM (TAMUS) MAKE NO EXPRESS OR IMPLIED WARRANTIES
** (INCLUDING BY WAY OF EXAMPLE, MERCHANTABILITY) WITH RESPECT TO ANY
** ITEM, AND SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL
** OR CONSEQUENTAL DAMAGES ARISING OUT OF THE POSSESSION OR USE OF
** ANY SUCH ITEM. LICENSEE AND/OR USER AGREES TO INDEMNIFY AND HOLD
** TAES AND TAMUS HARMLESS FROM ANY CLAIMS ARISING OUT OF THE USE OR
** POSSESSION OF SUCH ITEMS.
**
** Modification History:
** 24 Jun 91 - J. Michael Carstensen <jmc@imsor.dth.dk> supplied fix for
** correlation function.
**
** 05 Oct 05 - Marc Breithecker <Marc.Breithecker@informatik.uni-erlangen.de>
** Fix calculation or normalizing constants for d > 1.
** 9 Jul 11 - Francois P. S. Luus <fpsluus@gmail.com> supplied fix for sum
** variance calculation (use F6:savg instead of F8:sentropy in
** F7:svar equation).
*/
|