about summary refs log tree commit diff
path: root/sosemanuk.c
blob: 033ea5383fa3fcd2731aa7e378208b1c21b152e0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
/*
 * SOSEMANUK reference implementation.
 *
 * This code is supposed to run on any conforming C implementation (C90
 * or later). When compiled with the SOSEMANUK_VECTOR macro defined, this
 * is a stand-alone program which outputs detailed test vectors. When
 * compiled with the SOSEMANUK_SPEED macro defined, this is a stand-alone
 * program which performs an implementation speed measure.
 *
 * (c) 2005 X-CRYPT project. This software is provided 'as-is', without
 * any express or implied warranty. In no event will the authors be held
 * liable for any damages arising from the use of this software.
 *
 * Permission is granted to anyone to use this software for any purpose,
 * including commercial applications, and to alter it and redistribute it
 * freely, subject to no restriction.
 *
 * Technical remarks and questions can be addressed to
 * <thomas.pornin@cryptolog.com>
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef SOSEMANUK_SPEED
#include <time.h>
#endif

#include "sosemanuk.h"

/* ======================================================================== */

#ifdef SOSEMANUK_ECRYPT

/*
 * No local speed testing when using the ECRYPT mode.
 */
#undef SOSEMANUK_SPEED

/*
 * If we are using the ECRYPT API, then we rely on the ECRYPT portability
 * macros and types.
 */

#define unum32    u32
#define T32(x)    U32V(x)

#define decode32le(data)       U8TO32_LITTLE(data)
#define encode32le(dst, val)   do { \
		u8 *encode_dst = (dst); \
		u32 encode_val = (val); \
		U32TO8_LITTLE(encode_dst, encode_val); \
	} while (0)

#define ROTL(x, n)    ROTL32(x, n)
#define INLINE

#else

/*
 * 32-bit data decoding, little endian.
 */
static INLINE unum32
decode32le(unsigned char *data)
{
#ifdef __i386
	/*
	 * On i386, we prefer accessing data directly. Unaligned accesses
	 * imply only a one-cycle penalty; even with that penalty, this
	 * method is quite faster than the generic one. Note that i486
	 * and later may be set in a mode where unaligned access trigger
	 * exceptions; but such a mode is not compatible with usual ABI
	 * (which require only 4-byte alignment for "double" and "long
	 * double", hence operating systems do not set that "alignment
	 * check" flag.
	 *
	 * If this optimized access proves to be a problem, replace the
	 * test above by "#if 0".
	 */
	return *(unum32 *)data;
#else
	return (unum32)data[0]
		| ((unum32)data[1] << 8)
		| ((unum32)data[2] << 16)
		| ((unum32)data[3] << 24);
#endif
}

/*
 * 32-bit data encoding, little-endian.
 */
static INLINE void
encode32le(unsigned char *dst, unum32 val)
{
#ifdef __i386__
	/*
	 * Optimized version for i386. See comments in decode32le().
	 */
	*(unum32 *)dst = val;
#else
	dst[0] = val & 0xFF;
	dst[1] = (val >> 8) & 0xFF;
	dst[2] = (val >> 16) & 0xFF;
	dst[3] = (val >> 24) & 0xFF;
#endif
}

/*
 * Left-rotation by n bits (0 < n < 32).
 */
#define ROTL(x, n)    (T32(((x) << (n)) | T32((x) >> (32 - (n)))))

#endif

/* ======================================================================== */

/*
 * Serpent S-boxes, implemented in bitslice mode. These circuits have
 * been published by Dag Arne Osvik ("Speeding up Serpent", published in
 * the 3rd AES Candidate Conference) and work on five 32-bit registers:
 * the four inputs, and a fifth scratch register. There are meant to be
 * quite fast on Pentium-class processors. These are not the fastest
 * published, but they are "fast enough" and they are unencumbered as
 * far as intellectual property is concerned (note: these are rewritten
 * from the article itself, and hence are not covered by the GPL on
 * Dag's code, which was not used here).
 *
 * The output bits are permuted. Here is the correspondance:
 *   S0:  1420
 *   S1:  2031
 *   S2:  2314
 *   S3:  1234
 *   S4:  1403
 *   S5:  1302
 *   S6:  0142
 *   S7:  4310
 * (for instance, the output of S0 is in "r1, r4, r2, r0").
 */

#define S0(r0, r1, r2, r3, r4)   do { \
		r3 ^= r0;  r4  = r1; \
		r1 &= r3;  r4 ^= r2; \
		r1 ^= r0;  r0 |= r3; \
		r0 ^= r4;  r4 ^= r3; \
		r3 ^= r2;  r2 |= r1; \
		r2 ^= r4;  r4 = ~r4; \
		r4 |= r1;  r1 ^= r3; \
		r1 ^= r4;  r3 |= r0; \
		r1 ^= r3;  r4 ^= r3; \
	} while (0)

#define S1(r0, r1, r2, r3, r4)   do { \
		r0 = ~r0;  r2 = ~r2; \
		r4  = r0;  r0 &= r1; \
		r2 ^= r0;  r0 |= r3; \
		r3 ^= r2;  r1 ^= r0; \
		r0 ^= r4;  r4 |= r1; \
		r1 ^= r3;  r2 |= r0; \
		r2 &= r4;  r0 ^= r1; \
		r1 &= r2; \
		r1 ^= r0;  r0 &= r2; \
		r0 ^= r4; \
	} while (0)

#define S2(r0, r1, r2, r3, r4)   do { \
		r4  = r0;  r0 &= r2; \
		r0 ^= r3;  r2 ^= r1; \
		r2 ^= r0;  r3 |= r4; \
		r3 ^= r1;  r4 ^= r2; \
		r1  = r3;  r3 |= r4; \
		r3 ^= r0;  r0 &= r1; \
		r4 ^= r0;  r1 ^= r3; \
		r1 ^= r4;  r4 = ~r4; \
	} while (0)

#define S3(r0, r1, r2, r3, r4)   do { \
		r4  = r0;  r0 |= r3; \
		r3 ^= r1;  r1 &= r4; \
		r4 ^= r2;  r2 ^= r3; \
		r3 &= r0;  r4 |= r1; \
		r3 ^= r4;  r0 ^= r1; \
		r4 &= r0;  r1 ^= r3; \
		r4 ^= r2;  r1 |= r0; \
		r1 ^= r2;  r0 ^= r3; \
		r2  = r1;  r1 |= r3; \
		r1 ^= r0; \
	} while (0)

#define S4(r0, r1, r2, r3, r4)   do { \
		r1 ^= r3;  r3 = ~r3; \
		r2 ^= r3;  r3 ^= r0; \
		r4  = r1;  r1 &= r3; \
		r1 ^= r2;  r4 ^= r3; \
		r0 ^= r4;  r2 &= r4; \
		r2 ^= r0;  r0 &= r1; \
		r3 ^= r0;  r4 |= r1; \
		r4 ^= r0;  r0 |= r3; \
		r0 ^= r2;  r2 &= r3; \
		r0 = ~r0;  r4 ^= r2; \
	} while (0)

#define S5(r0, r1, r2, r3, r4)   do { \
		r0 ^= r1;  r1 ^= r3; \
		r3 = ~r3;  r4  = r1; \
		r1 &= r0;  r2 ^= r3; \
		r1 ^= r2;  r2 |= r4; \
		r4 ^= r3;  r3 &= r1; \
		r3 ^= r0;  r4 ^= r1; \
		r4 ^= r2;  r2 ^= r0; \
		r0 &= r3;  r2 = ~r2; \
		r0 ^= r4;  r4 |= r3; \
		r2 ^= r4; \
	} while (0)

#define S6(r0, r1, r2, r3, r4)   do { \
		r2 = ~r2;  r4  = r3; \
		r3 &= r0;  r0 ^= r4; \
		r3 ^= r2;  r2 |= r4; \
		r1 ^= r3;  r2 ^= r0; \
		r0 |= r1;  r2 ^= r1; \
		r4 ^= r0;  r0 |= r3; \
		r0 ^= r2;  r4 ^= r3; \
		r4 ^= r0;  r3 = ~r3; \
		r2 &= r4; \
		r2 ^= r3; \
	} while (0)

#define S7(r0, r1, r2, r3, r4)   do { \
		r4  = r1;  r1 |= r2; \
		r1 ^= r3;  r4 ^= r2; \
		r2 ^= r1;  r3 |= r4; \
		r3 &= r0;  r4 ^= r2; \
		r3 ^= r1;  r1 |= r4; \
		r1 ^= r0;  r0 |= r4; \
		r0 ^= r2;  r1 ^= r4; \
		r2 ^= r1;  r1 &= r0; \
		r1 ^= r4;  r2 = ~r2; \
		r2 |= r0; \
		r4 ^= r2; \
	} while (0)

/*
 * The Serpent linear transform.
 */
#define SERPENT_LT(x0, x1, x2, x3)  do { \
		x0 = ROTL(x0, 13); \
		x2 = ROTL(x2, 3); \
		x1 = x1 ^ x0 ^ x2; \
		x3 = x3 ^ x2 ^ T32(x0 << 3); \
		x1 = ROTL(x1, 1); \
		x3 = ROTL(x3, 7); \
		x0 = x0 ^ x1 ^ x3; \
		x2 = x2 ^ x3 ^ T32(x1 << 7); \
		x0 = ROTL(x0, 5); \
		x2 = ROTL(x2, 22); \
	} while (0)

/* ======================================================================== */

#ifdef SOSEMANUK_ECRYPT
void
ECRYPT_init(void)
{
	return;
}
#endif

#ifdef SOSEMANUK_ECRYPT
void
ECRYPT_keysetup(ECRYPT_ctx *kc, const u8 *key, u32 keysize, u32 ivsize)
#else
/* see sosemanuk.h */
void
sosemanuk_schedule(sosemanuk_key_context *kc,
	unsigned char *key, size_t key_len)
#endif
{
	/*
	 * This key schedule is actually a truncated Serpent key schedule.
	 * The key-derived words (w_i) are computed within the eight
	 * local variables w0 to w7, which are reused again and again.
	 */

#define SKS(S, o0, o1, o2, o3, d0, d1, d2, d3)   do { \
		unum32 r0, r1, r2, r3, r4; \
		r0 = w ## o0; \
		r1 = w ## o1; \
		r2 = w ## o2; \
		r3 = w ## o3; \
		S(r0, r1, r2, r3, r4); \
		kc->sk[i ++] = r ## d0; \
		kc->sk[i ++] = r ## d1; \
		kc->sk[i ++] = r ## d2; \
		kc->sk[i ++] = r ## d3; \
	} while (0)

#define SKS0    SKS(S0, 4, 5, 6, 7, 1, 4, 2, 0)
#define SKS1    SKS(S1, 0, 1, 2, 3, 2, 0, 3, 1)
#define SKS2    SKS(S2, 4, 5, 6, 7, 2, 3, 1, 4)
#define SKS3    SKS(S3, 0, 1, 2, 3, 1, 2, 3, 4)
#define SKS4    SKS(S4, 4, 5, 6, 7, 1, 4, 0, 3)
#define SKS5    SKS(S5, 0, 1, 2, 3, 1, 3, 0, 2)
#define SKS6    SKS(S6, 4, 5, 6, 7, 0, 1, 4, 2)
#define SKS7    SKS(S7, 0, 1, 2, 3, 4, 3, 1, 0)

#define WUP(wi, wi5, wi3, wi1, cc)   do { \
		unum32 tt = (wi) ^ (wi5) ^ (wi3) \
			^ (wi1) ^ (0x9E3779B9 ^ (unum32)(cc)); \
		(wi) = ROTL(tt, 11); \
	} while (0)

#define WUP0(cc)   do { \
		WUP(w0, w3, w5, w7, cc); \
		WUP(w1, w4, w6, w0, cc + 1); \
		WUP(w2, w5, w7, w1, cc + 2); \
		WUP(w3, w6, w0, w2, cc + 3); \
	} while (0)

#define WUP1(cc)   do { \
		WUP(w4, w7, w1, w3, cc); \
		WUP(w5, w0, w2, w4, cc + 1); \
		WUP(w6, w1, w3, w5, cc + 2); \
		WUP(w7, w2, w4, w6, cc + 3); \
	} while (0)

	unsigned char wbuf[32];
	register unum32 w0, w1, w2, w3, w4, w5, w6, w7;
	int i = 0;
#ifdef SOSEMANUK_ECRYPT
	size_t key_len = keysize / 8;

	kc->ivlen = ivsize / 8;
#endif

	/*
	 * The key is copied into the wbuf[] buffer and padded to 256 bits
	 * as described in the Serpent specification.
	 */
#ifdef WASTE_SPACE_ON_STDIO
	if (key_len == 0 || key_len > 32) {
		fprintf(stderr, "invalid key size: %lu\n",
			(unsigned long)key_len);
		exit(EXIT_FAILURE);
	}
#endif
	memcpy(wbuf, key, key_len);
	if (key_len < 32) {
		wbuf[key_len] = 0x01;
		if (key_len < 31)
			memset(wbuf + key_len + 1, 0, 31 - key_len);
	}

#ifdef SOSEMANUK_VECTOR
	{
		size_t u;

		printf("key = ");
		for (u = 0; u < key_len; u ++)
			printf("%02X", key[u]);
		printf("\n");
	}
#endif

	w0 = decode32le(wbuf);
	w1 = decode32le(wbuf + 4);
	w2 = decode32le(wbuf + 8);
	w3 = decode32le(wbuf + 12);
	w4 = decode32le(wbuf + 16);
	w5 = decode32le(wbuf + 20);
	w6 = decode32le(wbuf + 24);
	w7 = decode32le(wbuf + 28);

#ifdef SOSEMANUK_VECTOR
	printf("  -> %08lX %08lX %08lX %08lX %08lX %08lX %08lX %08lX\n",
		(unsigned long)w7, (unsigned long)w6,
		(unsigned long)w5, (unsigned long)w4,
		(unsigned long)w3, (unsigned long)w2,
		(unsigned long)w1, (unsigned long)w0);
#endif

	WUP0(0);   SKS3;
	WUP1(4);   SKS2;
	WUP0(8);   SKS1;
	WUP1(12);  SKS0;
	WUP0(16);  SKS7;
	WUP1(20);  SKS6;
	WUP0(24);  SKS5;
	WUP1(28);  SKS4;
	WUP0(32);  SKS3;
	WUP1(36);  SKS2;
	WUP0(40);  SKS1;
	WUP1(44);  SKS0;
	WUP0(48);  SKS7;
	WUP1(52);  SKS6;
	WUP0(56);  SKS5;
	WUP1(60);  SKS4;
	WUP0(64);  SKS3;
	WUP1(68);  SKS2;
	WUP0(72);  SKS1;
	WUP1(76);  SKS0;
	WUP0(80);  SKS7;
	WUP1(84);  SKS6;
	WUP0(88);  SKS5;
	WUP1(92);  SKS4;
	WUP0(96);  SKS3;

#ifdef SOSEMANUK_VECTOR
	{
		unsigned u;

		for (u = 0; u < 100; u += 4) {
			printf("Serpent24 subkey %2u:"
				" %08lX %08lX %08lX %08lX\n", u / 4,
				(unsigned long)kc->sk[u + 3],
				(unsigned long)kc->sk[u + 2],
				(unsigned long)kc->sk[u + 1],
				(unsigned long)kc->sk[u + 0]);
		}
	}
#endif

#undef SKS
#undef SKS0
#undef SKS1
#undef SKS2
#undef SKS3
#undef SKS4
#undef SKS5
#undef SKS6
#undef SKS7
#undef WUP
#undef WUP0
#undef WUP1
}

#ifdef SOSEMANUK_ECRYPT
void
ECRYPT_ivsetup(ECRYPT_ctx *ctx, const u8 *iv)
#else
/* see sosemanuk.h */
void
sosemanuk_init(sosemanuk_run_context *rc, sosemanuk_key_context *kc,
	unsigned char *iv, size_t iv_len)
#endif
{

#ifdef SOSEMANUK_ECRYPT
#define rc       ctx
#define kc       ctx
#define iv_len   (ctx->ivlen)
#endif

	/*
	 * The Serpent key addition step.
	 */
#define KA(zc, x0, x1, x2, x3)  do { \
		x0 ^= kc->sk[(zc)]; \
		x1 ^= kc->sk[(zc) + 1]; \
		x2 ^= kc->sk[(zc) + 2]; \
		x3 ^= kc->sk[(zc) + 3]; \
	} while (0)

	/*
	 * One Serpent round.
	 *   zc = current subkey counter
	 *   S = S-box macro for this round
	 *   i0 to i4 = input register numbers (the fifth is a scratch register)
	 *   o0 to o3 = output register numbers
	 */
#define FSS(zc, S, i0, i1, i2, i3, i4, o0, o1, o2, o3)  do { \
		KA(zc, r ## i0, r ## i1, r ## i2, r ## i3); \
		S(r ## i0, r ## i1, r ## i2, r ## i3, r ## i4); \
		SERPENT_LT(r ## o0, r ## o1, r ## o2, r ## o3); \
	} while (0)

	/*
	 * Last Serpent round. Contrary to the "true" Serpent, we keep
	 * the linear transformation for that last round.
	 */
#define FSF(zc, S, i0, i1, i2, i3, i4, o0, o1, o2, o3)  do { \
		KA(zc, r ## i0, r ## i1, r ## i2, r ## i3); \
		S(r ## i0, r ## i1, r ## i2, r ## i3, r ## i4); \
		SERPENT_LT(r ## o0, r ## o1, r ## o2, r ## o3); \
		KA(zc + 4, r ## o0, r ## o1, r ## o2, r ## o3); \
	} while (0)

	register unum32 r0, r1, r2, r3, r4;
	unsigned char ivtmp[16];

	if (iv_len >= sizeof ivtmp) {
		memcpy(ivtmp, iv, sizeof ivtmp);
	} else {
		if (iv_len > 0)
			memcpy(ivtmp, iv, iv_len);
		memset(ivtmp + iv_len, 0, (sizeof ivtmp) - iv_len);
	}

#ifdef SOSEMANUK_VECTOR
	{
		size_t u;

		printf("IV = ");
		for (u = 0; u < 16; u ++)
			printf("%02X", ivtmp[u]);
		printf("\n");
	}
#endif

	/*
	 * Decode IV into four 32-bit words (little-endian).
	 */
	r0 = decode32le(ivtmp);
	r1 = decode32le(ivtmp + 4);
	r2 = decode32le(ivtmp + 8);
	r3 = decode32le(ivtmp + 12);

#ifdef SOSEMANUK_VECTOR
	printf("  -> %08lX %08lX %08lX %08lX\n",
		(unsigned long)r3, (unsigned long)r2,
		(unsigned long)r1, (unsigned long)r0);
#endif

	/*
	 * Encrypt IV with Serpent24. Some values are extracted from the
	 * output of the twelfth, eighteenth and twenty-fourth rounds.
	 */
	FSS(0, S0, 0, 1, 2, 3, 4, 1, 4, 2, 0);
	FSS(4, S1, 1, 4, 2, 0, 3, 2, 1, 0, 4);
	FSS(8, S2, 2, 1, 0, 4, 3, 0, 4, 1, 3);
	FSS(12, S3, 0, 4, 1, 3, 2, 4, 1, 3, 2);
	FSS(16, S4, 4, 1, 3, 2, 0, 1, 0, 4, 2);
	FSS(20, S5, 1, 0, 4, 2, 3, 0, 2, 1, 4);
	FSS(24, S6, 0, 2, 1, 4, 3, 0, 2, 3, 1);
	FSS(28, S7, 0, 2, 3, 1, 4, 4, 1, 2, 0);
	FSS(32, S0, 4, 1, 2, 0, 3, 1, 3, 2, 4);
	FSS(36, S1, 1, 3, 2, 4, 0, 2, 1, 4, 3);
	FSS(40, S2, 2, 1, 4, 3, 0, 4, 3, 1, 0);
	FSS(44, S3, 4, 3, 1, 0, 2, 3, 1, 0, 2);
	rc->s09 = r3;
	rc->s08 = r1;
	rc->s07 = r0;
	rc->s06 = r2;

	FSS(48, S4, 3, 1, 0, 2, 4, 1, 4, 3, 2);
	FSS(52, S5, 1, 4, 3, 2, 0, 4, 2, 1, 3);
	FSS(56, S6, 4, 2, 1, 3, 0, 4, 2, 0, 1);
	FSS(60, S7, 4, 2, 0, 1, 3, 3, 1, 2, 4);
	FSS(64, S0, 3, 1, 2, 4, 0, 1, 0, 2, 3);
	FSS(68, S1, 1, 0, 2, 3, 4, 2, 1, 3, 0);
	rc->r1  = r2;
	rc->s04 = r1;
	rc->r2  = r3;
	rc->s05 = r0;

	FSS(72, S2, 2, 1, 3, 0, 4, 3, 0, 1, 4);
	FSS(76, S3, 3, 0, 1, 4, 2, 0, 1, 4, 2);
	FSS(80, S4, 0, 1, 4, 2, 3, 1, 3, 0, 2);
	FSS(84, S5, 1, 3, 0, 2, 4, 3, 2, 1, 0);
	FSS(88, S6, 3, 2, 1, 0, 4, 3, 2, 4, 1);
	FSF(92, S7, 3, 2, 4, 1, 0, 0, 1, 2, 3);
	rc->s03 = r0;
	rc->s02 = r1;
	rc->s01 = r2;
	rc->s00 = r3;

#ifdef SOSEMANUK_VECTOR
	printf("Initial LFSR state:\n");
	printf("      s1  = %08lX\n", (unsigned long)rc->s00);
	printf("      s2  = %08lX\n", (unsigned long)rc->s01);
	printf("      s3  = %08lX\n", (unsigned long)rc->s02);
	printf("      s4  = %08lX\n", (unsigned long)rc->s03);
	printf("      s5  = %08lX\n", (unsigned long)rc->s04);
	printf("      s6  = %08lX\n", (unsigned long)rc->s05);
	printf("      s7  = %08lX\n", (unsigned long)rc->s06);
	printf("      s8  = %08lX\n", (unsigned long)rc->s07);
	printf("      s9  = %08lX\n", (unsigned long)rc->s08);
	printf("      s10 = %08lX\n", (unsigned long)rc->s09);
	printf("Initial FSM state:  r1 = %08lX   r2 = %08lX\n",
		(unsigned long)rc->r1, (unsigned long)rc->r2);
#endif

#ifndef SOSEMANUK_ECRYPT
	rc->ptr = sizeof rc->buf;
#endif

#undef KA
#undef FSS
#undef FSF

#ifdef SOSEMANUK_ECRYPT
#undef rc
#undef kc
#undef iv_len
#endif
}

/*
 * Multiplication by alpha: alpha * x = T32(x << 8) ^ mul_a[x >> 24]
 */
static unum32 mul_a[] = {
	0x00000000, 0xE19FCF13, 0x6B973726, 0x8A08F835,
	0xD6876E4C, 0x3718A15F, 0xBD10596A, 0x5C8F9679,
	0x05A7DC98, 0xE438138B, 0x6E30EBBE, 0x8FAF24AD,
	0xD320B2D4, 0x32BF7DC7, 0xB8B785F2, 0x59284AE1,
	0x0AE71199, 0xEB78DE8A, 0x617026BF, 0x80EFE9AC,
	0xDC607FD5, 0x3DFFB0C6, 0xB7F748F3, 0x566887E0,
	0x0F40CD01, 0xEEDF0212, 0x64D7FA27, 0x85483534,
	0xD9C7A34D, 0x38586C5E, 0xB250946B, 0x53CF5B78,
	0x1467229B, 0xF5F8ED88, 0x7FF015BD, 0x9E6FDAAE,
	0xC2E04CD7, 0x237F83C4, 0xA9777BF1, 0x48E8B4E2,
	0x11C0FE03, 0xF05F3110, 0x7A57C925, 0x9BC80636,
	0xC747904F, 0x26D85F5C, 0xACD0A769, 0x4D4F687A,
	0x1E803302, 0xFF1FFC11, 0x75170424, 0x9488CB37,
	0xC8075D4E, 0x2998925D, 0xA3906A68, 0x420FA57B,
	0x1B27EF9A, 0xFAB82089, 0x70B0D8BC, 0x912F17AF,
	0xCDA081D6, 0x2C3F4EC5, 0xA637B6F0, 0x47A879E3,
	0x28CE449F, 0xC9518B8C, 0x435973B9, 0xA2C6BCAA,
	0xFE492AD3, 0x1FD6E5C0, 0x95DE1DF5, 0x7441D2E6,
	0x2D699807, 0xCCF65714, 0x46FEAF21, 0xA7616032,
	0xFBEEF64B, 0x1A713958, 0x9079C16D, 0x71E60E7E,
	0x22295506, 0xC3B69A15, 0x49BE6220, 0xA821AD33,
	0xF4AE3B4A, 0x1531F459, 0x9F390C6C, 0x7EA6C37F,
	0x278E899E, 0xC611468D, 0x4C19BEB8, 0xAD8671AB,
	0xF109E7D2, 0x109628C1, 0x9A9ED0F4, 0x7B011FE7,
	0x3CA96604, 0xDD36A917, 0x573E5122, 0xB6A19E31,
	0xEA2E0848, 0x0BB1C75B, 0x81B93F6E, 0x6026F07D,
	0x390EBA9C, 0xD891758F, 0x52998DBA, 0xB30642A9,
	0xEF89D4D0, 0x0E161BC3, 0x841EE3F6, 0x65812CE5,
	0x364E779D, 0xD7D1B88E, 0x5DD940BB, 0xBC468FA8,
	0xE0C919D1, 0x0156D6C2, 0x8B5E2EF7, 0x6AC1E1E4,
	0x33E9AB05, 0xD2766416, 0x587E9C23, 0xB9E15330,
	0xE56EC549, 0x04F10A5A, 0x8EF9F26F, 0x6F663D7C,
	0x50358897, 0xB1AA4784, 0x3BA2BFB1, 0xDA3D70A2,
	0x86B2E6DB, 0x672D29C8, 0xED25D1FD, 0x0CBA1EEE,
	0x5592540F, 0xB40D9B1C, 0x3E056329, 0xDF9AAC3A,
	0x83153A43, 0x628AF550, 0xE8820D65, 0x091DC276,
	0x5AD2990E, 0xBB4D561D, 0x3145AE28, 0xD0DA613B,
	0x8C55F742, 0x6DCA3851, 0xE7C2C064, 0x065D0F77,
	0x5F754596, 0xBEEA8A85, 0x34E272B0, 0xD57DBDA3,
	0x89F22BDA, 0x686DE4C9, 0xE2651CFC, 0x03FAD3EF,
	0x4452AA0C, 0xA5CD651F, 0x2FC59D2A, 0xCE5A5239,
	0x92D5C440, 0x734A0B53, 0xF942F366, 0x18DD3C75,
	0x41F57694, 0xA06AB987, 0x2A6241B2, 0xCBFD8EA1,
	0x977218D8, 0x76EDD7CB, 0xFCE52FFE, 0x1D7AE0ED,
	0x4EB5BB95, 0xAF2A7486, 0x25228CB3, 0xC4BD43A0,
	0x9832D5D9, 0x79AD1ACA, 0xF3A5E2FF, 0x123A2DEC,
	0x4B12670D, 0xAA8DA81E, 0x2085502B, 0xC11A9F38,
	0x9D950941, 0x7C0AC652, 0xF6023E67, 0x179DF174,
	0x78FBCC08, 0x9964031B, 0x136CFB2E, 0xF2F3343D,
	0xAE7CA244, 0x4FE36D57, 0xC5EB9562, 0x24745A71,
	0x7D5C1090, 0x9CC3DF83, 0x16CB27B6, 0xF754E8A5,
	0xABDB7EDC, 0x4A44B1CF, 0xC04C49FA, 0x21D386E9,
	0x721CDD91, 0x93831282, 0x198BEAB7, 0xF81425A4,
	0xA49BB3DD, 0x45047CCE, 0xCF0C84FB, 0x2E934BE8,
	0x77BB0109, 0x9624CE1A, 0x1C2C362F, 0xFDB3F93C,
	0xA13C6F45, 0x40A3A056, 0xCAAB5863, 0x2B349770,
	0x6C9CEE93, 0x8D032180, 0x070BD9B5, 0xE69416A6,
	0xBA1B80DF, 0x5B844FCC, 0xD18CB7F9, 0x301378EA,
	0x693B320B, 0x88A4FD18, 0x02AC052D, 0xE333CA3E,
	0xBFBC5C47, 0x5E239354, 0xD42B6B61, 0x35B4A472,
	0x667BFF0A, 0x87E43019, 0x0DECC82C, 0xEC73073F,
	0xB0FC9146, 0x51635E55, 0xDB6BA660, 0x3AF46973,
	0x63DC2392, 0x8243EC81, 0x084B14B4, 0xE9D4DBA7,
	0xB55B4DDE, 0x54C482CD, 0xDECC7AF8, 0x3F53B5EB
};

/*
 * Multiplication by 1/alpha: 1/alpha * x = (x >> 8) ^ mul_ia[x & 0xFF]
 */
static unum32 mul_ia[] = {
	0x00000000, 0x180F40CD, 0x301E8033, 0x2811C0FE,
	0x603CA966, 0x7833E9AB, 0x50222955, 0x482D6998,
	0xC078FBCC, 0xD877BB01, 0xF0667BFF, 0xE8693B32,
	0xA04452AA, 0xB84B1267, 0x905AD299, 0x88559254,
	0x29F05F31, 0x31FF1FFC, 0x19EEDF02, 0x01E19FCF,
	0x49CCF657, 0x51C3B69A, 0x79D27664, 0x61DD36A9,
	0xE988A4FD, 0xF187E430, 0xD99624CE, 0xC1996403,
	0x89B40D9B, 0x91BB4D56, 0xB9AA8DA8, 0xA1A5CD65,
	0x5249BE62, 0x4A46FEAF, 0x62573E51, 0x7A587E9C,
	0x32751704, 0x2A7A57C9, 0x026B9737, 0x1A64D7FA,
	0x923145AE, 0x8A3E0563, 0xA22FC59D, 0xBA208550,
	0xF20DECC8, 0xEA02AC05, 0xC2136CFB, 0xDA1C2C36,
	0x7BB9E153, 0x63B6A19E, 0x4BA76160, 0x53A821AD,
	0x1B854835, 0x038A08F8, 0x2B9BC806, 0x339488CB,
	0xBBC11A9F, 0xA3CE5A52, 0x8BDF9AAC, 0x93D0DA61,
	0xDBFDB3F9, 0xC3F2F334, 0xEBE333CA, 0xF3EC7307,
	0xA492D5C4, 0xBC9D9509, 0x948C55F7, 0x8C83153A,
	0xC4AE7CA2, 0xDCA13C6F, 0xF4B0FC91, 0xECBFBC5C,
	0x64EA2E08, 0x7CE56EC5, 0x54F4AE3B, 0x4CFBEEF6,
	0x04D6876E, 0x1CD9C7A3, 0x34C8075D, 0x2CC74790,
	0x8D628AF5, 0x956DCA38, 0xBD7C0AC6, 0xA5734A0B,
	0xED5E2393, 0xF551635E, 0xDD40A3A0, 0xC54FE36D,
	0x4D1A7139, 0x551531F4, 0x7D04F10A, 0x650BB1C7,
	0x2D26D85F, 0x35299892, 0x1D38586C, 0x053718A1,
	0xF6DB6BA6, 0xEED42B6B, 0xC6C5EB95, 0xDECAAB58,
	0x96E7C2C0, 0x8EE8820D, 0xA6F942F3, 0xBEF6023E,
	0x36A3906A, 0x2EACD0A7, 0x06BD1059, 0x1EB25094,
	0x569F390C, 0x4E9079C1, 0x6681B93F, 0x7E8EF9F2,
	0xDF2B3497, 0xC724745A, 0xEF35B4A4, 0xF73AF469,
	0xBF179DF1, 0xA718DD3C, 0x8F091DC2, 0x97065D0F,
	0x1F53CF5B, 0x075C8F96, 0x2F4D4F68, 0x37420FA5,
	0x7F6F663D, 0x676026F0, 0x4F71E60E, 0x577EA6C3,
	0xE18D0321, 0xF98243EC, 0xD1938312, 0xC99CC3DF,
	0x81B1AA47, 0x99BEEA8A, 0xB1AF2A74, 0xA9A06AB9,
	0x21F5F8ED, 0x39FAB820, 0x11EB78DE, 0x09E43813,
	0x41C9518B, 0x59C61146, 0x71D7D1B8, 0x69D89175,
	0xC87D5C10, 0xD0721CDD, 0xF863DC23, 0xE06C9CEE,
	0xA841F576, 0xB04EB5BB, 0x985F7545, 0x80503588,
	0x0805A7DC, 0x100AE711, 0x381B27EF, 0x20146722,
	0x68390EBA, 0x70364E77, 0x58278E89, 0x4028CE44,
	0xB3C4BD43, 0xABCBFD8E, 0x83DA3D70, 0x9BD57DBD,
	0xD3F81425, 0xCBF754E8, 0xE3E69416, 0xFBE9D4DB,
	0x73BC468F, 0x6BB30642, 0x43A2C6BC, 0x5BAD8671,
	0x1380EFE9, 0x0B8FAF24, 0x239E6FDA, 0x3B912F17,
	0x9A34E272, 0x823BA2BF, 0xAA2A6241, 0xB225228C,
	0xFA084B14, 0xE2070BD9, 0xCA16CB27, 0xD2198BEA,
	0x5A4C19BE, 0x42435973, 0x6A52998D, 0x725DD940,
	0x3A70B0D8, 0x227FF015, 0x0A6E30EB, 0x12617026,
	0x451FD6E5, 0x5D109628, 0x750156D6, 0x6D0E161B,
	0x25237F83, 0x3D2C3F4E, 0x153DFFB0, 0x0D32BF7D,
	0x85672D29, 0x9D686DE4, 0xB579AD1A, 0xAD76EDD7,
	0xE55B844F, 0xFD54C482, 0xD545047C, 0xCD4A44B1,
	0x6CEF89D4, 0x74E0C919, 0x5CF109E7, 0x44FE492A,
	0x0CD320B2, 0x14DC607F, 0x3CCDA081, 0x24C2E04C,
	0xAC977218, 0xB49832D5, 0x9C89F22B, 0x8486B2E6,
	0xCCABDB7E, 0xD4A49BB3, 0xFCB55B4D, 0xE4BA1B80,
	0x17566887, 0x0F59284A, 0x2748E8B4, 0x3F47A879,
	0x776AC1E1, 0x6F65812C, 0x477441D2, 0x5F7B011F,
	0xD72E934B, 0xCF21D386, 0xE7301378, 0xFF3F53B5,
	0xB7123A2D, 0xAF1D7AE0, 0x870CBA1E, 0x9F03FAD3,
	0x3EA637B6, 0x26A9777B, 0x0EB8B785, 0x16B7F748,
	0x5E9A9ED0, 0x4695DE1D, 0x6E841EE3, 0x768B5E2E,
	0xFEDECC7A, 0xE6D18CB7, 0xCEC04C49, 0xD6CF0C84,
	0x9EE2651C, 0x86ED25D1, 0xAEFCE52F, 0xB6F3A5E2
};

/*
 * Compute the next block of bits of output stream. This is equivalent
 * to one full rotation of the shift register.
 *
 * If SOSEMANUK_SPEED is defined, this function takes an extra parameter
 * "counter". The function then returns the sum of all produced
 * 32-bit words, in an "unum32". That sum prevents the compiler from
 * optimizing out part of the computation.
 */
#if defined SOSEMANUK_ECRYPT
static void
sosemanuk_internal(ECRYPT_ctx *rc, u8 *dst)
#elif defined SOSEMANUK_SPEED
static unum32
sosemanuk_internal(sosemanuk_run_context *rc, unsigned long counter)
#else
static void
sosemanuk_internal(sosemanuk_run_context *rc)
#endif
{
	/*
	 * MUL_A(x) computes alpha * x (in F_{2^32}).
	 * MUL_G(x) computes 1/alpha * x (in F_{2^32}).
	 */
#define MUL_A(x)    (T32((x) << 8) ^ mul_a[(x) >> 24])
#define MUL_G(x)    (((x) >> 8) ^ mul_ia[(x) & 0xFF])

	/*
	 * This macro computes the special multiplexer, which chooses
	 * between "x" and "x xor y", depending on the least significant
	 * bit of the control word. We use the C "?:" selection operator
	 * (which most compilers know how to optimise) except for Alpha,
	 * where the manual sign extension seems to perform equally well
	 * with DEC/Compaq/HP compiler, and much better with gcc.
	 */
#ifdef __alpha
#define XMUX(c, x, y)   ((((signed int)((c) << 31) >> 31) & (y)) ^ (x))
#else
#define XMUX(c, x, y)   (((c) & 0x1) ? ((x) ^ (y)) : (x))
#endif

	/*
	 * FSM() updates the finite state machine.
	 */
#define FSM(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9)   do { \
		unum32 tt, or1; \
		tt = XMUX(r1, s ## x1, s ## x8); \
		or1 = r1; \
		r1 = T32(r2 + tt); \
		tt = T32(or1 * 0x54655307); \
		r2 = ROTL(tt, 7); \
		PFSM; \
	} while (0)

	/*
	 * LRU updates the shift register; the dropped value is stored
	 * in variable "dd".
	 */
#define LRU(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, dd)   do { \
		dd = s ## x0; \
		s ## x0 = MUL_A(s ## x0) ^ MUL_G(s ## x3) ^ s ## x9; \
		PLFSR(dd, s ## x1, s ## x2, s ## x3, s ## x4, s ## x5, \
			s ## x6, s ## x7, s ## x8, s ## x9, s ## x0); \
	} while (0)

	/*
	 * CC1 stores into variable "ee" the next intermediate word
	 * (combination of the new states of the LFSR and the FSM).
	 */
#define CC1(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, ee)   do { \
		ee = T32(s ## x9 + r1) ^ r2; \
		PCCVAL(ee); \
	} while (0)

	/*
	 * STEP computes one internal round. "dd" receives the "s_t"
	 * value (dropped from the LFSR) and "ee" gets the value computed
	 * from the LFSR and FSM.
	 */
#define STEP(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, dd, ee)   do { \
		FSM(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9); \
		LRU(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, dd); \
		CC1(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, ee); \
	} while (0)

	/*
	 * Apply one Serpent round (with the provided S-box macro), XOR
	 * the result with the "v" values, and encode the result into
	 * the destination buffer, at the provided offset. The "x*"
	 * arguments encode the output permutation of the "S" macro.
	 */
#ifdef SOSEMANUK_SPEED

#define SRD(S, x0, x1, x2, x3, ooff)   do { \
		S(u0, u1, u2, u3, u4); \
		speed_acc += u ## x0 ^ v0; \
		speed_acc += u ## x1 ^ v1; \
		speed_acc += u ## x2 ^ v2; \
		speed_acc += u ## x3 ^ v3; \
	} while (0)

#else

#ifdef SOSEMANUK_ECRYPT
#define OUTWORD_BASE   dst
#else
#define OUTWORD_BASE   (rc->buf)
#endif

#define SRD(S, x0, x1, x2, x3, ooff)   do { \
		PSPIN(u0, u1, u2, u3); \
		S(u0, u1, u2, u3, u4); \
		PSPOUT(u ## x0, u ## x1, u ## x2, u ## x3); \
		encode32le(OUTWORD_BASE + ooff, u ## x0 ^ v0); \
		encode32le(OUTWORD_BASE + ooff + 4, u ## x1 ^ v1); \
		encode32le(OUTWORD_BASE + ooff + 8, u ## x2 ^ v2); \
		encode32le(OUTWORD_BASE + ooff + 12, u ## x3 ^ v3); \
		POUT(OUTWORD_BASE + ooff); \
	} while (0)

#endif

	/*
	 * Audit code; used for detailed test vectors.
	 */
#ifdef SOSEMANUK_VECTOR

#define PFSM   do { \
		printf("New FSM state:  r1 = %08lX   r2 = %08lX\n", \
			(unsigned long)r1, (unsigned long)r2); \
	} while (0)

#define PLFSR(dd, x1, x2, x3, x4, x5, x6, x7, x8, x9, x0)   do { \
		printf("New LFSR state:\n"); \
		printf("   dropped (s_t): %08lX\n", (unsigned long)dd); \
		printf("         s_t+1  = %08lX\n", (unsigned long)x1); \
		printf("         s_t+2  = %08lX\n", (unsigned long)x2); \
		printf("         s_t+3  = %08lX\n", (unsigned long)x3); \
		printf("         s_t+4  = %08lX\n", (unsigned long)x4); \
		printf("         s_t+5  = %08lX\n", (unsigned long)x5); \
		printf("         s_t+6  = %08lX\n", (unsigned long)x6); \
		printf("         s_t+7  = %08lX\n", (unsigned long)x7); \
		printf("         s_t+8  = %08lX\n", (unsigned long)x8); \
		printf("         s_t+9  = %08lX\n", (unsigned long)x9); \
		printf("         s_t+10 = %08lX\n", (unsigned long)x0); \
	} while (0)

#define PCCVAL(ee)   do { \
		printf("Intermediate output: %08lX\n", (unsigned long)ee); \
	} while (0)

#define PSPIN(x0, x1, x2, x3)    do { \
		printf("Serpent1 input:  %08lX %08lX %08lX %08lX\n", \
			(unsigned long)x3, (unsigned long)x2, \
			(unsigned long)x1, (unsigned long)x0); \
	} while (0)

#define PSPOUT(x0, x1, x2, x3)    do { \
		printf("Serpent1 output: %08lX %08lX %08lX %08lX\n", \
			(unsigned long)x3, (unsigned long)x2, \
			(unsigned long)x1, (unsigned long)x0); \
	} while (0)

#define POUT(buf)   do { \
		size_t j; \
		printf("Stream output: "); \
		for (j = 0; j < 16; j ++) \
			printf("%02X", (buf)[j]); \
		printf("\n"); \
	} while (0)

#else

#define PFSM                      (void)0
#define PLFSR(dd, x1, x2, x3, x4, x5, x6, x7, x8, x9, x0)   (void)0
#define PCCVAL(ee)                (void)0
#define PSPIN(x0, x1, x2, x3)     (void)0
#define PSPOUT(x0, x1, x2, x3)    (void)0
#define POUT(buf)                 (void)0

#endif

	unum32 s00 = rc->s00;
	unum32 s01 = rc->s01;
	unum32 s02 = rc->s02;
	unum32 s03 = rc->s03;
	unum32 s04 = rc->s04;
	unum32 s05 = rc->s05;
	unum32 s06 = rc->s06;
	unum32 s07 = rc->s07;
	unum32 s08 = rc->s08;
	unum32 s09 = rc->s09;
	unum32 r1 = rc->r1;
	unum32 r2 = rc->r2;
	unum32 u0, u1, u2, u3, u4;
	unum32 v0, v1, v2, v3;
#ifdef SOSEMANUK_SPEED
	unum32 speed_acc = 0;
#endif

#ifdef SOSEMANUK_SPEED
	while (counter -- > 0) {
#endif

	STEP(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, v0, u0);
	STEP(01, 02, 03, 04, 05, 06, 07, 08, 09, 00, v1, u1);
	STEP(02, 03, 04, 05, 06, 07, 08, 09, 00, 01, v2, u2);
	STEP(03, 04, 05, 06, 07, 08, 09, 00, 01, 02, v3, u3);
	SRD(S2, 2, 3, 1, 4, 0);
	STEP(04, 05, 06, 07, 08, 09, 00, 01, 02, 03, v0, u0);
	STEP(05, 06, 07, 08, 09, 00, 01, 02, 03, 04, v1, u1);
	STEP(06, 07, 08, 09, 00, 01, 02, 03, 04, 05, v2, u2);
	STEP(07, 08, 09, 00, 01, 02, 03, 04, 05, 06, v3, u3);
	SRD(S2, 2, 3, 1, 4, 16);
	STEP(08, 09, 00, 01, 02, 03, 04, 05, 06, 07, v0, u0);
	STEP(09, 00, 01, 02, 03, 04, 05, 06, 07, 08, v1, u1);
	STEP(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, v2, u2);
	STEP(01, 02, 03, 04, 05, 06, 07, 08, 09, 00, v3, u3);
	SRD(S2, 2, 3, 1, 4, 32);
	STEP(02, 03, 04, 05, 06, 07, 08, 09, 00, 01, v0, u0);
	STEP(03, 04, 05, 06, 07, 08, 09, 00, 01, 02, v1, u1);
	STEP(04, 05, 06, 07, 08, 09, 00, 01, 02, 03, v2, u2);
	STEP(05, 06, 07, 08, 09, 00, 01, 02, 03, 04, v3, u3);
	SRD(S2, 2, 3, 1, 4, 48);
	STEP(06, 07, 08, 09, 00, 01, 02, 03, 04, 05, v0, u0);
	STEP(07, 08, 09, 00, 01, 02, 03, 04, 05, 06, v1, u1);
	STEP(08, 09, 00, 01, 02, 03, 04, 05, 06, 07, v2, u2);
	STEP(09, 00, 01, 02, 03, 04, 05, 06, 07, 08, v3, u3);
	SRD(S2, 2, 3, 1, 4, 64);

#ifdef SOSEMANUK_SPEED
	}
#endif

	rc->s00 = s00;
	rc->s01 = s01;
	rc->s02 = s02;
	rc->s03 = s03;
	rc->s04 = s04;
	rc->s05 = s05;
	rc->s06 = s06;
	rc->s07 = s07;
	rc->s08 = s08;
	rc->s09 = s09;
	rc->r1 = r1;
	rc->r2 = r2;

#ifdef SOSEMANUK_SPEED
	return T32(speed_acc);
#endif
}

/*
 * Combine buffers in1[] and in2[] by XOR, result in out[]. The length
 * is "data_len" (in bytes). Partial overlap of out[] with either in1[]
 * or in2[] is not allowed. Total overlap (out == in1 and/or out == in2)
 * is allowed.
 */
static INLINE void
xorbuf(const unsigned char *in1, const unsigned char *in2,
	unsigned char *out, size_t data_len)
{
	while (data_len -- > 0)
		*out ++ = *in1 ++ ^ *in2 ++;
}

/* ======================================================================== */
/*
 * External API.
 */

#if defined SOSEMANUK_ECRYPT

/* see ecrypt-sync.h */
void
ECRYPT_process_bytes(int action, ECRYPT_ctx *ctx,
	const u8 *input, u8 *output, u32 msglen)
{
	(void)action;

	while (msglen > 0) {
		unsigned char tbuf[ECRYPT_BLOCKLENGTH];
		size_t len;

		sosemanuk_internal(ctx, tbuf);
		len = sizeof tbuf;
		if (len > msglen)
			len = msglen;
		xorbuf(input, tbuf, output, len);
		input += len;
		output += len;
		msglen -= len;
	}
}

/* see ecrypt-sync.h */
void
ECRYPT_keystream_bytes(ECRYPT_ctx *ctx, u8 *keystream, u32 length)
{
	while (length > 0) {
		if (length >= ECRYPT_BLOCKLENGTH) {
			sosemanuk_internal(ctx, keystream);
			keystream += ECRYPT_BLOCKLENGTH;
			length -= ECRYPT_BLOCKLENGTH;
		} else {
			unsigned char tbuf[ECRYPT_BLOCKLENGTH];

			sosemanuk_internal(ctx, tbuf);
			memcpy(keystream, tbuf, length);
			return;
		}
	}
}

/* see ecrypt-sync.h */
void
ECRYPT_process_blocks(int action, ECRYPT_ctx *ctx,
	const u8 *input, u8 *output, u32 blocks)
{
	(void)action;

	while (blocks -- > 0) {
		unsigned char tbuf[ECRYPT_BLOCKLENGTH];

		sosemanuk_internal(ctx, tbuf);
		xorbuf(input, tbuf, output, ECRYPT_BLOCKLENGTH);
		input += ECRYPT_BLOCKLENGTH;
		output += ECRYPT_BLOCKLENGTH;
	}
}

/* see ecrypt-sync.h */
void
ECRYPT_keystream_blocks(ECRYPT_ctx *ctx, u8 *keystream, u32 blocks)
{
	while (blocks -- > 0) {
		sosemanuk_internal(ctx, keystream);
		keystream += ECRYPT_BLOCKLENGTH;
	}
}

#elif !defined SOSEMANUK_SPEED

/* see sosemanuk.h */
void
sosemanuk_prng(sosemanuk_run_context *rc, unsigned char *out, size_t out_len)
{
	if (rc->ptr < (sizeof rc->buf)) {
		size_t rlen = (sizeof rc->buf) - rc->ptr;

		if (rlen > out_len)
			rlen = out_len;
		memcpy(out, rc->buf + rc->ptr, rlen);
		out += rlen;
		out_len -= rlen;
		rc->ptr += rlen;
	}
	while (out_len > 0) {
		sosemanuk_internal(rc);
		if (out_len >= sizeof rc->buf) {
			memcpy(out, rc->buf, sizeof rc->buf);
			out += sizeof rc->buf;
			out_len -= sizeof rc->buf;
		} else {
			memcpy(out, rc->buf, out_len);
			rc->ptr = out_len;
			out_len = 0;
		}
	}
}

/* see sosemanuk.h */
void
sosemanuk_encrypt(sosemanuk_run_context *rc,
	unsigned char *in, unsigned char *out, size_t data_len)
{
	if (rc->ptr < (sizeof rc->buf)) {
		size_t rlen = (sizeof rc->buf) - rc->ptr;

		if (rlen > data_len)
			rlen = data_len;
		xorbuf(rc->buf + rc->ptr, in, out, rlen);
		in += rlen;
		out += rlen;
		data_len -= rlen;
		rc->ptr += rlen;
	}
	while (data_len > 0) {
		sosemanuk_internal(rc);
		if (data_len >= sizeof rc->buf) {
			xorbuf(rc->buf, in, out, sizeof rc->buf);
			in += sizeof rc->buf;
			out += sizeof rc->buf;
			data_len -= sizeof rc->buf;
		} else {
			xorbuf(rc->buf, in, out, data_len);
			rc->ptr = data_len;
			data_len = 0;
		}
	}
}

#endif

#if defined SOSEMANUK_VECTOR

/* ======================================================================== */
/*
 * Test code. This code is used to generate test vectors, with the
 * SOSEMANUK_VECTOR macro defined.
 */

/*
 * Generate 160 bytes of stream with the provided key and IV.
 */
static void
maketest(int tvn, unsigned char *key, size_t key_len,
	unsigned char *iv, size_t iv_len)
{
#ifdef SOSEMANUK_ECRYPT
	ECRYPT_ctx ctx;
#else
	sosemanuk_key_context kc;
	sosemanuk_run_context rc;
#endif
	unsigned char tmp[160];
	unsigned u;

	printf("=====================================================\n");
	printf("Detailed test vector %d:\n", tvn);

#ifdef SOSEMANUK_ECRYPT
	ECRYPT_init();
	ECRYPT_keysetup(&ctx, key, key_len * 8, iv_len * 8);
	ECRYPT_ivsetup(&ctx, iv);
#if defined SOSEMANUK_TEST_ENCRYPT_BYTES
	memset(tmp, 0, sizeof tmp);
	ECRYPT_encrypt_bytes(&ctx, tmp, tmp, sizeof tmp);
#elif defined SOSEMANUK_TEST_DECRYPT_BYTES
	memset(tmp, 0, sizeof tmp);
	ECRYPT_decrypt_bytes(&ctx, tmp, tmp, sizeof tmp);
#elif defined SOSEMANUK_TEST_ENCRYPT_BLOCKS
	memset(tmp, 0, sizeof tmp);
	ECRYPT_encrypt_blocks(&ctx, tmp, tmp, 2);
#elif defined SOSEMANUK_TEST_DECRYPT_BLOCKS
	memset(tmp, 0, sizeof tmp);
	ECRYPT_decrypt_blocks(&ctx, tmp, tmp, 2);
#elif defined SOSEMANUK_TEST_KEYSTREAM_BLOCKS
	ECRYPT_keystream_blocks(&ctx, tmp, 2);
#else
	ECRYPT_keystream_bytes(&ctx, tmp, sizeof tmp);
#endif
#else
	sosemanuk_schedule(&kc, key, key_len);
	sosemanuk_init(&rc, &kc, iv, iv_len);
	sosemanuk_prng(&rc, tmp, sizeof tmp);
#endif

	printf("\n");
	printf("Total output:");
	for (u = 0; u < sizeof tmp; u ++) {
		if ((u & 0x0F) == 0)
			printf("\n");
		printf(" %02X", (unsigned)tmp[u]);
	}
	printf("\n\n");
}

int
main(void)
{
	static unsigned char key1[] = { 0xA7, 0xC0, 0x83, 0xFE, 0xB7 };
	static unsigned char iv1[] = {
		0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
		0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF
	};

	static unsigned char key2[] = {
		0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
		0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF
	};
	static unsigned char iv2[] = {
		0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF,
		0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77
	};

	maketest(1, key1, sizeof key1, iv1, sizeof iv1);
	maketest(2, key2, sizeof key2, iv2, sizeof iv2);
	return 0;
}

#elif defined SOSEMANUK_SPEED

/* ======================================================================== */
/*
 * Test code. This code is used to measure implementation speed. The
 * provided argument is the size of benched output stream, in megabytes.
 */

static void
usage(void)
{
	fprintf(stderr, "missing argument: output length (in megabytes)\n");
	exit(EXIT_FAILURE);
}

int
main(int argc, char *argv[])
{
	static unsigned char key[] = { 0xA7, 0xC0, 0x83, 0xFE, 0xB7 };
	static unsigned char iv[] = {
		0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
		0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF
	};
	sosemanuk_key_context kc;
	sosemanuk_run_context rc;
	unsigned long speed_counter;
	clock_t orig, end;
	double nw, ts;
	unum32 sum;

	if (argc < 2)
		usage();
	speed_counter = strtoul(argv[1], 0, 0);
	speed_counter = (speed_counter * 65536UL) / 5;
	if (speed_counter == 0)
		usage();
	nw = (double)speed_counter * 20.0;
	printf("number of 32-bit words: %.0f\n", nw);
	sosemanuk_schedule(&kc, key, sizeof key);
	sosemanuk_init(&rc, &kc, iv, sizeof iv);
	sosemanuk_internal(&rc, 16);
	orig = clock();
	sum = sosemanuk_internal(&rc, speed_counter);
	end = clock();
	ts = (double)end / CLOCKS_PER_SEC - (double)orig / CLOCKS_PER_SEC;
	if (ts <= 1.0) {
		printf("too fast: no meaningful result\n");
	} else {
		printf("elapsed time: %.4f seconds\n", ts);
		printf("32-bit words per second: %.0f\n", nw / ts);
	}
	printf("sum = %08lX\n", (unsigned long)sum);
	return 0;
}

#endif