about summary refs log tree commit diff
path: root/Doc/Zsh/func.yo
blob: 0f61c861f20cd6d04d7296a43813737a9ef248b3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
texinode(Functions)(Jobs & Signals)(Command Execution)(Top)
chapter(Functions)
ifzman(\
sect(Functions)
)\
cindex(functions)
findex(function, use of)
Shell functions are defined with the tt(function) reserved word or the
special syntax `var(funcname) tt(())'.
Shell functions are read in and stored internally.
Alias names are resolved when the function is read.
Functions are executed like commands with the arguments
passed as positional parameters.
(See noderef(Command Execution).)

Functions execute in the same process as the caller and
share all files
and present working directory with the
caller.  A trap on tt(EXIT) set inside a function
is executed after the function completes in the environment
of the caller.

findex(return, use of)
The tt(return) builtin is used to return from function calls.

findex(functions, use of)
Function identifiers can be listed with the tt(functions) builtin.
findex(unfunction, use of)
Functions can be undefined with the tt(unfunction) builtin.
sect(Autoloading Functions)
cindex(autoloading functions)
cindex(functions, autoloading)

findex(autoload, use of)
vindex(fpath, use of)
A function can be marked as em(undefined) using the tt(autoload) builtin
(or `tt(functions -u)' or `tt(typeset -fu)').  Such a function has no
body.  When the function is first executed, the shell searches for its
definition using the elements of the tt(fpath) variable.  Thus to define
functions for autoloading, a typical sequence is:

example(fpath=(~/myfuncs $fpath)
autoload myfunc1 myfunc2 ...)

The usual alias expansion during reading will be suppressed if the
tt(autoload) builtin or its equivalent is given the option tt(-U). This is
recommended for the use of functions supplied with the zsh distribution.
findex(zcompile, use of)
Note that for functions precompiled with the tt(zcompile) builtin command
the flag tt(-U) must be provided when the tt(.zwc) file is created, as the
corresponding information is compiled into the latter.

For each var(element) in tt(fpath), the shell looks for three possible
files, the newest of which is used to load the definition for the function:

startitem()
item(var(element)tt(.zwc))(
A file created with the tt(zcompile) builtin command, which is expected to
contain the definitions for all functions in the directory named
var(element).  The file is treated in the same manner as a directory
containing files for functions and is searched for the definition of the
function.   If the definition is not found, the search for a definition
proceeds with the other two possibilities described below.

If var(element) already includes a tt(.zwc) extension (i.e. the extension
was explicitly given by the user), var(element) is searched for the
definition of the function without comparing its age to that of other
files; in fact, there does not need to be any directory named var(element)
without the suffix.  Thus including an element such as
`tt(/usr/local/funcs.zwc)' in tt(fpath) will speed up the search for
functions, with the disadvantage that functions included must be explicitly
recompiled by hand before the shell notices any changes.
)
item(var(element)tt(/)var(function)tt(.zwc))(
A file created with tt(zcompile), which is expected to contain the
definition for var(function).  It may include other function definitions
as well, but those are neither loaded nor executed; a file found in this
way is searched em(only) for the definition of var(function).
)
item(var(element)tt(/)var(function))(
A file of zsh command text, taken to be the definition for var(function).
)
enditem()

In summary, the order of searching is, first, in the em(parents of)
directories in tt(fpath) for the newer of either a compiled directory or
a directory in tt(fpath); second, if more than one of these contains a
definition for the function that is sought, the leftmost in the tt(fpath)
is chosen; and third, within a directory, the newer of either a compiled
function or an ordinary function definition is used.

pindex(KSH_AUTOLOAD, use of)
If the tt(KSH_AUTOLOAD) option is set, or the file contains only a
simple definition of the function, the file's contents will be executed.
This will normally define the function in question, but may also perform
initialization, which is executed in the context of the function execution,
and may therefore define local parameters.  It is an error if the function
is not defined by loading the file.

Otherwise, the function body (with no surrounding `var(funcname)tt(()
{)var(...)tt(})') is taken to be the complete contents of the file.  This
form allows the file to be used directly as an executable shell script.  If
processing of the file results in the function being re-defined, the
function itself is not re-executed.  To force the shell to perform
initialization and then call the function defined, the file should contain
initialization code (which will be executed then discarded) in addition to
a complete function definition (which will be retained for subsequent calls
to the function), and a call to the shell function, including any
arguments, at the end.

For example, suppose the autoload file tt(func) contains

example(func+LPAR()RPAR() { print This is func; }
print func is initialized
)

then `tt(func; func)' with tt(KSH_AUTOLOAD) set will produce both messages
on the first call, but only the message `tt(This is func)' on the second
and subsequent calls.  Without tt(KSH_AUTOLOAD) set, it will produce
the initialization message on the first call, and the other message on the
second and subsequent calls.

It is also possible to create a function that is not marked as autoloaded,
but which loads its own definition by searching tt(fpath), by using
`tt(autoload -X)' within a shell function.  For example, the following are
equivalent:

example(myfunc+LPAR()RPAR() {
  autoload -X
}
myfunc args...)

and

example(unfunction myfunc   # if myfunc was defined
autoload myfunc
myfunc args...)

In fact, the tt(functions) command outputs `tt(builtin autoload -X)' as
the body of an autoloaded function.  This is done so that

example(eval "$(functions)")

produces a reasonable result.  A true autoloaded function can be
identified by the presence of the comment `tt(# undefined)' in the body,
because all comments are discarded from defined functions.

To load the definition of an autoloaded function tt(myfunc) without
executing tt(myfunc), use:

example(autoload +X myfunc)

sect(Special Functions)
Certain functions, if defined, have special meaning to the shell.

In the case of tt(chpwd), tt(periodic), tt(precmd) and tt(preexec) it is
possible to define an array that has the same name with `tt(_functions)'
appended.  Any element in such an array is taken as the name of a function
to execute; it is executed in the same context and with the same arguments
as the basic function.  For example, if tt($chpwd_functions) is an array
containing the values `tt(mychpwd)', `tt(chpwd_save_dirstack)', then the
shell attempts to execute the functions `tt(chpwd)', `tt(mychpwd)' and
`tt(chpwd_save_dirstack)', in that order.  Any function that does not exist
is silently ignored.  A function found by this mechanism is referred to
elsewhere as a `hook function'.  An error in any function causes
subsequent functions not to be run.  Note further that an error
in a tt(precmd) hook causes an immediately following tt(periodic)
function not to run (thought it may run at the next opportunity).

startitem()
findex(chpwd)
vindex(chpwd_functions)
item(tt(chpwd))(
Executed whenever the current working directory is changed.
)
findex(periodic)
vindex(periodic_functions)
item(tt(periodic))(
vindex(PERIOD)
If the parameter tt(PERIOD)
is set, this function is executed every tt($PERIOD)
seconds, just before a prompt.  Note that if multiple functions
are defined using the array tt(periodic_functions) only one
period is applied to the complete set of functions, and the
scheduled time is not reset if the list of functions is altered.
Hence the set of functions is always called together.
)
findex(precmd)
vindex(precmd_functions)
item(tt(precmd))(
Executed before each prompt.  Note that precommand functions are not
reexecuted simply because the command line is redrawn, as happens, for
example, when a notification about an exiting job is displayed.
)
findex(preexec)
vindex(preexec_functions)
item(tt(preexec))(
Executed just after a command has been read and is about to be
executed.  If the history mechanism is active (and the line was not
discarded from the history buffer), the string that the user typed is
passed as the first argument, otherwise it is an empty string.  The
actual command that will be executed (including expanded aliases) is
passed in two different forms: the second argument is a single-line,
size-limited version of the command (with things like function bodies
elided); the third argument contains the full text that is being
executed.
)
findex(zshexit)
vindex(zshexit_functions)
item(tt(zshexit))(
Executed at the point where the main shell is about to exit normally.
This is not called by exiting subshells, nor when the tt(exec)
precommand modifier is used before an external command.  Also, unlike
tt(TRAPEXIT), it is not called when functions exit.
)
item(tt(TRAP)var(NAL))(
cindex(signals, trapping)
cindex(trapping signals)
If defined and non-null,
this function will be executed whenever the shell
catches a signal tt(SIG)var(NAL), where var(NAL) is a signal
name as specified for the tt(kill) builtin.
The signal number will be passed as the first parameter to the function.

If a function of this form is defined and null,
the shell and processes spawned by it will ignore tt(SIG)var(NAL).

The return status from the function is handled specially.  If it is
zero, the signal is assumed to have been handled, and execution continues
normally.  Otherwise, the shell will behave as interrupted except that
the return status of the trap is retained.

Programs terminated by uncaught signals typically return the status 128
plus the signal number.  Hence the following causes the handler for
tt(SIGINT) to print a message, then mimic the usual effect of the signal.

example(TRAPINT+LPAR()RPAR() {
  print "Caught SIGINT, aborting."
  return $(( 128 + $1 ))
})

The functions tt(TRAPZERR), tt(TRAPDEBUG) and tt(TRAPEXIT) are never
executed inside other traps.
)
findex(TRAPDEBUG)
item(tt(TRAPDEBUG))(
Executed after each command.
)
findex(TRAPEXIT)
item(tt(TRAPEXIT))(
Executed when the shell exits,
or when the current function exits if defined inside a function.
The value of tt($?) at the start of execution is the exit status of the
shell or the return status of the function exiting.
)
findex(TRAPZERR)
item(tt(TRAPZERR))(
Executed whenever a command has a non-zero exit status.  However, the
function is not executed if the command occurred in a sublist followed by
`tt(&&)' or `tt(||)'; only the final command in a sublist of this type
causes the trap to be executed.
)
enditem()

findex(trap, use of)
The functions beginning `tt(TRAP)' may alternatively be defined with the
tt(trap) builtin:  this may be preferable for some uses, as they are then
run in the environment of the calling process, rather than in their own
function environment.  Apart from the difference in calling procedure and
the fact that the function form appears in lists of functions, the forms

example(TRAPNAL+LPAR()RPAR() { 
 # code
})

and

example(trap '
 # code
' NAL)

are equivalent.