1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
/*
* Double-precision log2(x) function.
*
* Copyright (c) 2018, Arm Limited.
* SPDX-License-Identifier: MIT
*/
#include <math.h>
#include <stdint.h>
#include "libm.h"
#include "log2_data.h"
#define T __log2_data.tab
#define T2 __log2_data.tab2
#define B __log2_data.poly1
#define A __log2_data.poly
#define InvLn2hi __log2_data.invln2hi
#define InvLn2lo __log2_data.invln2lo
#define N (1 << LOG2_TABLE_BITS)
#define OFF 0x3fe6000000000000
/* Top 16 bits of a double. */
static inline uint32_t top16(double x)
{
return asuint64(x) >> 48;
}
double log2(double x)
{
double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p;
uint64_t ix, iz, tmp;
uint32_t top;
int k, i;
ix = asuint64(x);
top = top16(x);
#define LO asuint64(1.0 - 0x1.5b51p-5)
#define HI asuint64(1.0 + 0x1.6ab2p-5)
if (predict_false(ix - LO < HI - LO)) {
/* Handle close to 1.0 inputs separately. */
/* Fix sign of zero with downward rounding when x==1. */
if (WANT_ROUNDING && predict_false(ix == asuint64(1.0)))
return 0;
r = x - 1.0;
#if __FP_FAST_FMA
hi = r * InvLn2hi;
lo = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -hi);
#else
double_t rhi, rlo;
rhi = asdouble(asuint64(r) & -1ULL << 32);
rlo = r - rhi;
hi = rhi * InvLn2hi;
lo = rlo * InvLn2hi + r * InvLn2lo;
#endif
r2 = r * r; /* rounding error: 0x1p-62. */
r4 = r2 * r2;
/* Worst-case error is less than 0.54 ULP (0.55 ULP without fma). */
p = r2 * (B[0] + r * B[1]);
y = hi + p;
lo += hi - y + p;
lo += r4 * (B[2] + r * B[3] + r2 * (B[4] + r * B[5]) +
r4 * (B[6] + r * B[7] + r2 * (B[8] + r * B[9])));
y += lo;
return eval_as_double(y);
}
if (predict_false(top - 0x0010 >= 0x7ff0 - 0x0010)) {
/* x < 0x1p-1022 or inf or nan. */
if (ix * 2 == 0)
return __math_divzero(1);
if (ix == asuint64(INFINITY)) /* log(inf) == inf. */
return x;
if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
return __math_invalid(x);
/* x is subnormal, normalize it. */
ix = asuint64(x * 0x1p52);
ix -= 52ULL << 52;
}
/* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
The range is split into N subintervals.
The ith subinterval contains z and c is near its center. */
tmp = ix - OFF;
i = (tmp >> (52 - LOG2_TABLE_BITS)) % N;
k = (int64_t)tmp >> 52; /* arithmetic shift */
iz = ix - (tmp & 0xfffULL << 52);
invc = T[i].invc;
logc = T[i].logc;
z = asdouble(iz);
kd = (double_t)k;
/* log2(x) = log2(z/c) + log2(c) + k. */
/* r ~= z/c - 1, |r| < 1/(2*N). */
#if __FP_FAST_FMA
/* rounding error: 0x1p-55/N. */
r = __builtin_fma(z, invc, -1.0);
t1 = r * InvLn2hi;
t2 = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -t1);
#else
double_t rhi, rlo;
/* rounding error: 0x1p-55/N + 0x1p-65. */
r = (z - T2[i].chi - T2[i].clo) * invc;
rhi = asdouble(asuint64(r) & -1ULL << 32);
rlo = r - rhi;
t1 = rhi * InvLn2hi;
t2 = rlo * InvLn2hi + r * InvLn2lo;
#endif
/* hi + lo = r/ln2 + log2(c) + k. */
t3 = kd + logc;
hi = t3 + t1;
lo = t3 - hi + t1 + t2;
/* log2(r+1) = r/ln2 + r^2*poly(r). */
/* Evaluation is optimized assuming superscalar pipelined execution. */
r2 = r * r; /* rounding error: 0x1p-54/N^2. */
r4 = r2 * r2;
/* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma).
~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma). */
p = A[0] + r * A[1] + r2 * (A[2] + r * A[3]) + r4 * (A[4] + r * A[5]);
y = lo + r2 * p + hi;
return eval_as_double(y);
}
|