about summary refs log tree commit diff
path: root/src/math/atanl.c
blob: 33ecff0de8d80ded1ec22c735c4e53d273fe3849 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/* origin: FreeBSD /usr/src/lib/msun/src/s_atanl.c */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */
/*
 * See comments in atan.c.
 * Converted to long double by David Schultz <das@FreeBSD.ORG>.
 */

#include "libm.h"

#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
long double atanl(long double x)
{
	return atan(x);
}
#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
#include "__invtrigl.h"

#define ATAN_CONST      (BIAS + 65)     /* 2**65 */
#define ATAN_LINEAR     (BIAS - 32)     /* 2**-32 */
static const long double huge = 1.0e300;

static const long double atanhi[] = {
	 4.63647609000806116202e-01L,
	 7.85398163397448309628e-01L,
	 9.82793723247329067960e-01L,
	 1.57079632679489661926e+00L,
};

static const long double atanlo[] = {
	 1.18469937025062860669e-20L,
	-1.25413940316708300586e-20L,
	 2.55232234165405176172e-20L,
	-2.50827880633416601173e-20L,
};

static const long double aT[] = {
	 3.33333333333333333017e-01L,
	-1.99999999999999632011e-01L,
	 1.42857142857046531280e-01L,
	-1.11111111100562372733e-01L,
	 9.09090902935647302252e-02L,
	-7.69230552476207730353e-02L,
	 6.66661718042406260546e-02L,
	-5.88158892835030888692e-02L,
	 5.25499891539726639379e-02L,
	-4.70119845393155721494e-02L,
	 4.03539201366454414072e-02L,
	-2.91303858419364158725e-02L,
	 1.24822046299269234080e-02L,
};

static long double T_even(long double x)
{
	return aT[0] + x * (aT[2] + x * (aT[4] + x * (aT[6] +
		x * (aT[8] + x * (aT[10] + x * aT[12])))));
}

static long double T_odd(long double x)
{
	return aT[1] + x * (aT[3] + x * (aT[5] + x * (aT[7] +
		x * (aT[9] + x * aT[11]))));
}

long double atanl(long double x)
{
	union IEEEl2bits u;
	long double w,s1,s2,z;
	int id;
	int16_t expsign, expt;
	int32_t expman;

	u.e = x;
	expsign = u.xbits.expsign;
	expt = expsign & 0x7fff;
	if (expt >= ATAN_CONST) { /* if |x| is large, atan(x)~=pi/2 */
		if (expt == BIAS + LDBL_MAX_EXP &&
		    ((u.bits.manh&~LDBL_NBIT)|u.bits.manl)!=0)  /* NaN */
			return x+x;
		if (expsign > 0)
			return  atanhi[3]+atanlo[3];
		else
			return -atanhi[3]-atanlo[3];
	}
	/* Extract the exponent and the first few bits of the mantissa. */
	/* XXX There should be a more convenient way to do this. */
	expman = (expt << 8) | ((u.bits.manh >> (MANH_SIZE - 9)) & 0xff);
	if (expman < ((BIAS - 2) << 8) + 0xc0) {  /* |x| < 0.4375 */
		if (expt < ATAN_LINEAR) {   /* if |x| is small, atanl(x)~=x */
			/* raise inexact */
			if (huge+x > 1.0)
				return x;
		}
		id = -1;
	} else {
		x = fabsl(x);
		if (expman < (BIAS << 8) + 0x30) {  /* |x| < 1.1875 */
			if (expman < ((BIAS - 1) << 8) + 0x60) { /*  7/16 <= |x| < 11/16 */
				id = 0;
				x = (2.0*x-1.0)/(2.0+x);
			} else {                                 /* 11/16 <= |x| < 19/16 */
				id = 1;
				x = (x-1.0)/(x+1.0);
			}
		} else {
			if (expman < ((BIAS + 1) << 8) + 0x38) { /* |x| < 2.4375 */
				id = 2;
				x = (x-1.5)/(1.0+1.5*x);
			} else {                                 /* 2.4375 <= |x| < 2^ATAN_CONST */
				id = 3;
				x = -1.0/x;
			}
		}
	}
	/* end of argument reduction */
	z = x*x;
	w = z*z;
	/* break sum aT[i]z**(i+1) into odd and even poly */
	s1 = z*T_even(w);
	s2 = w*T_odd(w);
	if (id < 0)
		return x - x*(s1+s2);
	z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
	return expsign < 0 ? -z : z;
}
#endif