1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
|
#define _GNU_SOURCE
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <stdint.h>
#include <errno.h>
#include <sys/mman.h>
#include "libc.h"
#include "atomic.h"
#include "pthread_impl.h"
#include "malloc_impl.h"
#if defined(__GNUC__) && defined(__PIC__)
#define inline inline __attribute__((always_inline))
#endif
static struct {
volatile uint64_t binmap;
struct bin bins[64];
volatile int split_merge_lock[2];
} mal;
/* Synchronization tools */
static inline void lock(volatile int *lk)
{
int need_locks = libc.need_locks;
if (need_locks) {
while(a_swap(lk, 1)) __wait(lk, lk+1, 1, 1);
if (need_locks < 0) libc.need_locks = 0;
}
}
static inline void unlock(volatile int *lk)
{
if (lk[0]) {
a_store(lk, 0);
if (lk[1]) __wake(lk, 1, 1);
}
}
static inline void lock_bin(int i)
{
lock(mal.bins[i].lock);
if (!mal.bins[i].head)
mal.bins[i].head = mal.bins[i].tail = BIN_TO_CHUNK(i);
}
static inline void unlock_bin(int i)
{
unlock(mal.bins[i].lock);
}
static int first_set(uint64_t x)
{
#if 1
return a_ctz_64(x);
#else
static const char debruijn64[64] = {
0, 1, 2, 53, 3, 7, 54, 27, 4, 38, 41, 8, 34, 55, 48, 28,
62, 5, 39, 46, 44, 42, 22, 9, 24, 35, 59, 56, 49, 18, 29, 11,
63, 52, 6, 26, 37, 40, 33, 47, 61, 45, 43, 21, 23, 58, 17, 10,
51, 25, 36, 32, 60, 20, 57, 16, 50, 31, 19, 15, 30, 14, 13, 12
};
static const char debruijn32[32] = {
0, 1, 23, 2, 29, 24, 19, 3, 30, 27, 25, 11, 20, 8, 4, 13,
31, 22, 28, 18, 26, 10, 7, 12, 21, 17, 9, 6, 16, 5, 15, 14
};
if (sizeof(long) < 8) {
uint32_t y = x;
if (!y) {
y = x>>32;
return 32 + debruijn32[(y&-y)*0x076be629 >> 27];
}
return debruijn32[(y&-y)*0x076be629 >> 27];
}
return debruijn64[(x&-x)*0x022fdd63cc95386dull >> 58];
#endif
}
static const unsigned char bin_tab[60] = {
32,33,34,35,36,36,37,37,38,38,39,39,
40,40,40,40,41,41,41,41,42,42,42,42,43,43,43,43,
44,44,44,44,44,44,44,44,45,45,45,45,45,45,45,45,
46,46,46,46,46,46,46,46,47,47,47,47,47,47,47,47,
};
static int bin_index(size_t x)
{
x = x / SIZE_ALIGN - 1;
if (x <= 32) return x;
if (x < 512) return bin_tab[x/8-4];
if (x > 0x1c00) return 63;
return bin_tab[x/128-4] + 16;
}
static int bin_index_up(size_t x)
{
x = x / SIZE_ALIGN - 1;
if (x <= 32) return x;
x--;
if (x < 512) return bin_tab[x/8-4] + 1;
return bin_tab[x/128-4] + 17;
}
#if 0
void __dump_heap(int x)
{
struct chunk *c;
int i;
for (c = (void *)mal.heap; CHUNK_SIZE(c); c = NEXT_CHUNK(c))
fprintf(stderr, "base %p size %zu (%d) flags %d/%d\n",
c, CHUNK_SIZE(c), bin_index(CHUNK_SIZE(c)),
c->csize & 15,
NEXT_CHUNK(c)->psize & 15);
for (i=0; i<64; i++) {
if (mal.bins[i].head != BIN_TO_CHUNK(i) && mal.bins[i].head) {
fprintf(stderr, "bin %d: %p\n", i, mal.bins[i].head);
if (!(mal.binmap & 1ULL<<i))
fprintf(stderr, "missing from binmap!\n");
} else if (mal.binmap & 1ULL<<i)
fprintf(stderr, "binmap wrongly contains %d!\n", i);
}
}
#endif
/* This function returns true if the interval [old,new]
* intersects the 'len'-sized interval below &libc.auxv
* (interpreted as the main-thread stack) or below &b
* (the current stack). It is used to defend against
* buggy brk implementations that can cross the stack. */
static int traverses_stack_p(uintptr_t old, uintptr_t new)
{
const uintptr_t len = 8<<20;
uintptr_t a, b;
b = (uintptr_t)libc.auxv;
a = b > len ? b-len : 0;
if (new>a && old<b) return 1;
b = (uintptr_t)&b;
a = b > len ? b-len : 0;
if (new>a && old<b) return 1;
return 0;
}
/* Expand the heap in-place if brk can be used, or otherwise via mmap,
* using an exponential lower bound on growth by mmap to make
* fragmentation asymptotically irrelevant. The size argument is both
* an input and an output, since the caller needs to know the size
* allocated, which will be larger than requested due to page alignment
* and mmap minimum size rules. The caller is responsible for locking
* to prevent concurrent calls. */
static void *__expand_heap(size_t *pn)
{
static uintptr_t brk;
static unsigned mmap_step;
size_t n = *pn;
if (n > SIZE_MAX/2 - PAGE_SIZE) {
errno = ENOMEM;
return 0;
}
n += -n & PAGE_SIZE-1;
if (!brk) {
brk = __syscall(SYS_brk, 0);
brk += -brk & PAGE_SIZE-1;
}
if (n < SIZE_MAX-brk && !traverses_stack_p(brk, brk+n)
&& __syscall(SYS_brk, brk+n)==brk+n) {
*pn = n;
brk += n;
return (void *)(brk-n);
}
size_t min = (size_t)PAGE_SIZE << mmap_step/2;
if (n < min) n = min;
void *area = __mmap(0, n, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (area == MAP_FAILED) return 0;
*pn = n;
mmap_step++;
return area;
}
static struct chunk *expand_heap(size_t n)
{
static void *end;
void *p;
struct chunk *w;
/* The argument n already accounts for the caller's chunk
* overhead needs, but if the heap can't be extended in-place,
* we need room for an extra zero-sized sentinel chunk. */
n += SIZE_ALIGN;
p = __expand_heap(&n);
if (!p) return 0;
/* If not just expanding existing space, we need to make a
* new sentinel chunk below the allocated space. */
if (p != end) {
/* Valid/safe because of the prologue increment. */
n -= SIZE_ALIGN;
p = (char *)p + SIZE_ALIGN;
w = MEM_TO_CHUNK(p);
w->psize = 0 | C_INUSE;
}
/* Record new heap end and fill in footer. */
end = (char *)p + n;
w = MEM_TO_CHUNK(end);
w->psize = n | C_INUSE;
w->csize = 0 | C_INUSE;
/* Fill in header, which may be new or may be replacing a
* zero-size sentinel header at the old end-of-heap. */
w = MEM_TO_CHUNK(p);
w->csize = n | C_INUSE;
return w;
}
static int adjust_size(size_t *n)
{
/* Result of pointer difference must fit in ptrdiff_t. */
if (*n-1 > PTRDIFF_MAX - SIZE_ALIGN - PAGE_SIZE) {
if (*n) {
errno = ENOMEM;
return -1;
} else {
*n = SIZE_ALIGN;
return 0;
}
}
*n = (*n + OVERHEAD + SIZE_ALIGN - 1) & SIZE_MASK;
return 0;
}
static void unbin(struct chunk *c, int i)
{
if (c->prev == c->next)
a_and_64(&mal.binmap, ~(1ULL<<i));
c->prev->next = c->next;
c->next->prev = c->prev;
c->csize |= C_INUSE;
NEXT_CHUNK(c)->psize |= C_INUSE;
}
static void bin_chunk(struct chunk *self, int i)
{
self->next = BIN_TO_CHUNK(i);
self->prev = mal.bins[i].tail;
self->next->prev = self;
self->prev->next = self;
if (self->prev == BIN_TO_CHUNK(i))
a_or_64(&mal.binmap, 1ULL<<i);
}
static void trim(struct chunk *self, size_t n)
{
size_t n1 = CHUNK_SIZE(self);
struct chunk *next, *split;
if (n >= n1 - DONTCARE) return;
next = NEXT_CHUNK(self);
split = (void *)((char *)self + n);
split->psize = n | C_INUSE;
split->csize = n1-n;
next->psize = n1-n;
self->csize = n | C_INUSE;
int i = bin_index(n1-n);
lock_bin(i);
bin_chunk(split, i);
unlock_bin(i);
}
void *malloc(size_t n)
{
struct chunk *c;
int i, j;
uint64_t mask;
if (adjust_size(&n) < 0) return 0;
if (n > MMAP_THRESHOLD) {
size_t len = n + OVERHEAD + PAGE_SIZE - 1 & -PAGE_SIZE;
char *base = __mmap(0, len, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (base == (void *)-1) return 0;
c = (void *)(base + SIZE_ALIGN - OVERHEAD);
c->csize = len - (SIZE_ALIGN - OVERHEAD);
c->psize = SIZE_ALIGN - OVERHEAD;
return CHUNK_TO_MEM(c);
}
i = bin_index_up(n);
if (i<63 && (mal.binmap & (1ULL<<i))) {
lock_bin(i);
c = mal.bins[i].head;
if (c != BIN_TO_CHUNK(i) && CHUNK_SIZE(c)-n <= DONTCARE) {
unbin(c, i);
unlock_bin(i);
return CHUNK_TO_MEM(c);
}
unlock_bin(i);
}
lock(mal.split_merge_lock);
for (mask = mal.binmap & -(1ULL<<i); mask; mask -= (mask&-mask)) {
j = first_set(mask);
lock_bin(j);
c = mal.bins[j].head;
if (c != BIN_TO_CHUNK(j)) {
unbin(c, j);
unlock_bin(j);
break;
}
unlock_bin(j);
}
if (!mask) {
c = expand_heap(n);
if (!c) {
unlock(mal.split_merge_lock);
return 0;
}
}
trim(c, n);
unlock(mal.split_merge_lock);
return CHUNK_TO_MEM(c);
}
int __malloc_allzerop(void *p)
{
return IS_MMAPPED(MEM_TO_CHUNK(p));
}
void *realloc(void *p, size_t n)
{
struct chunk *self, *next;
size_t n0, n1;
void *new;
if (!p) return malloc(n);
if (adjust_size(&n) < 0) return 0;
self = MEM_TO_CHUNK(p);
n1 = n0 = CHUNK_SIZE(self);
if (n<=n0 && n0-n<=DONTCARE) return p;
if (IS_MMAPPED(self)) {
size_t extra = self->psize;
char *base = (char *)self - extra;
size_t oldlen = n0 + extra;
size_t newlen = n + extra;
/* Crash on realloc of freed chunk */
if (extra & 1) a_crash();
if (newlen < PAGE_SIZE && (new = malloc(n-OVERHEAD))) {
n0 = n;
goto copy_free_ret;
}
newlen = (newlen + PAGE_SIZE-1) & -PAGE_SIZE;
if (oldlen == newlen) return p;
base = __mremap(base, oldlen, newlen, MREMAP_MAYMOVE);
if (base == (void *)-1)
goto copy_realloc;
self = (void *)(base + extra);
self->csize = newlen - extra;
return CHUNK_TO_MEM(self);
}
next = NEXT_CHUNK(self);
/* Crash on corrupted footer (likely from buffer overflow) */
if (next->psize != self->csize) a_crash();
if (n < n0) {
int i = bin_index_up(n);
int j = bin_index(n0);
if (i<j && (mal.binmap & (1ULL << i)))
goto copy_realloc;
struct chunk *split = (void *)((char *)self + n);
self->csize = split->psize = n | C_INUSE;
split->csize = next->psize = n0-n | C_INUSE;
__bin_chunk(split);
return CHUNK_TO_MEM(self);
}
lock(mal.split_merge_lock);
size_t nsize = next->csize & C_INUSE ? 0 : CHUNK_SIZE(next);
if (n0+nsize >= n) {
int i = bin_index(nsize);
lock_bin(i);
if (!(next->csize & C_INUSE)) {
unbin(next, i);
unlock_bin(i);
next = NEXT_CHUNK(next);
self->csize = next->psize = n0+nsize | C_INUSE;
trim(self, n);
unlock(mal.split_merge_lock);
return CHUNK_TO_MEM(self);
}
unlock_bin(i);
}
unlock(mal.split_merge_lock);
copy_realloc:
/* As a last resort, allocate a new chunk and copy to it. */
new = malloc(n-OVERHEAD);
if (!new) return 0;
copy_free_ret:
memcpy(new, p, (n<n0 ? n : n0) - OVERHEAD);
free(CHUNK_TO_MEM(self));
return new;
}
void __bin_chunk(struct chunk *self)
{
struct chunk *next = NEXT_CHUNK(self);
/* Crash on corrupted footer (likely from buffer overflow) */
if (next->psize != self->csize) a_crash();
lock(mal.split_merge_lock);
size_t osize = CHUNK_SIZE(self), size = osize;
/* Since we hold split_merge_lock, only transition from free to
* in-use can race; in-use to free is impossible */
size_t psize = self->psize & C_INUSE ? 0 : CHUNK_PSIZE(self);
size_t nsize = next->csize & C_INUSE ? 0 : CHUNK_SIZE(next);
if (psize) {
int i = bin_index(psize);
lock_bin(i);
if (!(self->psize & C_INUSE)) {
struct chunk *prev = PREV_CHUNK(self);
unbin(prev, i);
self = prev;
size += psize;
}
unlock_bin(i);
}
if (nsize) {
int i = bin_index(nsize);
lock_bin(i);
if (!(next->csize & C_INUSE)) {
unbin(next, i);
next = NEXT_CHUNK(next);
size += nsize;
}
unlock_bin(i);
}
int i = bin_index(size);
lock_bin(i);
self->csize = size;
next->psize = size;
bin_chunk(self, i);
unlock(mal.split_merge_lock);
/* Replace middle of large chunks with fresh zero pages */
if (size > RECLAIM && (size^(size-osize)) > size-osize) {
uintptr_t a = (uintptr_t)self + SIZE_ALIGN+PAGE_SIZE-1 & -PAGE_SIZE;
uintptr_t b = (uintptr_t)next - SIZE_ALIGN & -PAGE_SIZE;
#if 1
__madvise((void *)a, b-a, MADV_DONTNEED);
#else
__mmap((void *)a, b-a, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED, -1, 0);
#endif
}
unlock_bin(i);
}
static void unmap_chunk(struct chunk *self)
{
size_t extra = self->psize;
char *base = (char *)self - extra;
size_t len = CHUNK_SIZE(self) + extra;
/* Crash on double free */
if (extra & 1) a_crash();
__munmap(base, len);
}
void free(void *p)
{
if (!p) return;
struct chunk *self = MEM_TO_CHUNK(p);
if (IS_MMAPPED(self))
unmap_chunk(self);
else
__bin_chunk(self);
}
void __malloc_donate(char *start, char *end)
{
size_t align_start_up = (SIZE_ALIGN-1) & (-(uintptr_t)start - OVERHEAD);
size_t align_end_down = (SIZE_ALIGN-1) & (uintptr_t)end;
/* Getting past this condition ensures that the padding for alignment
* and header overhead will not overflow and will leave a nonzero
* multiple of SIZE_ALIGN bytes between start and end. */
if (end - start <= OVERHEAD + align_start_up + align_end_down)
return;
start += align_start_up + OVERHEAD;
end -= align_end_down;
struct chunk *c = MEM_TO_CHUNK(start), *n = MEM_TO_CHUNK(end);
c->psize = n->csize = C_INUSE;
c->csize = n->psize = C_INUSE | (end-start);
__bin_chunk(c);
}
|