about summary refs log tree commit diff
path: root/src/math/log.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/math/log.c')
-rw-r--r--src/math/log.c140
1 files changed, 140 insertions, 0 deletions
diff --git a/src/math/log.c b/src/math/log.c
new file mode 100644
index 00000000..1bb006a3
--- /dev/null
+++ b/src/math/log.c
@@ -0,0 +1,140 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+/* log(x)
+ * Return the logrithm of x
+ *
+ * Method :
+ *   1. Argument Reduction: find k and f such that
+ *                      x = 2^k * (1+f),
+ *         where  sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ *   2. Approximation of log(1+f).
+ *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+ *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+ *               = 2s + s*R
+ *      We use a special Remez algorithm on [0,0.1716] to generate
+ *      a polynomial of degree 14 to approximate R The maximum error
+ *      of this polynomial approximation is bounded by 2**-58.45. In
+ *      other words,
+ *                      2      4      6      8      10      12      14
+ *          R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
+ *      (the values of Lg1 to Lg7 are listed in the program)
+ *      and
+ *          |      2          14          |     -58.45
+ *          | Lg1*s +...+Lg7*s    -  R(z) | <= 2
+ *          |                             |
+ *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+ *      In order to guarantee error in log below 1ulp, we compute log
+ *      by
+ *              log(1+f) = f - s*(f - R)        (if f is not too large)
+ *              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
+ *
+ *      3. Finally,  log(x) = k*ln2 + log(1+f).
+ *                          = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
+ *         Here ln2 is split into two floating point number:
+ *                      ln2_hi + ln2_lo,
+ *         where n*ln2_hi is always exact for |n| < 2000.
+ *
+ * Special cases:
+ *      log(x) is NaN with signal if x < 0 (including -INF) ;
+ *      log(+INF) is +INF; log(0) is -INF with signal;
+ *      log(NaN) is that NaN with no signal.
+ *
+ * Accuracy:
+ *      according to an error analysis, the error is always less than
+ *      1 ulp (unit in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include "libm.h"
+
+static const double
+ln2_hi = 6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
+ln2_lo = 1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
+two54  = 1.80143985094819840000e+16,  /* 43500000 00000000 */
+Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
+Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
+Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
+Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
+Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
+Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
+Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
+
+static const double zero = 0.0;
+
+double log(double x)
+{
+	double hfsq,f,s,z,R,w,t1,t2,dk;
+	int32_t k,hx,i,j;
+	uint32_t lx;
+
+	EXTRACT_WORDS(hx, lx, x);
+
+	k = 0;
+	if (hx < 0x00100000) {  /* x < 2**-1022  */
+		if (((hx&0x7fffffff)|lx) == 0)
+			return -two54/zero;  /* log(+-0)=-inf */
+		if (hx < 0)
+			return (x-x)/zero;   /* log(-#) = NaN */
+		/* subnormal number, scale up x */
+		k -= 54;
+		x *= two54;
+		GET_HIGH_WORD(hx,x);
+	}
+	if (hx >= 0x7ff00000)
+		return x+x;
+	k += (hx>>20) - 1023;
+	hx &= 0x000fffff;
+	i = (hx+0x95f64)&0x100000;
+	SET_HIGH_WORD(x, hx|(i^0x3ff00000));  /* normalize x or x/2 */
+	k += i>>20;
+	f = x - 1.0;
+	if ((0x000fffff&(2+hx)) < 3) {  /* -2**-20 <= f < 2**-20 */
+		if (f == zero) {
+			if (k == 0) {
+				return zero;
+			}
+			dk = (double)k;
+			return dk*ln2_hi + dk*ln2_lo;
+		}
+		R = f*f*(0.5-0.33333333333333333*f);
+		if (k == 0)
+			return f - R;
+		dk = (double)k;
+		return dk*ln2_hi - ((R-dk*ln2_lo)-f);
+	}
+	s = f/(2.0+f);
+	dk = (double)k;
+	z = s*s;
+	i = hx - 0x6147a;
+	w = z*z;
+	j = 0x6b851 - hx;
+	t1 = w*(Lg2+w*(Lg4+w*Lg6));
+	t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
+	i |= j;
+	R = t2 + t1;
+	if (i > 0) {
+		hfsq = 0.5*f*f;
+		if (k == 0)
+			return f - (hfsq-s*(hfsq+R));
+		return dk*ln2_hi - ((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
+	} else {
+		if (k == 0)
+			return f - s*(f-R);
+		return dk*ln2_hi - ((s*(f-R)-dk*ln2_lo)-f);
+	}
+}