about summary refs log tree commit diff
path: root/src/math/log.c
diff options
context:
space:
mode:
authorSzabolcs Nagy <nsz@port70.net>2018-12-01 00:40:47 +0000
committerRich Felker <dalias@aerifal.cx>2019-04-17 23:44:59 -0400
commit236cd056e871acb8731cd84b5bfb6f0feb646589 (patch)
treeecdff2e63f92275d44f4d07af01f5e31193c8d1a /src/math/log.c
parentd28cd0ad428d63c186003fdf9c02470561650a04 (diff)
downloadmusl-236cd056e871acb8731cd84b5bfb6f0feb646589.tar.gz
musl-236cd056e871acb8731cd84b5bfb6f0feb646589.tar.xz
musl-236cd056e871acb8731cd84b5bfb6f0feb646589.zip
math: new log
from https://github.com/ARM-software/optimized-routines,
commit 04884bd04eac4b251da4026900010ea7d8850edc

Assume __FP_FAST_FMA implies __builtin_fma is inlined as a single
instruction.

code size change: +4588 bytes (+2540 bytes with fma).
benchmark on x86_64 before, after, speedup:

-Os:
   log rthruput:  12.61 ns/call  7.95 ns/call 1.59x
    log latency:  41.64 ns/call 23.38 ns/call 1.78x
-O3:
   log rthruput:  12.51 ns/call  7.75 ns/call 1.61x
    log latency:  41.82 ns/call 23.55 ns/call 1.78x
Diffstat (limited to 'src/math/log.c')
-rw-r--r--src/math/log.c202
1 files changed, 98 insertions, 104 deletions
diff --git a/src/math/log.c b/src/math/log.c
index e61e113d..cc52585a 100644
--- a/src/math/log.c
+++ b/src/math/log.c
@@ -1,118 +1,112 @@
-/* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */
 /*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ * Double-precision log(x) function.
  *
- * Developed at SunSoft, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-/* log(x)
- * Return the logarithm of x
- *
- * Method :
- *   1. Argument Reduction: find k and f such that
- *                      x = 2^k * (1+f),
- *         where  sqrt(2)/2 < 1+f < sqrt(2) .
- *
- *   2. Approximation of log(1+f).
- *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
- *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
- *               = 2s + s*R
- *      We use a special Remez algorithm on [0,0.1716] to generate
- *      a polynomial of degree 14 to approximate R The maximum error
- *      of this polynomial approximation is bounded by 2**-58.45. In
- *      other words,
- *                      2      4      6      8      10      12      14
- *          R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
- *      (the values of Lg1 to Lg7 are listed in the program)
- *      and
- *          |      2          14          |     -58.45
- *          | Lg1*s +...+Lg7*s    -  R(z) | <= 2
- *          |                             |
- *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
- *      In order to guarantee error in log below 1ulp, we compute log
- *      by
- *              log(1+f) = f - s*(f - R)        (if f is not too large)
- *              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
- *
- *      3. Finally,  log(x) = k*ln2 + log(1+f).
- *                          = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
- *         Here ln2 is split into two floating point number:
- *                      ln2_hi + ln2_lo,
- *         where n*ln2_hi is always exact for |n| < 2000.
- *
- * Special cases:
- *      log(x) is NaN with signal if x < 0 (including -INF) ;
- *      log(+INF) is +INF; log(0) is -INF with signal;
- *      log(NaN) is that NaN with no signal.
- *
- * Accuracy:
- *      according to an error analysis, the error is always less than
- *      1 ulp (unit in the last place).
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
- * to produce the hexadecimal values shown.
+ * Copyright (c) 2018, Arm Limited.
+ * SPDX-License-Identifier: MIT
  */
 
 #include <math.h>
 #include <stdint.h>
+#include "libm.h"
+#include "log_data.h"
+
+#define T __log_data.tab
+#define T2 __log_data.tab2
+#define B __log_data.poly1
+#define A __log_data.poly
+#define Ln2hi __log_data.ln2hi
+#define Ln2lo __log_data.ln2lo
+#define N (1 << LOG_TABLE_BITS)
+#define OFF 0x3fe6000000000000
 
-static const double
-ln2_hi = 6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
-ln2_lo = 1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
-Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
-Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
-Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
-Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
-Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
-Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
-Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
+/* Top 16 bits of a double.  */
+static inline uint32_t top16(double x)
+{
+	return asuint64(x) >> 48;
+}
 
 double log(double x)
 {
-	union {double f; uint64_t i;} u = {x};
-	double_t hfsq,f,s,z,R,w,t1,t2,dk;
-	uint32_t hx;
-	int k;
+	double_t w, z, r, r2, r3, y, invc, logc, kd, hi, lo;
+	uint64_t ix, iz, tmp;
+	uint32_t top;
+	int k, i;
+
+	ix = asuint64(x);
+	top = top16(x);
+#define LO asuint64(1.0 - 0x1p-4)
+#define HI asuint64(1.0 + 0x1.09p-4)
+	if (predict_false(ix - LO < HI - LO)) {
+		/* Handle close to 1.0 inputs separately.  */
+		/* Fix sign of zero with downward rounding when x==1.  */
+		if (WANT_ROUNDING && predict_false(ix == asuint64(1.0)))
+			return 0;
+		r = x - 1.0;
+		r2 = r * r;
+		r3 = r * r2;
+		y = r3 *
+		    (B[1] + r * B[2] + r2 * B[3] +
+		     r3 * (B[4] + r * B[5] + r2 * B[6] +
+			   r3 * (B[7] + r * B[8] + r2 * B[9] + r3 * B[10])));
+		/* Worst-case error is around 0.507 ULP.  */
+		w = r * 0x1p27;
+		double_t rhi = r + w - w;
+		double_t rlo = r - rhi;
+		w = rhi * rhi * B[0]; /* B[0] == -0.5.  */
+		hi = r + w;
+		lo = r - hi + w;
+		lo += B[0] * rlo * (rhi + r);
+		y += lo;
+		y += hi;
+		return eval_as_double(y);
+	}
+	if (predict_false(top - 0x0010 >= 0x7ff0 - 0x0010)) {
+		/* x < 0x1p-1022 or inf or nan.  */
+		if (ix * 2 == 0)
+			return __math_divzero(1);
+		if (ix == asuint64(INFINITY)) /* log(inf) == inf.  */
+			return x;
+		if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
+			return __math_invalid(x);
+		/* x is subnormal, normalize it.  */
+		ix = asuint64(x * 0x1p52);
+		ix -= 52ULL << 52;
+	}
+
+	/* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
+	   The range is split into N subintervals.
+	   The ith subinterval contains z and c is near its center.  */
+	tmp = ix - OFF;
+	i = (tmp >> (52 - LOG_TABLE_BITS)) % N;
+	k = (int64_t)tmp >> 52; /* arithmetic shift */
+	iz = ix - (tmp & 0xfffULL << 52);
+	invc = T[i].invc;
+	logc = T[i].logc;
+	z = asdouble(iz);
 
-	hx = u.i>>32;
-	k = 0;
-	if (hx < 0x00100000 || hx>>31) {
-		if (u.i<<1 == 0)
-			return -1/(x*x);  /* log(+-0)=-inf */
-		if (hx>>31)
-			return (x-x)/0.0; /* log(-#) = NaN */
-		/* subnormal number, scale x up */
-		k -= 54;
-		x *= 0x1p54;
-		u.f = x;
-		hx = u.i>>32;
-	} else if (hx >= 0x7ff00000) {
-		return x;
-	} else if (hx == 0x3ff00000 && u.i<<32 == 0)
-		return 0;
+	/* log(x) = log1p(z/c-1) + log(c) + k*Ln2.  */
+	/* r ~= z/c - 1, |r| < 1/(2*N).  */
+#if __FP_FAST_FMA
+	/* rounding error: 0x1p-55/N.  */
+	r = __builtin_fma(z, invc, -1.0);
+#else
+	/* rounding error: 0x1p-55/N + 0x1p-66.  */
+	r = (z - T2[i].chi - T2[i].clo) * invc;
+#endif
+	kd = (double_t)k;
 
-	/* reduce x into [sqrt(2)/2, sqrt(2)] */
-	hx += 0x3ff00000 - 0x3fe6a09e;
-	k += (int)(hx>>20) - 0x3ff;
-	hx = (hx&0x000fffff) + 0x3fe6a09e;
-	u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
-	x = u.f;
+	/* hi + lo = r + log(c) + k*Ln2.  */
+	w = kd * Ln2hi + logc;
+	hi = w + r;
+	lo = w - hi + r + kd * Ln2lo;
 
-	f = x - 1.0;
-	hfsq = 0.5*f*f;
-	s = f/(2.0+f);
-	z = s*s;
-	w = z*z;
-	t1 = w*(Lg2+w*(Lg4+w*Lg6));
-	t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
-	R = t2 + t1;
-	dk = k;
-	return s*(hfsq+R) + dk*ln2_lo - hfsq + f + dk*ln2_hi;
+	/* log(x) = lo + (log1p(r) - r) + hi.  */
+	r2 = r * r; /* rounding error: 0x1p-54/N^2.  */
+	/* Worst case error if |y| > 0x1p-5:
+	   0.5 + 4.13/N + abs-poly-error*2^57 ULP (+ 0.002 ULP without fma)
+	   Worst case error if |y| > 0x1p-4:
+	   0.5 + 2.06/N + abs-poly-error*2^56 ULP (+ 0.001 ULP without fma).  */
+	y = lo + r2 * A[0] +
+	    r * r2 * (A[1] + r * A[2] + r2 * (A[3] + r * A[4])) + hi;
+	return eval_as_double(y);
 }