1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
|
/* strchr/strchrnul optimized with 256-bit EVEX instructions.
Copyright (C) 2021-2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <isa-level.h>
#if ISA_SHOULD_BUILD (4)
# include <sysdep.h>
# ifndef STRCHR
# define STRCHR __strchr_evex
# endif
# ifndef VEC_SIZE
# include "x86-evex256-vecs.h"
# endif
# ifdef USE_AS_WCSCHR
# define VPBROADCAST vpbroadcastd
# define VPCMP vpcmpd
# define VPCMPEQ vpcmpeqd
# define VPTESTN vptestnmd
# define VPTEST vptestmd
# define VPMINU vpminud
# define CHAR_REG esi
# define SHIFT_REG rcx
# define CHAR_SIZE 4
# define USE_WIDE_CHAR
# else
# define VPBROADCAST vpbroadcastb
# define VPCMP vpcmpb
# define VPCMPEQ vpcmpeqb
# define VPTESTN vptestnmb
# define VPTEST vptestmb
# define VPMINU vpminub
# define CHAR_REG sil
# define SHIFT_REG rdi
# define CHAR_SIZE 1
# endif
# include "reg-macros.h"
# if VEC_SIZE == 64
# define MASK_GPR rcx
# define LOOP_REG rax
# define COND_MASK(k_reg) {%k_reg}
# else
# define MASK_GPR rax
# define LOOP_REG rdi
# define COND_MASK(k_reg)
# endif
# define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE)
# if CHAR_PER_VEC == 64
# define LAST_VEC_OFFSET (VEC_SIZE * 3)
# define TESTZ(reg) incq %VGPR_SZ(reg, 64)
# else
# if CHAR_PER_VEC == 32
# define TESTZ(reg) incl %VGPR_SZ(reg, 32)
# elif CHAR_PER_VEC == 16
# define TESTZ(reg) incw %VGPR_SZ(reg, 16)
# else
# define TESTZ(reg) incb %VGPR_SZ(reg, 8)
# endif
# define LAST_VEC_OFFSET (VEC_SIZE * 2)
# endif
# define VMATCH VMM(0)
# define PAGE_SIZE 4096
.section SECTION(.text), "ax", @progbits
ENTRY_P2ALIGN (STRCHR, 6)
/* Broadcast CHAR to VEC_0. */
VPBROADCAST %esi, %VMATCH
movl %edi, %eax
andl $(PAGE_SIZE - 1), %eax
/* Check if we cross page boundary with one vector load.
Otherwise it is safe to use an unaligned load. */
cmpl $(PAGE_SIZE - VEC_SIZE), %eax
ja L(cross_page_boundary)
/* Check the first VEC_SIZE bytes. Search for both CHAR and the
null bytes. */
VMOVU (%rdi), %VMM(1)
/* Leaves only CHARS matching esi as 0. */
vpxorq %VMM(1), %VMATCH, %VMM(2)
VPMINU %VMM(2), %VMM(1), %VMM(2)
/* Each bit in K0 represents a CHAR or a null byte in VEC_1. */
VPTESTN %VMM(2), %VMM(2), %k0
KMOV %k0, %VRAX
# if VEC_SIZE == 64 && defined USE_AS_STRCHRNUL
/* If VEC_SIZE == 64 && STRCHRNUL use bsf to test condition so
that all logic for match/null in first VEC first in 1x cache
lines. This has a slight cost to larger sizes. */
bsf %VRAX, %VRAX
jz L(aligned_more)
# else
test %VRAX, %VRAX
jz L(aligned_more)
bsf %VRAX, %VRAX
# endif
# ifndef USE_AS_STRCHRNUL
/* Found CHAR or the null byte. */
cmp (%rdi, %rax, CHAR_SIZE), %CHAR_REG
/* NB: Use a branch instead of cmovcc here. The expectation is
that with strchr the user will branch based on input being
null. Since this branch will be 100% predictive of the user
branch a branch miss here should save what otherwise would
be branch miss in the user code. Otherwise using a branch 1)
saves code size and 2) is faster in highly predictable
environments. */
jne L(zero)
# endif
# ifdef USE_AS_WCSCHR
/* NB: Multiply wchar_t count by 4 to get the number of bytes.
*/
leaq (%rdi, %rax, CHAR_SIZE), %rax
# else
addq %rdi, %rax
# endif
ret
# ifndef USE_AS_STRCHRNUL
L(zero):
xorl %eax, %eax
ret
# endif
.p2align 4,, 2
L(first_vec_x3):
subq $-(VEC_SIZE * 2), %rdi
# if VEC_SIZE == 32
/* Reuse L(first_vec_x3) for last VEC2 only for VEC_SIZE == 32.
For VEC_SIZE == 64 the registers don't match. */
L(last_vec_x2):
# endif
L(first_vec_x1):
/* Use bsf here to save 1-byte keeping keeping the block in 1x
fetch block. eax guaranteed non-zero. */
bsf %VRCX, %VRCX
# ifndef USE_AS_STRCHRNUL
/* Found CHAR or the null byte. */
cmp (VEC_SIZE)(%rdi, %rcx, CHAR_SIZE), %CHAR_REG
jne L(zero)
# endif
/* NB: Multiply sizeof char type (1 or 4) to get the number of
bytes. */
leaq (VEC_SIZE)(%rdi, %rcx, CHAR_SIZE), %rax
ret
.p2align 4,, 2
L(first_vec_x4):
subq $-(VEC_SIZE * 2), %rdi
L(first_vec_x2):
# ifndef USE_AS_STRCHRNUL
/* Check to see if first match was CHAR (k0) or null (k1). */
KMOV %k0, %VRAX
tzcnt %VRAX, %VRAX
KMOV %k1, %VRCX
/* bzhil will not be 0 if first match was null. */
bzhi %VRAX, %VRCX, %VRCX
jne L(zero)
# else
/* Combine CHAR and null matches. */
KOR %k0, %k1, %k0
KMOV %k0, %VRAX
bsf %VRAX, %VRAX
# endif
/* NB: Multiply sizeof char type (1 or 4) to get the number of
bytes. */
leaq (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax
ret
# ifdef USE_AS_STRCHRNUL
/* We use this as a hook to get imm8 encoding for the jmp to
L(page_cross_boundary). This allows the hot case of a
match/null-term in first VEC to fit entirely in 1 cache
line. */
L(cross_page_boundary):
jmp L(cross_page_boundary_real)
# endif
.p2align 4
L(aligned_more):
L(cross_page_continue):
/* Align data to VEC_SIZE. */
andq $-VEC_SIZE, %rdi
/* Check the next 4 * VEC_SIZE. Only one VEC_SIZE at a time
since data is only aligned to VEC_SIZE. Use two alternating
methods for checking VEC to balance latency and port
contention. */
/* Method(1) with 8c latency:
For VEC_SIZE == 32:
p0 * 1.83, p1 * 0.83, p5 * 1.33
For VEC_SIZE == 64:
p0 * 2.50, p1 * 0.00, p5 * 1.50 */
VMOVA (VEC_SIZE)(%rdi), %VMM(1)
/* Leaves only CHARS matching esi as 0. */
vpxorq %VMM(1), %VMATCH, %VMM(2)
VPMINU %VMM(2), %VMM(1), %VMM(2)
/* Each bit in K0 represents a CHAR or a null byte in VEC_1. */
VPTESTN %VMM(2), %VMM(2), %k0
KMOV %k0, %VRCX
test %VRCX, %VRCX
jnz L(first_vec_x1)
/* Method(2) with 6c latency:
For VEC_SIZE == 32:
p0 * 1.00, p1 * 0.00, p5 * 2.00
For VEC_SIZE == 64:
p0 * 1.00, p1 * 0.00, p5 * 2.00 */
VMOVA (VEC_SIZE * 2)(%rdi), %VMM(1)
/* Each bit in K0 represents a CHAR in VEC_1. */
VPCMPEQ %VMM(1), %VMATCH, %k0
/* Each bit in K1 represents a CHAR in VEC_1. */
VPTESTN %VMM(1), %VMM(1), %k1
KORTEST %k0, %k1
jnz L(first_vec_x2)
/* By swapping between Method 1/2 we get more fair port
distrubition and better throughput. */
VMOVA (VEC_SIZE * 3)(%rdi), %VMM(1)
/* Leaves only CHARS matching esi as 0. */
vpxorq %VMM(1), %VMATCH, %VMM(2)
VPMINU %VMM(2), %VMM(1), %VMM(2)
/* Each bit in K0 represents a CHAR or a null byte in VEC_1. */
VPTESTN %VMM(2), %VMM(2), %k0
KMOV %k0, %VRCX
test %VRCX, %VRCX
jnz L(first_vec_x3)
VMOVA (VEC_SIZE * 4)(%rdi), %VMM(1)
/* Each bit in K0 represents a CHAR in VEC_1. */
VPCMPEQ %VMM(1), %VMATCH, %k0
/* Each bit in K1 represents a CHAR in VEC_1. */
VPTESTN %VMM(1), %VMM(1), %k1
KORTEST %k0, %k1
jnz L(first_vec_x4)
/* Align data to VEC_SIZE * 4 for the loop. */
# if VEC_SIZE == 64
/* Use rax for the loop reg as it allows to the loop to fit in
exactly 2-cache-lines. (more efficient imm32 + gpr
encoding). */
leaq (VEC_SIZE)(%rdi), %rax
/* No partial register stalls on evex512 processors. */
xorb %al, %al
# else
/* For VEC_SIZE == 32 continue using rdi for loop reg so we can
reuse more code and save space. */
addq $VEC_SIZE, %rdi
andq $-(VEC_SIZE * 4), %rdi
# endif
.p2align 4
L(loop_4x_vec):
/* Check 4x VEC at a time. No penalty for imm32 offset with evex
encoding (if offset % VEC_SIZE == 0). */
VMOVA (VEC_SIZE * 4)(%LOOP_REG), %VMM(1)
VMOVA (VEC_SIZE * 5)(%LOOP_REG), %VMM(2)
VMOVA (VEC_SIZE * 6)(%LOOP_REG), %VMM(3)
VMOVA (VEC_SIZE * 7)(%LOOP_REG), %VMM(4)
/* Collect bits where VEC_1 does NOT match esi. This is later
use to mask of results (getting not matches allows us to
save an instruction on combining). */
VPCMP $4, %VMATCH, %VMM(1), %k1
/* Two methods for loop depending on VEC_SIZE. This is because
with zmm registers VPMINU can only run on p0 (as opposed to
p0/p1 for ymm) so it is less preferred. */
# if VEC_SIZE == 32
/* For VEC_2 and VEC_3 use xor to set the CHARs matching esi to
zero. */
vpxorq %VMM(2), %VMATCH, %VMM(6)
vpxorq %VMM(3), %VMATCH, %VMM(7)
/* Find non-matches in VEC_4 while combining with non-matches
from VEC_1. NB: Try and use masked predicate execution on
instructions that have mask result as it has no latency
penalty. */
VPCMP $4, %VMATCH, %VMM(4), %k4{%k1}
/* Combined zeros from VEC_1 / VEC_2 (search for null term). */
VPMINU %VMM(1), %VMM(2), %VMM(2)
/* Use min to select all zeros from either xor or end of
string). */
VPMINU %VMM(3), %VMM(7), %VMM(3)
VPMINU %VMM(2), %VMM(6), %VMM(2)
/* Combined zeros from VEC_2 / VEC_3 (search for null term). */
VPMINU %VMM(3), %VMM(4), %VMM(4)
/* Combined zeros from VEC_2 / VEC_4 (this has all null term and
esi matches for VEC_2 / VEC_3). */
VPMINU %VMM(2), %VMM(4), %VMM(4)
# else
/* Collect non-matches for VEC_2. */
VPCMP $4, %VMM(2), %VMATCH, %k2
/* Combined zeros from VEC_1 / VEC_2 (search for null term). */
VPMINU %VMM(1), %VMM(2), %VMM(2)
/* Find non-matches in VEC_3/VEC_4 while combining with non-
matches from VEC_1/VEC_2 respectively. */
VPCMP $4, %VMM(3), %VMATCH, %k3{%k1}
VPCMP $4, %VMM(4), %VMATCH, %k4{%k2}
/* Finish combining zeros in all VECs. */
VPMINU %VMM(3), %VMM(4), %VMM(4)
/* Combine in esi matches for VEC_3 (if there was a match with
esi, the corresponding bit in %k3 is zero so the
VPMINU_MASKZ will have a zero in the result). NB: This make
the VPMINU 3c latency. The only way to avoid it is to
create a 12c dependency chain on all the `VPCMP $4, ...`
which has higher total latency. */
VPMINU %VMM(2), %VMM(4), %VMM(4){%k3}{z}
# endif
VPTEST %VMM(4), %VMM(4), %k0{%k4}
KMOV %k0, %VRDX
subq $-(VEC_SIZE * 4), %LOOP_REG
/* TESTZ is inc using the proper register width depending on
CHAR_PER_VEC. An esi match or null-term match leaves a zero-
bit in rdx so inc won't overflow and won't be zero. */
TESTZ (rdx)
jz L(loop_4x_vec)
VPTEST %VMM(1), %VMM(1), %k0{%k1}
KMOV %k0, %VGPR(MASK_GPR)
TESTZ (MASK_GPR)
# if VEC_SIZE == 32
/* We can reuse the return code in page_cross logic for VEC_SIZE
== 32. */
jnz L(last_vec_x1_vec_size32)
# else
jnz L(last_vec_x1_vec_size64)
# endif
/* COND_MASK integrates the esi matches for VEC_SIZE == 64. For
VEC_SIZE == 32 they are already integrated. */
VPTEST %VMM(2), %VMM(2), %k0 COND_MASK(k2)
KMOV %k0, %VRCX
TESTZ (rcx)
jnz L(last_vec_x2)
VPTEST %VMM(3), %VMM(3), %k0 COND_MASK(k3)
KMOV %k0, %VRCX
# if CHAR_PER_VEC == 64
TESTZ (rcx)
jnz L(last_vec_x3)
# else
salq $CHAR_PER_VEC, %rdx
TESTZ (rcx)
orq %rcx, %rdx
# endif
bsfq %rdx, %rdx
# ifndef USE_AS_STRCHRNUL
/* Check if match was CHAR or null. */
cmp (LAST_VEC_OFFSET)(%LOOP_REG, %rdx, CHAR_SIZE), %CHAR_REG
jne L(zero_end)
# endif
/* NB: Multiply sizeof char type (1 or 4) to get the number of
bytes. */
leaq (LAST_VEC_OFFSET)(%LOOP_REG, %rdx, CHAR_SIZE), %rax
ret
# ifndef USE_AS_STRCHRNUL
L(zero_end):
xorl %eax, %eax
ret
# endif
/* Separate return label for last VEC1 because for VEC_SIZE ==
32 we can reuse return code in L(page_cross) but VEC_SIZE ==
64 has mismatched registers. */
# if VEC_SIZE == 64
.p2align 4,, 8
L(last_vec_x1_vec_size64):
bsf %VRCX, %VRCX
# ifndef USE_AS_STRCHRNUL
/* Check if match was null. */
cmp (%rax, %rcx, CHAR_SIZE), %CHAR_REG
jne L(zero_end)
# endif
# ifdef USE_AS_WCSCHR
/* NB: Multiply wchar_t count by 4 to get the number of bytes.
*/
leaq (%rax, %rcx, CHAR_SIZE), %rax
# else
addq %rcx, %rax
# endif
ret
/* Since we can't combine the last 2x matches for CHAR_PER_VEC
== 64 we need return label for last VEC3. */
# if CHAR_PER_VEC == 64
.p2align 4,, 8
L(last_vec_x3):
addq $VEC_SIZE, %LOOP_REG
# endif
/* Duplicate L(last_vec_x2) for VEC_SIZE == 64 because we can't
reuse L(first_vec_x3) due to register mismatch. */
L(last_vec_x2):
bsf %VGPR(MASK_GPR), %VGPR(MASK_GPR)
# ifndef USE_AS_STRCHRNUL
/* Check if match was null. */
cmp (VEC_SIZE * 1)(%LOOP_REG, %MASK_GPR, CHAR_SIZE), %CHAR_REG
jne L(zero_end)
# endif
/* NB: Multiply sizeof char type (1 or 4) to get the number of
bytes. */
leaq (VEC_SIZE * 1)(%LOOP_REG, %MASK_GPR, CHAR_SIZE), %rax
ret
# endif
/* Cold case for crossing page with first load. */
.p2align 4,, 10
# ifndef USE_AS_STRCHRNUL
L(cross_page_boundary):
# endif
L(cross_page_boundary_real):
/* Align rdi. */
xorq %rdi, %rax
VMOVA (PAGE_SIZE - VEC_SIZE)(%rax), %VMM(1)
/* Use high latency method of getting matches to save code size.
*/
/* K1 has 1s where VEC(1) does NOT match esi. */
VPCMP $4, %VMM(1), %VMATCH, %k1
/* K0 has ones where K1 is 1 (non-match with esi), and non-zero
(null). */
VPTEST %VMM(1), %VMM(1), %k0{%k1}
KMOV %k0, %VRAX
/* Remove the leading bits. */
# ifdef USE_AS_WCSCHR
movl %edi, %VGPR_SZ(SHIFT_REG, 32)
/* NB: Divide shift count by 4 since each bit in K1 represent 4
bytes. */
sarl $2, %VGPR_SZ(SHIFT_REG, 32)
andl $(CHAR_PER_VEC - 1), %VGPR_SZ(SHIFT_REG, 32)
/* if wcsrchr we need to reverse matches as we can't rely on
signed shift to bring in ones. There is not sarx for
gpr8/16. Also not we can't use inc here as the lower bits
represent matches out of range so we can't rely on overflow.
*/
xorl $((1 << CHAR_PER_VEC)- 1), %eax
# endif
/* Use arithmetic shift so that leading 1s are filled in. */
sarx %VGPR(SHIFT_REG), %VRAX, %VRAX
/* If eax is all ones then no matches for esi or NULL. */
# ifdef USE_AS_WCSCHR
test %VRAX, %VRAX
# else
inc %VRAX
# endif
jz L(cross_page_continue)
.p2align 4,, 10
L(last_vec_x1_vec_size32):
bsf %VRAX, %VRAX
# ifdef USE_AS_WCSCHR
/* NB: Multiply wchar_t count by 4 to get the number of bytes.
*/
leaq (%rdi, %rax, CHAR_SIZE), %rax
# else
addq %rdi, %rax
# endif
# ifndef USE_AS_STRCHRNUL
/* Check to see if match was CHAR or null. */
cmp (%rax), %CHAR_REG
jne L(zero_end_0)
# endif
ret
# ifndef USE_AS_STRCHRNUL
L(zero_end_0):
xorl %eax, %eax
ret
# endif
END (STRCHR)
#endif
|