summary refs log tree commit diff
path: root/sysdeps/x86_64/multiarch/memrchr-evex.S
blob: 3d3ef062e22b4b64329f1c54fbdcf22ec1cae5a1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
/* memrchr optimized with 256-bit EVEX instructions.
   Copyright (C) 2021-2023 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#include <isa-level.h>

#if ISA_SHOULD_BUILD (4)

# include <sysdep.h>

# ifndef VEC_SIZE
#  include "x86-evex256-vecs.h"
# endif

# include "reg-macros.h"

# ifndef MEMRCHR
#  define MEMRCHR	__memrchr_evex
# endif

# define PAGE_SIZE	4096
# define VMATCH	VMM(0)

	.section SECTION(.text), "ax", @progbits
ENTRY_P2ALIGN(MEMRCHR, 6)
# ifdef __ILP32__
	/* Clear upper bits.  */
	and	%RDX_LP, %RDX_LP
# else
	test	%RDX_LP, %RDX_LP
# endif
	jz	L(zero_0)

	/* Get end pointer. Minus one for three reasons. 1) It is
	   necessary for a correct page cross check and 2) it correctly
	   sets up end ptr to be subtract by lzcnt aligned. 3) it is a
	   necessary step in aligning ptr.  */
	leaq	-1(%rdi, %rdx), %rax
	vpbroadcastb %esi, %VMATCH

	/* Check if we can load 1x VEC without cross a page.  */
	testl	$(PAGE_SIZE - VEC_SIZE), %eax
	jz	L(page_cross)

	/* Don't use rax for pointer here because EVEX has better
	   encoding with offset % VEC_SIZE == 0.  */
	vpcmpeqb (VEC_SIZE * -1)(%rdi, %rdx), %VMATCH, %k0
	KMOV	%k0, %VRCX

	/* If rcx is zero then lzcnt -> VEC_SIZE.  NB: there is a
	   already a dependency between rcx and rsi so no worries about
	   false-dep here.  */
	lzcnt	%VRCX, %VRSI
	/* If rdx <= rsi then either 1) rcx was non-zero (there was a
	   match) but it was out of bounds or 2) rcx was zero and rdx
	   was <= VEC_SIZE so we are done scanning.  */
	cmpq	%rsi, %rdx
	/* NB: Use branch to return zero/non-zero.  Common usage will
	   branch on result of function (if return is null/non-null).
	   This branch can be used to predict the ensuing one so there
	   is no reason to extend the data-dependency with cmovcc.  */
	jbe	L(zero_0)

	/* If rcx is zero then len must be > RDX, otherwise since we
	   already tested len vs lzcnt(rcx) (in rsi) we are good to
	   return this match.  */
	test	%VRCX, %VRCX
	jz	L(more_1x_vec)
	subq	%rsi, %rax
	ret

	/* Fits in aligning bytes of first cache line for VEC_SIZE ==
	   32.  */
# if VEC_SIZE == 32
	.p2align 4,, 2
L(zero_0):
	xorl	%eax, %eax
	ret
# endif

	.p2align 4,, 10
L(more_1x_vec):
	/* Align rax (pointer to string).  */
	andq	$-VEC_SIZE, %rax
L(page_cross_continue):
	/* Recompute length after aligning.  */
	subq	%rdi, %rax

	cmpq	$(VEC_SIZE * 2), %rax
	ja	L(more_2x_vec)

L(last_2x_vec):
	vpcmpeqb (VEC_SIZE * -1)(%rdi, %rax), %VMATCH, %k0
	KMOV	%k0, %VRCX

	test	%VRCX, %VRCX
	jnz	L(ret_vec_x0_test)

	/* If VEC_SIZE == 64 need to subtract because lzcntq won't
	   implicitly add VEC_SIZE to match position.  */
# if VEC_SIZE == 64
	subl	$VEC_SIZE, %eax
# else
	cmpb	$VEC_SIZE, %al
# endif
	jle	L(zero_2)

	/* We adjusted rax (length) for VEC_SIZE == 64 so need seperate
	   offsets.  */
# if VEC_SIZE == 64
	vpcmpeqb (VEC_SIZE * -1)(%rdi, %rax), %VMATCH, %k0
# else
	vpcmpeqb (VEC_SIZE * -2)(%rdi, %rax), %VMATCH, %k0
# endif
	KMOV	%k0, %VRCX
	/* NB: 64-bit lzcnt. This will naturally add 32 to position for
	   VEC_SIZE == 32.  */
	lzcntq	%rcx, %rcx
	subl	%ecx, %eax
	ja	L(first_vec_x1_ret)
	/* If VEC_SIZE == 64 put L(zero_0) here as we can't fit in the
	   first cache line (this is the second cache line).  */
# if VEC_SIZE == 64
L(zero_0):
# endif
L(zero_2):
	xorl	%eax, %eax
	ret

	/* NB: Fits in aligning bytes before next cache line for
	   VEC_SIZE == 32.  For VEC_SIZE == 64 this is attached to
	   L(first_vec_x0_test).  */
# if VEC_SIZE == 32
L(first_vec_x1_ret):
	leaq	-1(%rdi, %rax), %rax
	ret
# endif

	.p2align 4,, 6
L(ret_vec_x0_test):
	lzcnt	%VRCX, %VRCX
	subl	%ecx, %eax
	jle	L(zero_2)
# if VEC_SIZE == 64
	/* Reuse code at the end of L(ret_vec_x0_test) as we can't fit
	   L(first_vec_x1_ret) in the same cache line as its jmp base
	   so we might as well save code size.  */
L(first_vec_x1_ret):
# endif
	leaq	-1(%rdi, %rax), %rax
	ret

	.p2align 4,, 6
L(loop_last_4x_vec):
	/* Compute remaining length.  */
	subl	%edi, %eax
L(last_4x_vec):
	cmpl	$(VEC_SIZE * 2), %eax
	jle	L(last_2x_vec)
# if VEC_SIZE == 32
	/* Only align for VEC_SIZE == 32.  For VEC_SIZE == 64 we need
	   the spare bytes to align the loop properly.  */
	.p2align 4,, 10
# endif
L(more_2x_vec):

	/* Length > VEC_SIZE * 2 so check the first 2x VEC for match and
	   return if either hit.  */
	vpcmpeqb (VEC_SIZE * -1)(%rdi, %rax), %VMATCH, %k0
	KMOV	%k0, %VRCX

	test	%VRCX, %VRCX
	jnz	L(first_vec_x0)

	vpcmpeqb (VEC_SIZE * -2)(%rdi, %rax), %VMATCH, %k0
	KMOV	%k0, %VRCX
	test	%VRCX, %VRCX
	jnz	L(first_vec_x1)

	/* Need no matter what.  */
	vpcmpeqb (VEC_SIZE * -3)(%rdi, %rax), %VMATCH, %k0
	KMOV	%k0, %VRCX

	/* Check if we are near the end.  */
	subq	$(VEC_SIZE * 4), %rax
	ja	L(more_4x_vec)

	test	%VRCX, %VRCX
	jnz	L(first_vec_x2_test)

	/* Adjust length for final check and check if we are at the end.
	 */
	addl	$(VEC_SIZE * 1), %eax
	jle	L(zero_1)

	vpcmpeqb (VEC_SIZE * -1)(%rdi, %rax), %VMATCH, %k0
	KMOV	%k0, %VRCX

	lzcnt	%VRCX, %VRCX
	subl	%ecx, %eax
	ja	L(first_vec_x3_ret)
L(zero_1):
	xorl	%eax, %eax
	ret
L(first_vec_x3_ret):
	leaq	-1(%rdi, %rax), %rax
	ret

	.p2align 4,, 6
L(first_vec_x2_test):
	/* Must adjust length before check.  */
	subl	$-(VEC_SIZE * 2 - 1), %eax
	lzcnt	%VRCX, %VRCX
	subl	%ecx, %eax
	jl	L(zero_4)
	addq	%rdi, %rax
	ret


	.p2align 4,, 10
L(first_vec_x0):
	bsr	%VRCX, %VRCX
	leaq	(VEC_SIZE * -1)(%rdi, %rax), %rax
	addq	%rcx, %rax
	ret

	/* Fits unobtrusively here.  */
L(zero_4):
	xorl	%eax, %eax
	ret

	.p2align 4,, 10
L(first_vec_x1):
	bsr	%VRCX, %VRCX
	leaq	(VEC_SIZE * -2)(%rdi, %rax), %rax
	addq	%rcx, %rax
	ret

	.p2align 4,, 8
L(first_vec_x3):
	bsr	%VRCX, %VRCX
	addq	%rdi, %rax
	addq	%rcx, %rax
	ret

	.p2align 4,, 6
L(first_vec_x2):
	bsr	%VRCX, %VRCX
	leaq	(VEC_SIZE * 1)(%rdi, %rax), %rax
	addq	%rcx, %rax
	ret

	.p2align 4,, 2
L(more_4x_vec):
	test	%VRCX, %VRCX
	jnz	L(first_vec_x2)

	vpcmpeqb (%rdi, %rax), %VMATCH, %k0
	KMOV	%k0, %VRCX

	test	%VRCX, %VRCX
	jnz	L(first_vec_x3)

	/* Check if near end before re-aligning (otherwise might do an
	   unnecessary loop iteration).  */
	cmpq	$(VEC_SIZE * 4), %rax
	jbe	L(last_4x_vec)


	/* NB: We setup the loop to NOT use index-address-mode for the
	   buffer.  This costs some instructions & code size but avoids
	   stalls due to unlaminated micro-fused instructions (as used
	   in the loop) from being forced to issue in the same group
	   (essentially narrowing the backend width).  */

	/* Get endptr for loop in rdx. NB: Can't just do while rax > rdi
	   because lengths that overflow can be valid and break the
	   comparison.  */
# if VEC_SIZE == 64
	/* Use rdx as intermediate to compute rax, this gets us imm8
	   encoding which just allows the L(more_4x_vec) block to fit
	   in 1 cache-line.  */
	leaq	(VEC_SIZE * 4)(%rdi), %rdx
	leaq	(VEC_SIZE * -1)(%rdx, %rax), %rax

	/* No evex machine has partial register stalls. This can be
	   replaced with: `andq $(VEC_SIZE * -4), %rax/%rdx` if that
	   changes.  */
	xorb	%al, %al
	xorb	%dl, %dl
# else
	leaq	(VEC_SIZE * 3)(%rdi, %rax), %rax
	andq	$(VEC_SIZE * -4), %rax
	leaq	(VEC_SIZE * 4)(%rdi), %rdx
	andq	$(VEC_SIZE * -4), %rdx
# endif


	.p2align 4
L(loop_4x_vec):
	/* NB: We could do the same optimization here as we do for
	   memchr/rawmemchr by using VEX encoding in the loop for access
	   to VEX vpcmpeqb + vpternlogd.  Since memrchr is not as hot as
	   memchr it may not be worth the extra code size, but if the
	   need arises it an easy ~15% perf improvement to the loop.  */

	cmpq	%rdx, %rax
	je	L(loop_last_4x_vec)
	/* Store 1 were not-equals and 0 where equals in k1 (used to
	   mask later on).  */
	vpcmpb	$4, (VEC_SIZE * -1)(%rax), %VMATCH, %k1

	/* VEC(2/3) will have zero-byte where we found a CHAR.  */
	vpxorq	(VEC_SIZE * -2)(%rax), %VMATCH, %VMM(2)
	vpxorq	(VEC_SIZE * -3)(%rax), %VMATCH, %VMM(3)
	vpcmpeqb (VEC_SIZE * -4)(%rax), %VMATCH, %k4

	/* Combine VEC(2/3) with min and maskz with k1 (k1 has zero bit
	   where CHAR is found and VEC(2/3) have zero-byte where CHAR
	   is found.  */
	vpminub	%VMM(2), %VMM(3), %VMM(3){%k1}{z}
	vptestnmb %VMM(3), %VMM(3), %k2

	addq	$-(VEC_SIZE * 4), %rax

	/* Any 1s and we found CHAR.  */
	KORTEST %k2, %k4
	jz	L(loop_4x_vec)


	/* K1 has non-matches for first VEC. inc; jz will overflow rcx
	   iff all bytes where non-matches.  */
	KMOV	%k1, %VRCX
	inc	%VRCX
	jnz	L(first_vec_x0_end)

	vptestnmb %VMM(2), %VMM(2), %k0
	KMOV	%k0, %VRCX
	test	%VRCX, %VRCX
	jnz	L(first_vec_x1_end)
	KMOV	%k2, %VRCX

	/* Seperate logic for VEC_SIZE == 64 and VEC_SIZE == 32 for
	   returning last 2x VEC. For VEC_SIZE == 64 we test each VEC
	   individually, for VEC_SIZE == 32 we combine them in a single
	   64-bit GPR.  */
# if VEC_SIZE == 64
	test	%VRCX, %VRCX
	jnz	L(first_vec_x2_end)
	KMOV	%k4, %VRCX
# else
	/* Combine last 2 VEC matches for VEC_SIZE == 32. If rcx (from
	   VEC(3)) is zero (no CHAR in VEC(3)) then it won't affect the
	   result in rsi (from VEC(4)). If rcx is non-zero then CHAR in
	   VEC(3) and bsrq will use that position.  */
	KMOV	%k4, %VRSI
	salq	$32, %rcx
	orq	%rsi, %rcx
# endif
	bsrq	%rcx, %rcx
	addq	%rcx, %rax
	ret

	.p2align 4,, 4
L(first_vec_x0_end):
	/* rcx has 1s at non-matches so we need to `not` it. We used
	   `inc` to test if zero so use `neg` to complete the `not` so
	   the last 1 bit represent a match.  NB: (-x + 1 == ~x).  */
	neg	%VRCX
	bsr	%VRCX, %VRCX
	leaq	(VEC_SIZE * 3)(%rcx, %rax), %rax
	ret

	.p2align 4,, 10
L(first_vec_x1_end):
	bsr	%VRCX, %VRCX
	leaq	(VEC_SIZE * 2)(%rcx, %rax), %rax
	ret

# if VEC_SIZE == 64
	/* Since we can't combine the last 2x VEC for VEC_SIZE == 64
	   need return label for it.  */
	.p2align 4,, 4
L(first_vec_x2_end):
	bsr	%VRCX, %VRCX
	leaq	(VEC_SIZE * 1)(%rcx, %rax), %rax
	ret
# endif


	.p2align 4,, 4
L(page_cross):
	/* only lower bits of eax[log2(VEC_SIZE):0] are set so we can
	   use movzbl to get the amount of bytes we are checking here.
	 */
	movzbl	%al, %ecx
	andq	$-VEC_SIZE, %rax
	vpcmpeqb (%rax), %VMATCH, %k0
	KMOV	%k0, %VRSI

	/* eax was comptued as %rdi + %rdx - 1 so need to add back 1
	   here.  */
	leal	1(%rcx), %r8d

	/* Invert ecx to get shift count for byte matches out of range.
	 */
	notl	%ecx
	shlx	%VRCX, %VRSI, %VRSI

	/* if r8 < rdx then the entire [buf, buf + len] is handled in
	   the page cross case.  NB: we can't use the trick here we use
	   in the non page-cross case because we aren't checking full
	   VEC_SIZE.  */
	cmpq	%r8, %rdx
	ja	L(page_cross_check)
	lzcnt	%VRSI, %VRSI
	subl	%esi, %edx
	ja	L(page_cross_ret)
	xorl	%eax, %eax
	ret

L(page_cross_check):
	test	%VRSI, %VRSI
	jz	L(page_cross_continue)

	lzcnt	%VRSI, %VRSI
	subl	%esi, %edx
L(page_cross_ret):
	leaq	-1(%rdi, %rdx), %rax
	ret
END(MEMRCHR)
#endif