1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
/* s_frexpl.c -- long double version of s_frexp.c.
* Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: $";
#endif
/*
* for non-zero x
* x = frexpl(arg,&exp);
* return a long double fp quantity x such that 0.5 <= |x| <1.0
* and the corresponding binary exponent "exp". That is
* arg = x*2^exp.
* If arg is inf, 0.0, or NaN, then frexpl(arg,&exp) returns arg
* with *exp=0.
*/
#include <math.h>
#include <math_private.h>
#include <math_ldbl_opt.h>
long double __frexpl(long double x, int *eptr)
{
uint64_t hx, lx, ix, ixl;
int64_t explo, expon;
double xhi, xlo;
ldbl_unpack (x, &xhi, &xlo);
EXTRACT_WORDS64 (hx, xhi);
EXTRACT_WORDS64 (lx, xlo);
ixl = 0x7fffffffffffffffULL & lx;
ix = 0x7fffffffffffffffULL & hx;
expon = 0;
if (ix >= 0x7ff0000000000000ULL || ix == 0)
{
/* 0,inf,nan. */
*eptr = expon;
return x;
}
expon = ix >> 52;
if (expon == 0)
{
/* Denormal high double, the low double must be 0.0. */
int cnt;
/* Normalize. */
if (sizeof (ix) == sizeof (long))
cnt = __builtin_clzl (ix);
else if ((ix >> 32) != 0)
cnt = __builtin_clzl ((long) (ix >> 32));
else
cnt = __builtin_clzl ((long) ix) + 32;
cnt = cnt - 12;
expon -= cnt;
ix <<= cnt + 1;
}
expon -= 1022;
ix &= 0x000fffffffffffffULL;
hx &= 0x8000000000000000ULL;
hx |= (1022LL << 52) | ix;
if (ixl != 0)
{
/* If the high double is an exact power of two and the low
double has the opposite sign, then the exponent calculated
from the high double is one too big. */
if (ix == 0
&& (int64_t) (hx ^ lx) < 0)
{
hx += 1LL << 52;
expon -= 1;
}
explo = ixl >> 52;
if (explo == 0)
{
/* The low double started out as a denormal. Normalize its
mantissa and adjust the exponent. */
int cnt;
if (sizeof (ixl) == sizeof (long))
cnt = __builtin_clzl (ixl);
else if ((ixl >> 32) != 0)
cnt = __builtin_clzl ((long) (ixl >> 32));
else
cnt = __builtin_clzl ((long) ixl) + 32;
cnt = cnt - 12;
explo -= cnt;
ixl <<= cnt + 1;
}
/* With variable precision we can't assume much about the
magnitude of the returned low double. It may even be a
denormal. */
explo -= expon;
ixl &= 0x000fffffffffffffULL;
lx &= 0x8000000000000000ULL;
if (explo <= 0)
{
/* Handle denormal low double. */
if (explo > -52)
{
ixl |= 1LL << 52;
ixl >>= 1 - explo;
}
else
{
ixl = 0;
lx = 0;
if ((hx & 0x7ff0000000000000ULL) == (1023LL << 52))
{
/* Oops, the adjustment we made above for values a
little smaller than powers of two turned out to
be wrong since the returned low double will be
zero. This can happen if the input was
something weird like 0x1p1000 - 0x1p-1000. */
hx -= 1LL << 52;
expon += 1;
}
}
explo = 0;
}
lx |= (explo << 52) | ixl;
}
INSERT_WORDS64 (xhi, hx);
INSERT_WORDS64 (xlo, lx);
x = ldbl_pack (xhi, xlo);
*eptr = expon;
return x;
}
#if IS_IN (libm)
long_double_symbol (libm, __frexpl, frexpl);
#else
long_double_symbol (libc, __frexpl, frexpl);
#endif
|