about summary refs log tree commit diff
path: root/sysdeps/ieee754/ldbl-128ibm/s_cbrtl.c
blob: 57f6ad7668bbdefeef86c22728ecca4173734a03 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
/* Implementation of cbrtl.  IBM Extended Precision version.
   Cephes Math Library Release 2.2: January, 1991
   Copyright 1984, 1991 by Stephen L. Moshier
   Adapted for glibc October, 2001.

   This library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   This library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with this library; if not, see
   <https://www.gnu.org/licenses/>.  */

/* This file was copied from sysdeps/ieee754/ldbl-128/e_j0l.c.  */


#include <math_ldbl_opt.h>
#include <math.h>
#include <math_private.h>

static const long double CBRT2 = 1.259921049894873164767210607278228350570251L;
static const long double CBRT4 = 1.587401051968199474751705639272308260391493L;
static const long double CBRT2I = 0.7937005259840997373758528196361541301957467L;
static const long double CBRT4I = 0.6299605249474365823836053036391141752851257L;


long double
__cbrtl (long double x)
{
  int e, rem, sign;
  long double z;

  if (!isfinite (x))
    return x + x;

  if (x == 0)
    return (x);

  if (x > 0)
    sign = 1;
  else
    {
      sign = -1;
      x = -x;
    }

  z = x;
 /* extract power of 2, leaving mantissa between 0.5 and 1  */
  x = __frexpl (x, &e);

  /* Approximate cube root of number between .5 and 1,
     peak relative error = 1.2e-6  */
  x = ((((1.3584464340920900529734e-1L * x
	  - 6.3986917220457538402318e-1L) * x
	 + 1.2875551670318751538055e0L) * x
	- 1.4897083391357284957891e0L) * x
       + 1.3304961236013647092521e0L) * x + 3.7568280825958912391243e-1L;

  /* exponent divided by 3 */
  if (e >= 0)
    {
      rem = e;
      e /= 3;
      rem -= 3 * e;
      if (rem == 1)
	x *= CBRT2;
      else if (rem == 2)
	x *= CBRT4;
    }
  else
    {				/* argument less than 1 */
      e = -e;
      rem = e;
      e /= 3;
      rem -= 3 * e;
      if (rem == 1)
	x *= CBRT2I;
      else if (rem == 2)
	x *= CBRT4I;
      e = -e;
    }

  /* multiply by power of 2 */
  x = __ldexpl (x, e);

  /* Newton iteration */
  x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333L;
  x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333L;
  x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333L;

  if (sign < 0)
    x = -x;
  return (x);
}

long_double_symbol (libm, __cbrtl, cbrtl);