1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
/* e_fmodl.c -- long double version of e_fmod.c.
* Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
*/
/*
* ====================================================
* Copyright (C) 1993, 2011 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* __ieee754_fmodl(x,y)
* Return x mod y in exact arithmetic
* Method: shift and subtract
*/
#include <math.h>
#include <math_private.h>
static const long double one = 1.0, Zero[] = {0.0, -0.0,};
long double
__ieee754_fmodl (long double x, long double y)
{
int64_t n,hx,hy,hz,ix,iy,sx,i;
u_int64_t lx,ly,lz;
GET_LDOUBLE_WORDS64(hx,lx,x);
GET_LDOUBLE_WORDS64(hy,ly,y);
sx = hx&0x8000000000000000ULL; /* sign of x */
hx ^=sx; /* |x| */
hy &= 0x7fffffffffffffffLL; /* |y| */
/* purge off exception values */
if((hy|ly)==0||(hx>=0x7fff000000000000LL)|| /* y=0,or x not finite */
((hy|((ly|-ly)>>63))>0x7fff000000000000LL)) /* or y is NaN */
return (x*y)/(x*y);
if(hx<=hy) {
if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */
if(lx==ly)
return Zero[(u_int64_t)sx>>63]; /* |x|=|y| return x*0*/
}
/* determine ix = ilogb(x) */
if(hx<0x0001000000000000LL) { /* subnormal x */
if(hx==0) {
for (ix = -16431, i=lx; i>0; i<<=1) ix -=1;
} else {
for (ix = -16382, i=hx<<15; i>0; i<<=1) ix -=1;
}
} else ix = (hx>>48)-0x3fff;
/* determine iy = ilogb(y) */
if(hy<0x0001000000000000LL) { /* subnormal y */
if(hy==0) {
for (iy = -16431, i=ly; i>0; i<<=1) iy -=1;
} else {
for (iy = -16382, i=hy<<15; i>0; i<<=1) iy -=1;
}
} else iy = (hy>>48)-0x3fff;
/* set up {hx,lx}, {hy,ly} and align y to x */
if(ix >= -16382)
hx = 0x0001000000000000LL|(0x0000ffffffffffffLL&hx);
else { /* subnormal x, shift x to normal */
n = -16382-ix;
if(n<=63) {
hx = (hx<<n)|(lx>>(64-n));
lx <<= n;
} else {
hx = lx<<(n-64);
lx = 0;
}
}
if(iy >= -16382)
hy = 0x0001000000000000LL|(0x0000ffffffffffffLL&hy);
else { /* subnormal y, shift y to normal */
n = -16382-iy;
if(n<=63) {
hy = (hy<<n)|(ly>>(64-n));
ly <<= n;
} else {
hy = ly<<(n-64);
ly = 0;
}
}
/* fix point fmod */
n = ix - iy;
while(n--) {
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
if(hz<0){hx = hx+hx+(lx>>63); lx = lx+lx;}
else {
if((hz|lz)==0) /* return sign(x)*0 */
return Zero[(u_int64_t)sx>>63];
hx = hz+hz+(lz>>63); lx = lz+lz;
}
}
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
if(hz>=0) {hx=hz;lx=lz;}
/* convert back to floating value and restore the sign */
if((hx|lx)==0) /* return sign(x)*0 */
return Zero[(u_int64_t)sx>>63];
while(hx<0x0001000000000000LL) { /* normalize x */
hx = hx+hx+(lx>>63); lx = lx+lx;
iy -= 1;
}
if(iy>= -16382) { /* normalize output */
hx = ((hx-0x0001000000000000LL)|((iy+16383)<<48));
SET_LDOUBLE_WORDS64(x,hx|sx,lx);
} else { /* subnormal output */
n = -16382 - iy;
if(n<=48) {
lx = (lx>>n)|((u_int64_t)hx<<(64-n));
hx >>= n;
} else if (n<=63) {
lx = (hx<<(64-n))|(lx>>n); hx = sx;
} else {
lx = hx>>(n-64); hx = sx;
}
SET_LDOUBLE_WORDS64(x,hx|sx,lx);
x *= one; /* create necessary signal */
}
return x; /* exact output */
}
strong_alias (__ieee754_fmodl, __fmodl_finite)
|