1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
|
/*
* IBM Accurate Mathematical Library
* Written by International Business Machines Corp.
* Copyright (C) 2001, 2002 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/******************************************************************/
/* */
/* MODULE_NAME:upow.h */
/* */
/* common data and variables prototype and definition */
/******************************************************************/
#ifndef UPOW_H
#define UPOW_H
#include "mydefs.h"
#ifdef BIG_ENDI
const static mynumber
/**/ nZERO = {{0x80000000, 0}}, /* -0.0 */
/**/ INF = {{0x7ff00000, 0x00000000}}, /* INF */
/**/ nINF = {{0xfff00000, 0x00000000}}, /* -INF */
/**/ NaNQ = {{0x7ff80000, 0x00000000}}, /* NaNQ */
/**/ sqrt_2 = {{0x3ff6a09e, 0x667f3bcc}}, /* sqrt(2) */
/**/ ln2a = {{0x3fe62e42, 0xfefa3800}}, /* ln(2) 43 bits */
/**/ ln2b = {{0x3d2ef357, 0x93c76730}}, /* ln(2)-ln2a */
/**/ bigu = {{0x4297ffff, 0xfffffd2c}}, /* 1.5*2**42 -724*2**-10 */
/**/ bigv = {{0x4207ffff, 0xfff8016a}}, /* 1.5*2**33-1+362*2**-19 */
/**/ t52 = {{0x43300000, 0x00000000}}, /* 2**52 */
/**/ two52e = {{0x43300000, 0x000003ff}}; /* 2**52' */
#else
#ifdef LITTLE_ENDI
const static mynumber
/**/ nZERO = {{0, 0x80000000}}, /* -0.0 */
/**/ INF = {{0x00000000, 0x7ff00000}}, /* INF */
/**/ nINF = {{0x00000000, 0xfff00000}}, /* -INF */
/**/ NaNQ = {{0x00000000, 0x7ff80000}}, /* NaNQ */
/**/ sqrt_2 = {{0x667f3bcc, 0x3ff6a09e}}, /* sqrt(2) */
/**/ ln2a = {{0xfefa3800, 0x3fe62e42}}, /* ln(2) 43 bits */
/**/ ln2b = {{0x93c76730, 0x3d2ef357}}, /* ln(2)-ln2a */
/**/ bigu = {{0xfffffd2c, 0x4297ffff}}, /* 1.5*2**42 -724*2**-10 */
/**/ bigv = {{0xfff8016a, 0x4207ffff}}, /* 1.5*2**33-1+362*2**-19 */
/**/ t52 = {{0x00000000, 0x43300000}}, /* 2**52 */
/**/ two52e = {{0x000003ff, 0x43300000}}; /* 2**52' */
#endif
#endif
const static double p2=-0.5, p3 = 3.3333333333333333333e-1, p4 = -0.25,
q2 = -0.5, q3 = 3.3333333333331404e-01, q4 = -2.4999999999996436e-01,
q5 = 2.0000010500004459e-01, q6 = -1.6666678916688004e-01,
r3 = 3.33333333333333333372884096563030E-01,
r4 = -2.50000000000000000213574153875908E-01,
r5 = 1.99999999999683593814072199830603E-01,
r6 = -1.66666666666065494878165510225378E-01,
r7 = 1.42857517857114380606360005067609E-01,
r8 = -1.25000449999974370683775964001702E-01,
s3 = 0.333251953125000000e0,
ss3 = 8.138020833333333333e-05,
s4 = -2.500000000000000000e-01,
s5 = 1.999999999999960937e-01,
s6 = -1.666666666666592447e-01,
s7 = 1.428571845238194705e-01,
s8 = -1.250000500000149097e-01;
#endif
|