about summary refs log tree commit diff
path: root/sysdeps/ieee754/dbl-64/s_sin.c
blob: 8c589cbd4ab7451a5889e9a474bf4bd36c49d498 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
/*
 * IBM Accurate Mathematical Library
 * written by International Business Machines Corp.
 * Copyright (C) 2001-2018 Free Software Foundation, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU  Lesser General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 */
/****************************************************************************/
/*                                                                          */
/* MODULE_NAME:usncs.c                                                      */
/*                                                                          */
/* FUNCTIONS: usin                                                          */
/*            ucos                                                          */
/*            slow                                                          */
/*            slow1                                                         */
/*            slow2                                                         */
/*            sloww                                                         */
/*            sloww1                                                        */
/*            sloww2                                                        */
/*            bsloww                                                        */
/*            bsloww1                                                       */
/*            bsloww2                                                       */
/*            cslow2                                                        */
/* FILES NEEDED: dla.h endian.h mpa.h mydefs.h  usncs.h                     */
/*               branred.c sincos32.c dosincos.c mpa.c                      */
/*               sincos.tbl                                                 */
/*                                                                          */
/* An ultimate sin and  routine. Given an IEEE double machine number x       */
/* it computes the correctly rounded (to nearest) value of sin(x) or cos(x) */
/* Assumption: Machine arithmetic operations are performed in               */
/* round to nearest mode of IEEE 754 standard.                              */
/*                                                                          */
/****************************************************************************/


#include <errno.h>
#include <float.h>
#include "endian.h"
#include "mydefs.h"
#include "usncs.h"
#include "MathLib.h"
#include <math.h>
#include <math_private.h>
#include <libm-alias-double.h>
#include <fenv.h>

/* Helper macros to compute sin of the input values.  */
#define POLYNOMIAL2(xx) ((((s5 * (xx) + s4) * (xx) + s3) * (xx) + s2) * (xx))

#define POLYNOMIAL(xx) (POLYNOMIAL2 (xx) + s1)

/* The computed polynomial is a variation of the Taylor series expansion for
   sin(a):

   a - a^3/3! + a^5/5! - a^7/7! + a^9/9! + (1 - a^2) * da / 2

   The constants s1, s2, s3, etc. are pre-computed values of 1/3!, 1/5! and so
   on.  The result is returned to LHS and correction in COR.  */
#define TAYLOR_SIN(xx, a, da, cor) \
({									      \
  double t = ((POLYNOMIAL (xx)  * (a) - 0.5 * (da))  * (xx) + (da));	      \
  double res = (a) + t;							      \
  (cor) = ((a) - res) + t;						      \
  res;									      \
})

/* This is again a variation of the Taylor series expansion with the term
   x^3/3! expanded into the following for better accuracy:

   bb * x ^ 3 + 3 * aa * x * x1 * x2 + aa * x1 ^ 3 + aa * x2 ^ 3

   The correction term is dx and bb + aa = -1/3!
   */
#define TAYLOR_SLOW(x0, dx, cor) \
({									      \
  static const double th2_36 = 206158430208.0;	/*    1.5*2**37   */	      \
  double xx = (x0) * (x0);						      \
  double x1 = ((x0) + th2_36) - th2_36;					      \
  double y = aa * x1 * x1 * x1;						      \
  double r = (x0) + y;							      \
  double x2 = ((x0) - x1) + (dx);					      \
  double t = (((POLYNOMIAL2 (xx) + bb) * xx + 3.0 * aa * x1 * x2)	      \
	      * (x0)  + aa * x2 * x2 * x2 + (dx));			      \
  t = (((x0) - r) + y) + t;						      \
  double res = r + t;							      \
  (cor) = (r - res) + t;						      \
  res;									      \
})

#define SINCOS_TABLE_LOOKUP(u, sn, ssn, cs, ccs) \
({									      \
  int4 k = u.i[LOW_HALF] << 2;						      \
  sn = __sincostab.x[k];						      \
  ssn = __sincostab.x[k + 1];						      \
  cs = __sincostab.x[k + 2];						      \
  ccs = __sincostab.x[k + 3];						      \
})

#ifndef SECTION
# define SECTION
#endif

extern const union
{
  int4 i[880];
  double x[440];
} __sincostab attribute_hidden;

static const double
  sn3 = -1.66666666666664880952546298448555E-01,
  sn5 = 8.33333214285722277379541354343671E-03,
  cs2 = 4.99999999999999999999950396842453E-01,
  cs4 = -4.16666666666664434524222570944589E-02,
  cs6 = 1.38888874007937613028114285595617E-03;

static const double t22 = 0x1.8p22;

void __dubsin (double x, double dx, double w[]);
void __docos (double x, double dx, double w[]);
double __mpsin (double x, double dx, bool reduce_range);
double __mpcos (double x, double dx, bool reduce_range);
static double slow (double x);
static double slow1 (double x);
static double slow2 (double x);
static double sloww (double x, double dx, double orig, bool shift_quadrant);
static double sloww1 (double x, double dx, double orig, bool shift_quadrant);
static double sloww2 (double x, double dx, double orig, int n);
static double bsloww (double x, double dx, double orig, int n);
static double bsloww1 (double x, double dx, double orig, int n);
static double bsloww2 (double x, double dx, double orig, int n);
int __branred (double x, double *a, double *aa);
static double cslow2 (double x);

/* Given a number partitioned into X and DX, this function computes the cosine
   of the number by combining the sin and cos of X (as computed by a variation
   of the Taylor series) with the values looked up from the sin/cos table to
   get the result in RES and a correction value in COR.  */
static inline double
__always_inline
do_cos (double x, double dx, double *corp)
{
  mynumber u;

  if (x < 0)
    dx = -dx;

  u.x = big + fabs (x);
  x = fabs (x) - (u.x - big) + dx;

  double xx, s, sn, ssn, c, cs, ccs, res, cor;
  xx = x * x;
  s = x + x * xx * (sn3 + xx * sn5);
  c = xx * (cs2 + xx * (cs4 + xx * cs6));
  SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
  cor = (ccs - s * ssn - cs * c) - sn * s;
  res = cs + cor;
  cor = (cs - res) + cor;
  *corp = cor;
  return res;
}

/* A more precise variant of DO_COS.  EPS is the adjustment to the correction
   COR.  */
static inline double
__always_inline
do_cos_slow (double x, double dx, double eps, double *corp)
{
  mynumber u;

  if (x <= 0)
    dx = -dx;

  u.x = big + fabs (x);
  x = fabs (x) - (u.x - big);

  double xx, y, x1, x2, e1, e2, res, cor;
  double s, sn, ssn, c, cs, ccs;
  xx = x * x;
  s = x * xx * (sn3 + xx * sn5);
  c = x * dx + xx * (cs2 + xx * (cs4 + xx * cs6));
  SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
  x1 = (x + t22) - t22;
  x2 = (x - x1) + dx;
  e1 = (sn + t22) - t22;
  e2 = (sn - e1) + ssn;
  cor = (ccs - cs * c - e1 * x2 - e2 * x) - sn * s;
  y = cs - e1 * x1;
  cor = cor + ((cs - y) - e1 * x1);
  res = y + cor;
  cor = (y - res) + cor;
  cor = 1.0005 * cor + __copysign (eps, cor);
  *corp = cor;
  return res;
}

/* Given a number partitioned into X and DX, this function computes the sine of
   the number by combining the sin and cos of X (as computed by a variation of
   the Taylor series) with the values looked up from the sin/cos table to get
   the result in RES and a correction value in COR.  */
static inline double
__always_inline
do_sin (double x, double dx, double *corp)
{
  mynumber u;

  if (x <= 0)
    dx = -dx;
  u.x = big + fabs (x);
  x = fabs (x) - (u.x - big);

  double xx, s, sn, ssn, c, cs, ccs, cor, res;
  xx = x * x;
  s = x + (dx + x * xx * (sn3 + xx * sn5));
  c = x * dx + xx * (cs2 + xx * (cs4 + xx * cs6));
  SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
  cor = (ssn + s * ccs - sn * c) + cs * s;
  res = sn + cor;
  cor = (sn - res) + cor;
  *corp = cor;
  return res;
}

/* A more precise variant of DO_SIN.  EPS is the adjustment to the correction
   COR.  */
static inline double
__always_inline
do_sin_slow (double x, double dx, double eps, double *corp)
{
  mynumber u;

  if (x <= 0)
    dx = -dx;
  u.x = big + fabs (x);
  x = fabs (x) - (u.x - big);

  double xx, y, x1, x2, c1, c2, res, cor;
  double s, sn, ssn, c, cs, ccs;
  xx = x * x;
  s = x * xx * (sn3 + xx * sn5);
  c = xx * (cs2 + xx * (cs4 + xx * cs6));
  SINCOS_TABLE_LOOKUP (u, sn, ssn, cs, ccs);
  x1 = (x + t22) - t22;
  x2 = (x - x1) + dx;
  c1 = (cs + t22) - t22;
  c2 = (cs - c1) + ccs;
  cor = (ssn + s * ccs + cs * s + c2 * x + c1 * x2 - sn * x * dx) - sn * c;
  y = sn + c1 * x1;
  cor = cor + ((sn - y) + c1 * x1);
  res = y + cor;
  cor = (y - res) + cor;
  cor = 1.0005 * cor + __copysign (eps, cor);
  *corp = cor;
  return res;
}

/* Reduce range of X and compute sin of a + da. When SHIFT_QUADRANT is true,
   the routine returns the cosine of a + da by rotating the quadrant once and
   computing the sine of the result.  */
static inline double
__always_inline
reduce_and_compute (double x, bool shift_quadrant)
{
  double retval = 0, a, da;
  unsigned int n = __branred (x, &a, &da);
  int4 k = (n + shift_quadrant) % 4;
  switch (k)
    {
    case 2:
      a = -a;
      da = -da;
      /* Fall through.  */
    case 0:
      if (a * a < 0.01588)
	retval = bsloww (a, da, x, n);
      else
	retval = bsloww1 (a, da, x, n);
      break;

    case 1:
    case 3:
      retval = bsloww2 (a, da, x, n);
      break;
    }
  return retval;
}

static inline int4
__always_inline
reduce_sincos_1 (double x, double *a, double *da)
{
  mynumber v;

  double t = (x * hpinv + toint);
  double xn = t - toint;
  v.x = t;
  double y = (x - xn * mp1) - xn * mp2;
  int4 n = v.i[LOW_HALF] & 3;
  double db = xn * mp3;
  double b = y - db;
  db = (y - b) - db;

  *a = b;
  *da = db;

  return n;
}

/* Compute sin (A + DA).  cos can be computed by passing SHIFT_QUADRANT as
   true, which results in shifting the quadrant N clockwise.  */
static double
__always_inline
do_sincos_1 (double a, double da, double x, int4 n, bool shift_quadrant)
{
  double xx, retval, res, cor;
  double eps = fabs (x) * 1.2e-30;

  int k1 = (n + shift_quadrant) & 3;
  switch (k1)
    {			/* quarter of unit circle */
    case 2:
      a = -a;
      da = -da;
      /* Fall through.  */
    case 0:
      xx = a * a;
      if (xx < 0.01588)
	{
	  /* Taylor series.  */
	  res = TAYLOR_SIN (xx, a, da, cor);
	  cor = 1.02 * cor + __copysign (eps, cor);
	  retval = (res == res + cor) ? res : sloww (a, da, x, shift_quadrant);
	}
      else
	{
	  res = do_sin (a, da, &cor);
	  cor = 1.035 * cor + __copysign (eps, cor);
	  retval = ((res == res + cor) ? __copysign (res, a)
		    : sloww1 (a, da, x, shift_quadrant));
	}
      break;

    case 1:
    case 3:
      res = do_cos (a, da, &cor);
      cor = 1.025 * cor + __copysign (eps, cor);
      retval = ((res == res + cor) ? ((n & 2) ? -res : res)
		: sloww2 (a, da, x, n));
      break;
    }

  return retval;
}

static inline int4
__always_inline
reduce_sincos_2 (double x, double *a, double *da)
{
  mynumber v;

  double t = (x * hpinv + toint);
  double xn = t - toint;
  v.x = t;
  double xn1 = (xn + 8.0e22) - 8.0e22;
  double xn2 = xn - xn1;
  double y = ((((x - xn1 * mp1) - xn1 * mp2) - xn2 * mp1) - xn2 * mp2);
  int4 n = v.i[LOW_HALF] & 3;
  double db = xn1 * pp3;
  t = y - db;
  db = (y - t) - db;
  db = (db - xn2 * pp3) - xn * pp4;
  double b = t + db;
  db = (t - b) + db;

  *a = b;
  *da = db;

  return n;
}

/* Compute sin (A + DA).  cos can be computed by passing SHIFT_QUADRANT as
   true, which results in shifting the quadrant N clockwise.  */
static double
__always_inline
do_sincos_2 (double a, double da, double x, int4 n, bool shift_quadrant)
{
  double res, retval, cor, xx;

  double eps = 1.0e-24;

  int4 k = (n + shift_quadrant) & 3;

  switch (k)
    {
    case 2:
      a = -a;
      da = -da;
      /* Fall through.  */
    case 0:
      xx = a * a;
      if (xx < 0.01588)
	{
	  /* Taylor series.  */
	  res = TAYLOR_SIN (xx, a, da, cor);
	  cor = 1.02 * cor + __copysign (eps, cor);
	  retval = (res == res + cor) ? res : bsloww (a, da, x, n);
	}
      else
	{
	  res = do_sin (a, da, &cor);
	  cor = 1.035 * cor + __copysign (eps, cor);
	  retval = ((res == res + cor) ? __copysign (res, a)
		    : bsloww1 (a, da, x, n));
	}
      break;

    case 1:
    case 3:
      res = do_cos (a, da, &cor);
      cor = 1.025 * cor + __copysign (eps, cor);
      retval = ((res == res + cor) ? ((n & 2) ? -res : res)
		: bsloww2 (a, da, x, n));
      break;
    }

  return retval;
}

/*******************************************************************/
/* An ultimate sin routine. Given an IEEE double machine number x   */
/* it computes the correctly rounded (to nearest) value of sin(x)  */
/*******************************************************************/
#ifdef IN_SINCOS
static double
#else
double
SECTION
#endif
__sin (double x)
{
  double xx, res, t, cor;
  mynumber u;
  int4 k, m;
  double retval = 0;

#ifndef IN_SINCOS
  SET_RESTORE_ROUND_53BIT (FE_TONEAREST);
#endif

  u.x = x;
  m = u.i[HIGH_HALF];
  k = 0x7fffffff & m;		/* no sign           */
  if (k < 0x3e500000)		/* if x->0 =>sin(x)=x */
    {
      math_check_force_underflow (x);
      retval = x;
    }
 /*---------------------------- 2^-26 < |x|< 0.25 ----------------------*/
  else if (k < 0x3fd00000)
    {
      xx = x * x;
      /* Taylor series.  */
      t = POLYNOMIAL (xx) * (xx * x);
      res = x + t;
      cor = (x - res) + t;
      retval = (res == res + 1.07 * cor) ? res : slow (x);
    }				/*  else  if (k < 0x3fd00000)    */
/*---------------------------- 0.25<|x|< 0.855469---------------------- */
  else if (k < 0x3feb6000)
    {
      res = do_sin (x, 0, &cor);
      retval = (res == res + 1.096 * cor) ? res : slow1 (x);
      retval = __copysign (retval, x);
    }				/*   else  if (k < 0x3feb6000)    */

/*----------------------- 0.855469  <|x|<2.426265  ----------------------*/
  else if (k < 0x400368fd)
    {

      t = hp0 - fabs (x);
      res = do_cos (t, hp1, &cor);
      retval = (res == res + 1.020 * cor) ? res : slow2 (x);
      retval = __copysign (retval, x);
    }				/*   else  if (k < 0x400368fd)    */

#ifndef IN_SINCOS
/*-------------------------- 2.426265<|x|< 105414350 ----------------------*/
  else if (k < 0x419921FB)
    {
      double a, da;
      int4 n = reduce_sincos_1 (x, &a, &da);
      retval = do_sincos_1 (a, da, x, n, false);
    }				/*   else  if (k <  0x419921FB )    */

/*---------------------105414350 <|x|< 281474976710656 --------------------*/
  else if (k < 0x42F00000)
    {
      double a, da;

      int4 n = reduce_sincos_2 (x, &a, &da);
      retval = do_sincos_2 (a, da, x, n, false);
    }				/*   else  if (k <  0x42F00000 )   */

/* -----------------281474976710656 <|x| <2^1024----------------------------*/
  else if (k < 0x7ff00000)
    retval = reduce_and_compute (x, false);

/*--------------------- |x| > 2^1024 ----------------------------------*/
  else
    {
      if (k == 0x7ff00000 && u.i[LOW_HALF] == 0)
	__set_errno (EDOM);
      retval = x / x;
    }
#endif

  return retval;
}


/*******************************************************************/
/* An ultimate cos routine. Given an IEEE double machine number x   */
/* it computes the correctly rounded (to nearest) value of cos(x)  */
/*******************************************************************/

#ifdef IN_SINCOS
static double
#else
double
SECTION
#endif
__cos (double x)
{
  double y, xx, res, cor, a, da;
  mynumber u;
  int4 k, m;

  double retval = 0;

#ifndef IN_SINCOS
  SET_RESTORE_ROUND_53BIT (FE_TONEAREST);
#endif

  u.x = x;
  m = u.i[HIGH_HALF];
  k = 0x7fffffff & m;

  /* |x|<2^-27 => cos(x)=1 */
  if (k < 0x3e400000)
    retval = 1.0;

  else if (k < 0x3feb6000)
    {				/* 2^-27 < |x| < 0.855469 */
      res = do_cos (x, 0, &cor);
      retval = (res == res + 1.020 * cor) ? res : cslow2 (x);
    }				/*   else  if (k < 0x3feb6000)    */

  else if (k < 0x400368fd)
    { /* 0.855469  <|x|<2.426265  */ ;
      y = hp0 - fabs (x);
      a = y + hp1;
      da = (y - a) + hp1;
      xx = a * a;
      if (xx < 0.01588)
	{
	  res = TAYLOR_SIN (xx, a, da, cor);
	  cor = 1.02 * cor + __copysign (1.0e-31, cor);
	  retval = (res == res + cor) ? res : sloww (a, da, x, true);
	}
      else
	{
	  res = do_sin (a, da, &cor);
	  cor = 1.035 * cor + __copysign (1.0e-31, cor);
	  retval = ((res == res + cor) ? __copysign (res, a)
		    : sloww1 (a, da, x, true));
	}

    }				/*   else  if (k < 0x400368fd)    */


#ifndef IN_SINCOS
  else if (k < 0x419921FB)
    {				/* 2.426265<|x|< 105414350 */
      double a, da;
      int4 n = reduce_sincos_1 (x, &a, &da);
      retval = do_sincos_1 (a, da, x, n, true);
    }				/*   else  if (k <  0x419921FB )    */

  else if (k < 0x42F00000)
    {
      double a, da;

      int4 n = reduce_sincos_2 (x, &a, &da);
      retval = do_sincos_2 (a, da, x, n, true);
    }				/*   else  if (k <  0x42F00000 )    */

  /* 281474976710656 <|x| <2^1024 */
  else if (k < 0x7ff00000)
    retval = reduce_and_compute (x, true);

  else
    {
      if (k == 0x7ff00000 && u.i[LOW_HALF] == 0)
	__set_errno (EDOM);
      retval = x / x;		/* |x| > 2^1024 */
    }
#endif

  return retval;
}

/************************************************************************/
/*  Routine compute sin(x) for  2^-26 < |x|< 0.25 by  Taylor with more   */
/* precision  and if still doesn't accurate enough by mpsin   or dubsin */
/************************************************************************/

static inline double
__always_inline
slow (double x)
{
  double res, cor, w[2];
  res = TAYLOR_SLOW (x, 0, cor);
  if (res == res + 1.0007 * cor)
    return res;

  __dubsin (fabs (x), 0, w);
  if (w[0] == w[0] + 1.000000001 * w[1])
    return __copysign (w[0], x);

  return __copysign (__mpsin (fabs (x), 0, false), x);
}

/*******************************************************************************/
/* Routine compute sin(x) for 0.25<|x|< 0.855469 by __sincostab.tbl and Taylor */
/* and if result still doesn't accurate enough by mpsin   or dubsin            */
/*******************************************************************************/

static inline double
__always_inline
slow1 (double x)
{
  double w[2], cor, res;

  res = do_sin_slow (x, 0, 0, &cor);
  if (res == res + cor)
    return res;

  __dubsin (fabs (x), 0, w);
  if (w[0] == w[0] + 1.000000005 * w[1])
    return w[0];

  return __mpsin (fabs (x), 0, false);
}

/**************************************************************************/
/*  Routine compute sin(x) for   0.855469  <|x|<2.426265  by  __sincostab.tbl  */
/* and if result still doesn't accurate enough by mpsin   or dubsin       */
/**************************************************************************/
static inline double
__always_inline
slow2 (double x)
{
  double w[2], y, y1, y2, cor, res;

  double t = hp0 - fabs (x);
  res = do_cos_slow (t, hp1, 0, &cor);
  if (res == res + cor)
    return res;

  y = fabs (x) - hp0;
  y1 = y - hp1;
  y2 = (y - y1) - hp1;
  __docos (y1, y2, w);
  if (w[0] == w[0] + 1.000000005 * w[1])
    return w[0];

  return __mpsin (fabs (x), 0, false);
}

/* Compute sin(x + dx) where X is small enough to use Taylor series around zero
   and (x + dx) in the first or third quarter of the unit circle.  ORIG is the
   original value of X for computing error of the result.  If the result is not
   accurate enough, the routine calls mpsin or dubsin.  SHIFT_QUADRANT rotates
   the unit circle by 1 to compute the cosine instead of sine.  */
static inline double
__always_inline
sloww (double x, double dx, double orig, bool shift_quadrant)
{
  double y, t, res, cor, w[2], a, da, xn;
  mynumber v;
  int4 n;
  res = TAYLOR_SLOW (x, dx, cor);

  double eps = fabs (orig) * 3.1e-30;

  cor = 1.0005 * cor + __copysign (eps, cor);

  if (res == res + cor)
    return res;

  a = fabs (x);
  da = (x > 0) ? dx : -dx;
  __dubsin (a, da, w);
  eps = fabs (orig) * 1.1e-30;
  cor = 1.000000001 * w[1] + __copysign (eps, w[1]);

  if (w[0] == w[0] + cor)
    return __copysign (w[0], x);

  t = (orig * hpinv + toint);
  xn = t - toint;
  v.x = t;
  y = (orig - xn * mp1) - xn * mp2;
  n = (v.i[LOW_HALF] + shift_quadrant) & 3;
  da = xn * pp3;
  t = y - da;
  da = (y - t) - da;
  y = xn * pp4;
  a = t - y;
  da = ((t - a) - y) + da;

  if (n & 2)
    {
      a = -a;
      da = -da;
    }
  x = fabs (a);
  dx = (a > 0) ? da : -da;
  __dubsin (x, dx, w);
  eps = fabs (orig) * 1.1e-40;
  cor = 1.000000001 * w[1] + __copysign (eps, w[1]);

  if (w[0] == w[0] + cor)
    return __copysign (w[0], a);

  return shift_quadrant ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
}

/* Compute sin(x + dx) where X is in the first or third quarter of the unit
   circle.  ORIG is the original value of X for computing error of the result.
   If the result is not accurate enough, the routine calls mpsin or dubsin.
   SHIFT_QUADRANT rotates the unit circle by 1 to compute the cosine instead of
   sine.  */
static inline double
__always_inline
sloww1 (double x, double dx, double orig, bool shift_quadrant)
{
  double w[2], cor, res;

  res = do_sin_slow (x, dx, 3.1e-30 * fabs (orig), &cor);

  if (res == res + cor)
    return __copysign (res, x);

  dx = (x > 0 ? dx : -dx);
  __dubsin (fabs (x), dx, w);

  double eps = 1.1e-30 * fabs (orig);
  cor = 1.000000005 * w[1] + __copysign (eps, w[1]);

  if (w[0] == w[0] + cor)
    return __copysign (w[0], x);

  return shift_quadrant ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
}

/***************************************************************************/
/*  Routine compute sin(x+dx)   (Double-Length number) where x in second or */
/*  fourth quarter of unit circle.Routine receive also  the  original value */
/* and quarter(n= 1or 3)of x for computing error of result.And if result not*/
/* accurate enough routine calls  mpsin1   or dubsin                       */
/***************************************************************************/

static inline double
__always_inline
sloww2 (double x, double dx, double orig, int n)
{
  double w[2], cor, res;

  res = do_cos_slow (x, dx, 3.1e-30 * fabs (orig), &cor);

  if (res == res + cor)
    return (n & 2) ? -res : res;

  dx = x > 0 ? dx : -dx;
  __docos (fabs (x), dx, w);

  double eps = 1.1e-30 * fabs (orig);
  cor = 1.000000005 * w[1] + __copysign (eps, w[1]);

  if (w[0] == w[0] + cor)
    return (n & 2) ? -w[0] : w[0];

  return (n & 1) ? __mpsin (orig, 0, true) : __mpcos (orig, 0, true);
}

/***************************************************************************/
/*  Routine compute sin(x+dx) or cos(x+dx) (Double-Length number) where x   */
/* is small enough to use Taylor series around zero and   (x+dx)            */
/* in first or third quarter of unit circle.Routine receive also            */
/* (right argument) the  original   value of x for computing error of      */
/* result.And if result not accurate enough routine calls other routines    */
/***************************************************************************/

static inline double
__always_inline
bsloww (double x, double dx, double orig, int n)
{
  double res, cor, w[2], a, da;

  res = TAYLOR_SLOW (x, dx, cor);
  cor = 1.0005 * cor + __copysign (1.1e-24, cor);
  if (res == res + cor)
    return res;

  a = fabs (x);
  da = (x > 0) ? dx : -dx;
  __dubsin (a, da, w);
  cor = 1.000000001 * w[1] + __copysign (1.1e-24, w[1]);

  if (w[0] == w[0] + cor)
    return __copysign (w[0], x);

  return (n & 1) ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
}

/***************************************************************************/
/*  Routine compute sin(x+dx)  or cos(x+dx) (Double-Length number) where x  */
/* in first or third quarter of unit circle.Routine receive also            */
/* (right argument) the original  value of x for computing error of result.*/
/* And if result not  accurate enough routine calls  other routines         */
/***************************************************************************/

static inline double
__always_inline
bsloww1 (double x, double dx, double orig, int n)
{
  double w[2], cor, res;

  res = do_sin_slow (x, dx, 1.1e-24, &cor);
  if (res == res + cor)
    return (x > 0) ? res : -res;

  dx = (x > 0) ? dx : -dx;
  __dubsin (fabs (x), dx, w);

  cor = 1.000000005 * w[1] + __copysign (1.1e-24, w[1]);

  if (w[0] == w[0] + cor)
    return __copysign (w[0], x);

  return (n & 1) ? __mpcos (orig, 0, true) : __mpsin (orig, 0, true);
}

/***************************************************************************/
/*  Routine compute sin(x+dx)  or cos(x+dx) (Double-Length number) where x  */
/* in second or fourth quarter of unit circle.Routine receive also  the     */
/* original value and quarter(n= 1or 3)of x for computing error of result.  */
/* And if result not accurate enough routine calls  other routines          */
/***************************************************************************/

static inline double
__always_inline
bsloww2 (double x, double dx, double orig, int n)
{
  double w[2], cor, res;

  res = do_cos_slow (x, dx, 1.1e-24, &cor);
  if (res == res + cor)
    return (n & 2) ? -res : res;

  dx = (x > 0) ? dx : -dx;
  __docos (fabs (x), dx, w);

  cor = 1.000000005 * w[1] + __copysign (1.1e-24, w[1]);

  if (w[0] == w[0] + cor)
    return (n & 2) ? -w[0] : w[0];

  return (n & 1) ? __mpsin (orig, 0, true) : __mpcos (orig, 0, true);
}

/************************************************************************/
/*  Routine compute cos(x) for  2^-27 < |x|< 0.25 by  Taylor with more   */
/* precision  and if still doesn't accurate enough by mpcos   or docos  */
/************************************************************************/

static inline double
__always_inline
cslow2 (double x)
{
  double w[2], cor, res;

  res = do_cos_slow (x, 0, 0, &cor);
  if (res == res + cor)
    return res;

  __docos (fabs (x), 0, w);
  if (w[0] == w[0] + 1.000000005 * w[1])
    return w[0];

  return __mpcos (x, 0, false);
}

#ifndef __cos
libm_alias_double (__cos, cos)
#endif
#ifndef __sin
libm_alias_double (__sin, sin)
#endif