1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
/* Data for log2.
Copyright (C) 2018-2021 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "math_config.h"
#define N (1 << LOG2_TABLE_BITS)
const struct log2_data __log2_data = {
// First coefficient: 0x1.71547652b82fe1777d0ffda0d24p0
.invln2hi = 0x1.7154765200000p+0,
.invln2lo = 0x1.705fc2eefa200p-33,
.poly1 = {
#if LOG2_POLY1_ORDER == 11
// relative error: 0x1.2fad8188p-63
// in -0x1.5b51p-5 0x1.6ab2p-5
-0x1.71547652b82fep-1,
0x1.ec709dc3a03f7p-2,
-0x1.71547652b7c3fp-2,
0x1.2776c50f05be4p-2,
-0x1.ec709dd768fe5p-3,
0x1.a61761ec4e736p-3,
-0x1.7153fbc64a79bp-3,
0x1.484d154f01b4ap-3,
-0x1.289e4a72c383cp-3,
0x1.0b32f285aee66p-3,
#endif
},
.poly = {
#if N == 64 && LOG2_POLY_ORDER == 7
// relative error: 0x1.a72c2bf8p-58
// abs error: 0x1.67a552c8p-66
// in -0x1.f45p-8 0x1.f45p-8
-0x1.71547652b8339p-1,
0x1.ec709dc3a04bep-2,
-0x1.7154764702ffbp-2,
0x1.2776c50034c48p-2,
-0x1.ec7b328ea92bcp-3,
0x1.a6225e117f92ep-3,
#endif
},
/* Algorithm:
x = 2^k z
log2(x) = k + log2(c) + log2(z/c)
log2(z/c) = poly(z/c - 1)
where z is in [1.6p-1; 1.6p0] which is split into N subintervals and z falls
into the ith one, then table entries are computed as
tab[i].invc = 1/c
tab[i].logc = (double)log2(c)
tab2[i].chi = (double)c
tab2[i].clo = (double)(c - (double)c)
where c is near the center of the subinterval and is chosen by trying +-2^29
floating point invc candidates around 1/center and selecting one for which
1) the rounding error in 0x1.8p10 + logc is 0,
2) the rounding error in z - chi - clo is < 0x1p-64 and
3) the rounding error in (double)log2(c) is minimized (< 0x1p-68).
Note: 1) ensures that k + logc can be computed without rounding error, 2)
ensures that z/c - 1 can be computed as (z - chi - clo)*invc with close to a
single rounding error when there is no fast fma for z*invc - 1, 3) ensures
that logc + poly(z/c - 1) has small error, however near x == 1 when
|log2(x)| < 0x1p-4, this is not enough so that is special cased. */
.tab = {
#if N == 64
{0x1.724286bb1acf8p+0, -0x1.1095feecdb000p-1},
{0x1.6e1f766d2cca1p+0, -0x1.08494bd76d000p-1},
{0x1.6a13d0e30d48ap+0, -0x1.00143aee8f800p-1},
{0x1.661ec32d06c85p+0, -0x1.efec5360b4000p-2},
{0x1.623fa951198f8p+0, -0x1.dfdd91ab7e000p-2},
{0x1.5e75ba4cf026cp+0, -0x1.cffae0cc79000p-2},
{0x1.5ac055a214fb8p+0, -0x1.c043811fda000p-2},
{0x1.571ed0f166e1ep+0, -0x1.b0b67323ae000p-2},
{0x1.53909590bf835p+0, -0x1.a152f5a2db000p-2},
{0x1.5014fed61adddp+0, -0x1.9217f5af86000p-2},
{0x1.4cab88e487bd0p+0, -0x1.8304db0719000p-2},
{0x1.49539b4334feep+0, -0x1.74189f9a9e000p-2},
{0x1.460cbdfafd569p+0, -0x1.6552bb5199000p-2},
{0x1.42d664ee4b953p+0, -0x1.56b23a29b1000p-2},
{0x1.3fb01111dd8a6p+0, -0x1.483650f5fa000p-2},
{0x1.3c995b70c5836p+0, -0x1.39de937f6a000p-2},
{0x1.3991c4ab6fd4ap+0, -0x1.2baa1538d6000p-2},
{0x1.3698e0ce099b5p+0, -0x1.1d98340ca4000p-2},
{0x1.33ae48213e7b2p+0, -0x1.0fa853a40e000p-2},
{0x1.30d191985bdb1p+0, -0x1.01d9c32e73000p-2},
{0x1.2e025cab271d7p+0, -0x1.e857da2fa6000p-3},
{0x1.2b404cf13cd82p+0, -0x1.cd3c8633d8000p-3},
{0x1.288b02c7ccb50p+0, -0x1.b26034c14a000p-3},
{0x1.25e2263944de5p+0, -0x1.97c1c2f4fe000p-3},
{0x1.234563d8615b1p+0, -0x1.7d6023f800000p-3},
{0x1.20b46e33eaf38p+0, -0x1.633a71a05e000p-3},
{0x1.1e2eefdcda3ddp+0, -0x1.494f5e9570000p-3},
{0x1.1bb4a580b3930p+0, -0x1.2f9e424e0a000p-3},
{0x1.19453847f2200p+0, -0x1.162595afdc000p-3},
{0x1.16e06c0d5d73cp+0, -0x1.f9c9a75bd8000p-4},
{0x1.1485f47b7e4c2p+0, -0x1.c7b575bf9c000p-4},
{0x1.12358ad0085d1p+0, -0x1.960c60ff48000p-4},
{0x1.0fef00f532227p+0, -0x1.64ce247b60000p-4},
{0x1.0db2077d03a8fp+0, -0x1.33f78b2014000p-4},
{0x1.0b7e6d65980d9p+0, -0x1.0387d1a42c000p-4},
{0x1.0953efe7b408dp+0, -0x1.a6f9208b50000p-5},
{0x1.07325cac53b83p+0, -0x1.47a954f770000p-5},
{0x1.05197e40d1b5cp+0, -0x1.d23a8c50c0000p-6},
{0x1.03091c1208ea2p+0, -0x1.16a2629780000p-6},
{0x1.0101025b37e21p+0, -0x1.720f8d8e80000p-8},
{0x1.fc07ef9caa76bp-1, 0x1.6fe53b1500000p-7},
{0x1.f4465d3f6f184p-1, 0x1.11ccce10f8000p-5},
{0x1.ecc079f84107fp-1, 0x1.c4dfc8c8b8000p-5},
{0x1.e573a99975ae8p-1, 0x1.3aa321e574000p-4},
{0x1.de5d6f0bd3de6p-1, 0x1.918a0d08b8000p-4},
{0x1.d77b681ff38b3p-1, 0x1.e72e9da044000p-4},
{0x1.d0cb5724de943p-1, 0x1.1dcd2507f6000p-3},
{0x1.ca4b2dc0e7563p-1, 0x1.476ab03dea000p-3},
{0x1.c3f8ee8d6cb51p-1, 0x1.7074377e22000p-3},
{0x1.bdd2b4f020c4cp-1, 0x1.98ede8ba94000p-3},
{0x1.b7d6c006015cap-1, 0x1.c0db86ad2e000p-3},
{0x1.b20366e2e338fp-1, 0x1.e840aafcee000p-3},
{0x1.ac57026295039p-1, 0x1.0790ab4678000p-2},
{0x1.a6d01bc2731ddp-1, 0x1.1ac056801c000p-2},
{0x1.a16d3bc3ff18bp-1, 0x1.2db11d4fee000p-2},
{0x1.9c2d14967feadp-1, 0x1.406464ec58000p-2},
{0x1.970e4f47c9902p-1, 0x1.52dbe093af000p-2},
{0x1.920fb3982bcf2p-1, 0x1.651902050d000p-2},
{0x1.8d30187f759f1p-1, 0x1.771d2cdeaf000p-2},
{0x1.886e5ebb9f66dp-1, 0x1.88e9c857d9000p-2},
{0x1.83c97b658b994p-1, 0x1.9a80155e16000p-2},
{0x1.7f405ffc61022p-1, 0x1.abe186ed3d000p-2},
{0x1.7ad22181415cap-1, 0x1.bd0f2aea0e000p-2},
{0x1.767dcf99eff8cp-1, 0x1.ce0a43dbf4000p-2},
#endif
},
#ifndef __FP_FAST_FMA
.tab2 = {
# if N == 64
{0x1.6200012b90a8ep-1, 0x1.904ab0644b605p-55},
{0x1.66000045734a6p-1, 0x1.1ff9bea62f7a9p-57},
{0x1.69fffc325f2c5p-1, 0x1.27ecfcb3c90bap-55},
{0x1.6e00038b95a04p-1, 0x1.8ff8856739326p-55},
{0x1.71fffe09994e3p-1, 0x1.afd40275f82b1p-55},
{0x1.7600015590e1p-1, -0x1.2fd75b4238341p-56},
{0x1.7a00012655bd5p-1, 0x1.808e67c242b76p-56},
{0x1.7e0003259e9a6p-1, -0x1.208e426f622b7p-57},
{0x1.81fffedb4b2d2p-1, -0x1.402461ea5c92fp-55},
{0x1.860002dfafcc3p-1, 0x1.df7f4a2f29a1fp-57},
{0x1.89ffff78c6b5p-1, -0x1.e0453094995fdp-55},
{0x1.8e00039671566p-1, -0x1.a04f3bec77b45p-55},
{0x1.91fffe2bf1745p-1, -0x1.7fa34400e203cp-56},
{0x1.95fffcc5c9fd1p-1, -0x1.6ff8005a0695dp-56},
{0x1.9a0003bba4767p-1, 0x1.0f8c4c4ec7e03p-56},
{0x1.9dfffe7b92da5p-1, 0x1.e7fd9478c4602p-55},
{0x1.a1fffd72efdafp-1, -0x1.a0c554dcdae7ep-57},
{0x1.a5fffde04ff95p-1, 0x1.67da98ce9b26bp-55},
{0x1.a9fffca5e8d2bp-1, -0x1.284c9b54c13dep-55},
{0x1.adfffddad03eap-1, 0x1.812c8ea602e3cp-58},
{0x1.b1ffff10d3d4dp-1, -0x1.efaddad27789cp-55},
{0x1.b5fffce21165ap-1, 0x1.3cb1719c61237p-58},
{0x1.b9fffd950e674p-1, 0x1.3f7d94194cep-56},
{0x1.be000139ca8afp-1, 0x1.50ac4215d9bcp-56},
{0x1.c20005b46df99p-1, 0x1.beea653e9c1c9p-57},
{0x1.c600040b9f7aep-1, -0x1.c079f274a70d6p-56},
{0x1.ca0006255fd8ap-1, -0x1.a0b4076e84c1fp-56},
{0x1.cdfffd94c095dp-1, 0x1.8f933f99ab5d7p-55},
{0x1.d1ffff975d6cfp-1, -0x1.82c08665fe1bep-58},
{0x1.d5fffa2561c93p-1, -0x1.b04289bd295f3p-56},
{0x1.d9fff9d228b0cp-1, 0x1.70251340fa236p-55},
{0x1.de00065bc7e16p-1, -0x1.5011e16a4d80cp-56},
{0x1.e200002f64791p-1, 0x1.9802f09ef62ep-55},
{0x1.e600057d7a6d8p-1, -0x1.e0b75580cf7fap-56},
{0x1.ea00027edc00cp-1, -0x1.c848309459811p-55},
{0x1.ee0006cf5cb7cp-1, -0x1.f8027951576f4p-55},
{0x1.f2000782b7dccp-1, -0x1.f81d97274538fp-55},
{0x1.f6000260c450ap-1, -0x1.071002727ffdcp-59},
{0x1.f9fffe88cd533p-1, -0x1.81bdce1fda8bp-58},
{0x1.fdfffd50f8689p-1, 0x1.7f91acb918e6ep-55},
{0x1.0200004292367p+0, 0x1.b7ff365324681p-54},
{0x1.05fffe3e3d668p+0, 0x1.6fa08ddae957bp-55},
{0x1.0a0000a85a757p+0, -0x1.7e2de80d3fb91p-58},
{0x1.0e0001a5f3fccp+0, -0x1.1823305c5f014p-54},
{0x1.11ffff8afbaf5p+0, -0x1.bfabb6680bac2p-55},
{0x1.15fffe54d91adp+0, -0x1.d7f121737e7efp-54},
{0x1.1a00011ac36e1p+0, 0x1.c000a0516f5ffp-54},
{0x1.1e00019c84248p+0, -0x1.082fbe4da5dap-54},
{0x1.220000ffe5e6ep+0, -0x1.8fdd04c9cfb43p-55},
{0x1.26000269fd891p+0, 0x1.cfe2a7994d182p-55},
{0x1.2a00029a6e6dap+0, -0x1.00273715e8bc5p-56},
{0x1.2dfffe0293e39p+0, 0x1.b7c39dab2a6f9p-54},
{0x1.31ffff7dcf082p+0, 0x1.df1336edc5254p-56},
{0x1.35ffff05a8b6p+0, -0x1.e03564ccd31ebp-54},
{0x1.3a0002e0eaeccp+0, 0x1.5f0e74bd3a477p-56},
{0x1.3e000043bb236p+0, 0x1.c7dcb149d8833p-54},
{0x1.4200002d187ffp+0, 0x1.e08afcf2d3d28p-56},
{0x1.460000d387cb1p+0, 0x1.20837856599a6p-55},
{0x1.4a00004569f89p+0, -0x1.9fa5c904fbcd2p-55},
{0x1.4e000043543f3p+0, -0x1.81125ed175329p-56},
{0x1.51fffcc027f0fp+0, 0x1.883d8847754dcp-54},
{0x1.55ffffd87b36fp+0, -0x1.709e731d02807p-55},
{0x1.59ffff21df7bap+0, 0x1.7f79f68727b02p-55},
{0x1.5dfffebfc3481p+0, -0x1.180902e30e93ep-54},
# endif
},
#endif /* __FP_FAST_FMA */
};
|