1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
|
.file "erff.s"
// Copyright (c) 2001 - 2005, Intel Corporation
// All rights reserved.
//
// Contributed 2001 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 08/14/01 Initial version
// 05/20/02 Cleaned up namespace and sf0 syntax
// 02/06/03 Reordered header: .section, .global, .proc, .align
// 03/31/05 Reformatted delimiters between data tables
//
// API
//==============================================================
// float erff(float)
//
// Overview of operation
//==============================================================
// Background
//
//
// There are 8 paths:
// 1. x = +/-0.0
// Return erff(x) = +/-0.0
//
// 2. 0.0 < |x| < 0.125
// Return erff(x) = x *Pol3(x^2),
// where Pol3(x^2) = C3*x^6 + C2*x^4 + C1*x^2 + C0
//
// 3. 0.125 <= |x| < 4.0
// Return erff(x) = sign(x)*PolD(x)*PolC(|x|) + sign(x)*PolA(|x|),
// where sign(x)*PolD(x) = sign(x)*(|x|^7 + D2*x^6 + D1*|x|^5 + D0*x^4),
// PolC(|x|) = B0*x^4 + C3*|x|^3 + C2*|x|^2 + C1*|x| + C0,
// PolA(|x|) = A3|x|^3 + A2*x^2 + A1*|x| + A0
//
// Actually range 0.125<=|x|< 4.0 is splitted to 5 subranges.
// For each subrange there is particular set of coefficients.
// Below is the list of subranges:
// 3.1 0.125 <= |x| < 0.25
// 3.2 0.25 <= |x| < 0.5
// 3.3 0.5 <= |x| < 1.0
// 3.4 1.0 <= |x| < 2.0
// 3.5 2.0 <= |x| < 4.0
//
// 4. 4.0 <= |x| < +INF
// Return erff(x) = sign(x)*(1.0d - 2^(-52))
//
// 5. |x| = INF
// Return erff(x) = sign(x) * 1.0
//
// 6. x = [S,Q]NaN
// Return erff(x) = QNaN
//
// 7. x is positive denormal
// Return erff(x) = C0*x - x^2,
// where C0 = 2.0/sqrt(Pi)
//
// 8. x is negative denormal
// Return erff(x) = C0*x + x^2,
// where C0 = 2.0/sqrt(Pi)
//
// Registers used
//==============================================================
// Floating Point registers used:
// f8, input
// f32 -> f59
// General registers used:
// r32 -> r45, r2, r3
// Predicate registers used:
// p0, p6 -> p12, p14, p15
// p6 to filter out case when x = [Q,S]NaN or +/-0
// p7 to filter out case when x = denormal
// p8 set if |x| >= 0.3125, used also to process denormal input
// p9 to filter out case when |x| = inf
// p10 to filter out case when |x| < 0.125
// p11 to filter out case when 0.125 <= |x| < 4.0
// p12 to filter out case when |x| >= 4.0
// p14 set to 1 for positive x
// p15 set to 1 for negative x
// Assembly macros
//==============================================================
rDataPtr = r2
rDataPtr1 = r3
rBias = r33
rCoeffAddr3 = r34
rCoeffAddr1 = r35
rCoeffAddr2 = r36
rOffset2 = r37
rBias2 = r38
rMask = r39
rArg = r40
rBound = r41
rSignBit = r42
rAbsArg = r43
rDataPtr2 = r44
rSaturation = r45
//==============================================================
fA0 = f32
fA1 = f33
fA2 = f34
fA3 = f35
fC0 = f36
fC1 = f37
fC2 = f38
fC3 = f39
fD0 = f40
fD1 = f41
fD2 = f42
fB0 = f43
fArgSqr = f44
fAbsArg = f45
fSignumX = f46
fArg4 = f47
fArg4Sgn = f48
fArg3 = f49
fArg3Sgn = f50
fArg7Sgn = f51
fArg6Sgn = f52
fPolC = f53
fPolCTmp = f54
fPolA = f55
fPolATmp = f56
fPolD = f57
fPolDTmp = f58
fArgSqrSgn = f59
// Data tables
//==============================================================
RODATA
.align 16
LOCAL_OBJECT_START(erff_data)
// Polynomial coefficients for the erf(x), 0.125 <= |x| < 0.25
data8 0xBE4218BB56B49E66 // C0
data8 0x3F7AFB8315DA322B // C1
data8 0x3F615D6EBEE0CA32 // C2
data8 0xBF468D71CF4F0918 // C3
data8 0x40312115B0932F24 // D0
data8 0xC0160D6CD0991EA3 // D1
data8 0xBFE04A567A6DBE4A // D2
data8 0xBF4207BC640D1509 // B0
// Polynomial coefficients for the erf(x), 0.25 <= |x| < 0.5
data8 0x3F90849356383F58 // C0
data8 0x3F830BD5BA240F09 // C1
data8 0xBF3FA4970E2BCE23 // C2
data8 0xBF6061798E58D0FD // C3
data8 0xBF68C0D83DD22E02 // D0
data8 0x401C0A9EE4108F94 // D1
data8 0xC01056F9B5E387F5 // D2
data8 0x3F1C9744E36A5706 // B0
// Polynomial coefficients for the erf(x), 0.5 <= |x| < 1.0
data8 0x3F85F7D419A13DE3 // C0
data8 0x3F791A13FF66D45A // C1
data8 0x3F46B17B16B5929F // C2
data8 0xBF5124947A8BF45E // C3
data8 0x3FA1B3FD95EA9564 // D0
data8 0x40250CECD79A020A // D1
data8 0xC0190DC96FF66CCD // D2
data8 0x3F4401AE28BA4DD5 // B0
// Polynomial coefficients for the erf(x), 1.0 <= |x| < 2.0
data8 0xBF49E07E3584C3AE // C0
data8 0x3F3166621131445C // C1
data8 0xBF65B7FC1EAC2099 // C2
data8 0x3F508C6BD211D736 // C3
data8 0xC053FABD70601067 // D0
data8 0x404A06640EE87808 // D1
data8 0xC0283F30817A3F08 // D2
data8 0xBF2F6DBBF4D6257F // B0
// Polynomial coefficients for the erf(x), 2.0 <= |x| < 4.0
data8 0xBF849855D67E9407 // C0
data8 0x3F5ECA5FEC01C70C // C1
data8 0xBF483110C30FABA4 // C2
data8 0x3F1618DA72860403 // C3
data8 0xC08A5C9D5FE8B9F6 // D0
data8 0x406EFF5F088CEC4B // D1
data8 0xC03A5743DF38FDE0 // D2
data8 0xBEE397A9FA5686A2 // B0
// Polynomial coefficients for the erf(x), -0.125 < x < 0.125
data8 0x3FF20DD7504270CB // C0
data8 0xBFD8127465AFE719 // C1
data8 0x3FBCE2D77791DD77 // C2
data8 0xBF9B582755CDF345 // C3
// Polynomial coefficients for the erf(x), 0.125 <= |x| < 0.25
data8 0xBD54E7E451AF0E36 // A0
data8 0x3FF20DD75043FE20 // A1
data8 0xBE05680ACF8280E4 // A2
data8 0xBFD812745E92C3D3 // A3
// Polynomial coefficients for the erf(x), 0.25 <= |x| < 0.5
data8 0xBE1ACEC2859CB55F // A0
data8 0x3FF20DD75E8D2B64 // A1
data8 0xBEABC6A83208FCFC // A2
data8 0xBFD81253E42E7B99 // A3
// Polynomial coefficients for the erf(x), 0.5 <= |x| < 1.0
data8 0x3EABD5A2482B4979 // A0
data8 0x3FF20DCAA52085D5 // A1
data8 0x3F13A994A348795B // A2
data8 0xBFD8167B2DFCDE44 // A3
// Polynomial coefficients for the erf(x), 1.0 <= |x| < 2.0
data8 0xBF5BA377DDAB4E17 // A0
data8 0x3FF2397F1D8FC0ED // A1
data8 0xBF9945BFC1915C21 // A2
data8 0xBFD747AAABB690D8 // A3
// Polynomial coefficients for the erf(x), 2.0 <= |x| < 4.0
data8 0x3FF0E2920E0391AF // A0
data8 0xC00D249D1A95A5AE // A1
data8 0x40233905061C3803 // A2
data8 0xC027560B851F7690 // A3
//
data8 0x3FEFFFFFFFFFFFFF // 1.0 - epsilon
data8 0x3FF20DD750429B6D // C0 = 2.0/sqrt(Pi)
LOCAL_OBJECT_END(erff_data)
.section .text
GLOBAL_LIBM_ENTRY(erff)
{ .mfi
alloc r32 = ar.pfs, 0, 14, 0, 0
fmerge.s fAbsArg = f1, f8 // |x|
addl rMask = 0x806, r0
}
{ .mfi
addl rDataPtr = @ltoff(erff_data), gp
fma.s1 fArgSqr = f8, f8, f0 // x^2
adds rSignBit = 0x1, r0
}
;;
{ .mfi
getf.s rArg = f8 // x in GR
fclass.m p7,p0 = f8, 0x0b // is x denormal ?
// sign bit and 2 most bits in significand
shl rMask = rMask, 20
}
{ .mfi
ld8 rDataPtr = [rDataPtr]
nop.f 0
adds rBias2 = 0x1F0, r0
}
;;
{ .mfi
nop.m 0
fmerge.s fSignumX = f8, f1 // signum(x)
shl rSignBit = rSignBit, 31 // mask for sign bit
}
{ .mfi
adds rBound = 0x3E0, r0
nop.f 0
adds rSaturation = 0x408, r0
}
;;
{ .mfi
andcm rOffset2 = rArg, rMask
fclass.m p6,p0 = f8, 0xc7 // is x [S,Q]NaN or +/-0 ?
shl rBound = rBound, 20 // 0.125f in GR
}
{ .mfb
andcm rAbsArg = rArg, rSignBit // |x| in GR
nop.f 0
(p7) br.cond.spnt erff_denormal // branch out if x is denormal
}
;;
{ .mfi
adds rCoeffAddr2 = 352, rDataPtr
fclass.m p9,p0 = f8, 0x23 // is x +/- inf?
shr rOffset2 = rOffset2, 21
}
{ .mfi
cmp.lt p10, p8 = rAbsArg, rBound // |x| < 0.125?
nop.f 0
adds rCoeffAddr3 = 16, rDataPtr
}
;;
{ .mfi
(p8) sub rBias = rOffset2, rBias2
fma.s1 fArg4 = fArgSqr, fArgSqr, f0 // x^4
shl rSaturation = rSaturation, 20// 4.0 in GR (saturation bound)
}
{ .mfb
(p10) adds rBias = 0x14, r0
(p6) fma.s.s0 f8 = f8,f1,f8 // NaN or +/-0
(p6) br.ret.spnt b0 // exit for x = NaN or +/-0
}
;;
{ .mfi
shladd rCoeffAddr1 = rBias, 4, rDataPtr
fma.s1 fArg3Sgn = fArgSqr, f8, f0 // sign(x)*|x|^3
// is |x| < 4.0?
cmp.lt p11, p12 = rAbsArg, rSaturation
}
{ .mfi
shladd rCoeffAddr3 = rBias, 4, rCoeffAddr3
fma.s1 fArg3 = fArgSqr, fAbsArg, f0 // |x|^3
shladd rCoeffAddr2 = rBias, 3, rCoeffAddr2
}
;;
{ .mfi
(p11) ldfpd fC0, fC1 = [rCoeffAddr1]
(p9) fmerge.s f8 = f8,f1 // +/- inf
(p12) adds rDataPtr = 512, rDataPtr
}
{ .mfb
(p11) ldfpd fC2, fC3 = [rCoeffAddr3], 16
nop.f 0
(p9) br.ret.spnt b0 // exit for x = +/- inf
}
;;
{ .mfi
(p11) ldfpd fA0, fA1 = [rCoeffAddr2], 16
nop.f 0
nop.i 0
}
{ .mfi
add rCoeffAddr1 = 48, rCoeffAddr1
nop.f 0
nop.i 0
}
;;
{ .mfi
(p11) ldfpd fD0, fD1 = [rCoeffAddr3]
nop.f 0
nop.i 0
}
{ .mfb
(p11) ldfpd fD2, fB0 = [rCoeffAddr1]
// sign(x)*|x|^2
fma.s1 fArgSqrSgn = fArgSqr, fSignumX, f0
(p10) br.cond.spnt erff_near_zero
}
;;
{ .mfi
(p11) ldfpd fA2, fA3 = [rCoeffAddr2], 16
fcmp.lt.s1 p15, p14 = f8,f0
nop.i 0
}
{ .mfb
(p12) ldfd fA0 = [rDataPtr]
fma.s1 fArg4Sgn = fArg4, fSignumX, f0 // sign(x)*|x|^4
(p12) br.cond.spnt erff_saturation
}
;;
{ .mfi
nop.m 0
fma.s1 fArg7Sgn = fArg4, fArg3Sgn, f0 // sign(x)*|x|^7
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fArg6Sgn = fArg3, fArg3Sgn, f0 // sign(x)*|x|^6
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fPolC = fC3, fAbsArg, fC2 // C3*|x| + C2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fPolCTmp = fC1, fAbsArg, fC0 // C1*|x| + C0
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 fPolA = fA1, fAbsArg, fA0 // A1*|x| + A0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fPolD = fD1, fAbsArg, fD0 // D1*|x| + D0
nop.i 0
}
{ .mfi
nop.m 0
// sign(x)*(|x|^7 + D2*x^6)
fma.s1 fPolDTmp = fArg6Sgn, fD2, fArg7Sgn
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 fPolATmp = fA3, fAbsArg, fA2 // A3*|x| + A2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fB0 = fB0, fArg4, f0 // B0*x^4
nop.i 0
};;
{ .mfi
nop.m 0
// C3*|x|^3 + C2*x^2 + C1*|x| + C0
fma.s1 fPolC = fPolC, fArgSqr, fPolCTmp
nop.i 0
}
;;
{ .mfi
nop.m 0
// PolD = sign(x)*(|x|^7 + D2*x^6 + D1*|x|^5 + D0*x^4)
fma.d.s1 fPolD = fPolD, fArg4Sgn, fPolDTmp
nop.i 0
}
;;
{ .mfi
nop.m 0
// PolA = A3|x|^3 + A2*x^2 + A1*|x| + A0
fma.d.s1 fPolA = fPolATmp, fArgSqr, fPolA
nop.i 0
}
;;
{ .mfi
nop.m 0
// PolC = B0*x^4 + C3*|x|^3 + C2*|x|^2 + C1*|x| + C0
fma.d.s1 fPolC = fPolC, f1, fB0
nop.i 0
}
;;
{ .mfi
nop.m 0
(p14) fma.s.s0 f8 = fPolC, fPolD, fPolA // for positive x
nop.i 0
}
{ .mfb
nop.m 0
(p15) fms.s.s0 f8 = fPolC, fPolD, fPolA // for negative x
br.ret.sptk b0 // Exit for 0.125 <=|x|< 4.0
};;
// Here if |x| < 0.125
erff_near_zero:
{ .mfi
nop.m 0
fma.s1 fPolC = fC3, fArgSqr, fC2 // C3*x^2 + C2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fPolCTmp = fC1, fArgSqr, fC0 // C1*x^2 + C0
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 fPolC = fPolC, fArg4, fPolCTmp // C3*x^6 + C2*x^4 + C1*x^2 + C0
nop.i 0
};;
{ .mfb
nop.m 0
// x*(C3*x^6 + C2*x^4 + C1*x^2 + C0)
fma.s.s0 f8 = fPolC, f8, f0
br.ret.sptk b0 // Exit for |x| < 0.125
};;
// Here if 4.0 <= |x| < +inf
erff_saturation:
{ .mfb
nop.m 0
fma.s.s0 f8 = fA0, fSignumX, f0 // sign(x)*(1.0d - 2^(-52))
// Exit for 4.0 <= |x| < +inf
br.ret.sptk b0 // Exit for 4.0 <=|x|< +inf
}
;;
// Here if x is single precision denormal
erff_denormal:
{ .mfi
adds rDataPtr = 520, rDataPtr // address of C0
fclass.m p7,p8 = f8, 0x0a // is x -denormal ?
nop.i 0
}
;;
{ .mfi
ldfd fC0 = [rDataPtr] // C0
nop.f 0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fC0 = fC0,f8,f0 // C0*x
nop.i 0
}
;;
{ .mfi
nop.m 0
(p7) fma.s.s0 f8 = f8,f8,fC0 // -denormal
nop.i 0
}
{ .mfb
nop.m 0
(p8) fnma.s.s0 f8 = f8,f8,fC0 // +denormal
br.ret.sptk b0 // Exit for denormal
}
;;
GLOBAL_LIBM_END(erff)
|