1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
|
.file "powl.s"
// Copyright (c) 2000 - 2003, Intel Corporation
// All rights reserved.
//
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
//*********************************************************************
//
// Function: powl(x,y), where
// y
// powl(x,y) = x , for double extended precision x and y values
//
//*********************************************************************
//
// History:
// 02/02/00 (Hand Optimized)
// 04/04/00 Unwind support added
// 08/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
// 01/22/01 Corrected results for powl(1,inf), powl(1,nan), and
// powl(snan,0) to be 1 per C99, not nan. Fixed many flag settings.
// 02/06/01 Call __libm_error support if over/underflow when y=2.
// 04/17/01 Support added for y close to 1 and x a non-special value.
// Shared software under/overflow detection for all paths
// 02/07/02 Corrected sf3 setting to disable traps
// 05/13/02 Improved performance of all paths
// 02/10/03 Reordered header: .section, .global, .proc, .align;
// used data8 for long double table values
// 04/17/03 Added missing mutex directive
// 10/13/03 Corrected .endp names to match .proc names
//
//*********************************************************************
//
// Resources Used:
//
// Floating-Point Registers:
// f8 (Input x and Return Value)
// f9 (Input y)
// f10-f15,f32-f79
//
// General Purpose Registers:
// Locals r14-24,r32-r65
// Parameters to __libm_error_support r62,r63,r64,r65
//
// Predicate Registers: p6-p15
//
//*********************************************************************
//
// Special Cases and IEEE special conditions:
//
// Denormal fault raised on denormal inputs
// Overflow exceptions raised when appropriate for pow
// Underflow exceptions raised when appropriate for pow
// (Error Handling Routine called for overflow and Underflow)
// Inexact raised when appropriate by algorithm
//
// 1. (anything) ** NatVal or (NatVal) ** anything is NatVal
// 2. X or Y unsupported or sNaN is qNaN/Invalid
// 3. (anything) ** 0 is 1
// 4. (anything) ** 1 is itself
// 5. (anything except 1) ** qNAN is qNAN
// 6. qNAN ** (anything except 0) is qNAN
// 7. +-(|x| > 1) ** +INF is +INF
// 8. +-(|x| > 1) ** -INF is +0
// 9. +-(|x| < 1) ** +INF is +0
// 10. +-(|x| < 1) ** -INF is +INF
// 11. +-1 ** +-INF is +1
// 12. +0 ** (+anything except 0, NAN) is +0
// 13. -0 ** (+anything except 0, NAN, odd integer) is +0
// 14. +0 ** (-anything except 0, NAN) is +INF/div_0
// 15. -0 ** (-anything except 0, NAN, odd integer) is +INF/div_0
// 16. -0 ** (odd integer) = -( +0 ** (odd integer) )
// 17. +INF ** (+anything except 0,NAN) is +INF
// 18. +INF ** (-anything except 0,NAN) is +0
// 19. -INF ** (anything except NAN) = -0 ** (-anything)
// 20. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
// 21. (-anything except 0 and inf) ** (non-integer) is qNAN/Invalid
// 22. X or Y denorm/unorm and denorm/unorm operand trap is enabled,
// generate denorm/unorm fault except if invalid or div_0 raised.
//
//*********************************************************************
//
// Algorithm
// =========
//
// Special Cases
//
// If Y = 2, return X*X.
// If Y = 0.5, return sqrt(X).
//
// Compute log(X) to extra precision.
//
// ker_log_80( X, logX_hi, logX_lo, Safe );
//
// ...logX_hi + logX_lo approximates log(X) to roughly 80
// ...significant bits of accuracy.
//
// Compute Y*log(X) to extra precision.
//
// P_hi := Y * logX_hi
// P_lo := Y * logX_hi - P_hi ...using FMA
// P_lo := Y * logX_lo + P_lo ...using FMA
//
// Compute exp(P_hi + P_lo)
//
// Flag := 2;
// Expo_Range := 2; (assuming double-extended power function)
// ker_exp_64( P_hi, P_lo, Flag, Expo_Range,
// Z_hi, Z_lo, scale, Safe )
//
// scale := sgn * scale
//
// If (Safe) then ...result will not over/underflow
// return scale*Z_hi + (scale*Z_lo)
// quickly
// Else
// take necessary precaution in computing
// scale*Z_hi + (scale*Z_lo)
// to set possible exceptions correctly.
// End If
//
// Case_Y_Special
//
// ...Follow the order of the case checks
//
// If Y is +-0, return +1 without raising any exception.
// If Y is +1, return X without raising any exception.
// If Y is qNaN, return Y without exception.
// If X is qNaN, return X without exception.
//
// At this point, X is real and Y is +-inf.
// Thus |X| can only be 1, strictly bigger than 1, or
// strictly less than 1.
//
// If |X| < 1, then
// return ( Y == +inf? +0 : +inf )
// elseif |X| > 1, then
// return ( Y == +inf? +0 : +inf )
// else
// goto Case_Invalid
//
// Case_X_Special
//
// ...Follow the order of the case checks
// ...Note that Y is real, finite, non-zero, and not +1.
//
// If X is qNaN, return X without exception.
//
// If X is +-0,
// return ( Y > 0 ? +0 : +inf )
//
// If X is +inf
// return ( Y > 0 ? +inf : +0 )
//
// If X is -inf
// return -0 ** -Y
// return ( Y > 0 ? +inf : +0 )
//
// Case_Invalid
//
// Return 0 * inf to generate a quiet NaN together
// with an invalid exception.
//
// Implementation
// ==============
//
// We describe the quick branch since this part is important
// in reaching the normal case efficiently.
//
// STAGE 1
// -------
// This stage contains two threads.
//
// Stage1.Thread1
//
// fclass.m X_excep, X_ok = X, (NatVal or s/qNaN) or
// +-0, +-infinity
//
// fclass.nm X_unsupp, X_supp = X, (NatVal or s/qNaN) or
// +-(0, unnorm, norm, infinity)
//
// X_norm := fnorm( X ) with traps disabled
//
// If (X_excep) goto Filtering (Step 2)
// If (X_unsupp) goto Filtering (Step 2)
//
// Stage1.Thread2
// ..............
//
// fclass.m Y_excep, Y_ok = Y, (NatVal or s/qNaN) or
// +-0, +-infinity
//
// fclass.nm Y_unsupp, Y_supp = Y, (NatVal or s/qNaN) or
// +-(0, unnorm, norm, infinity)
//
// Y_norm := fnorm( Y ) with traps disabled
//
// If (Y_excep) goto Filtering (Step 2)
// If (Y_unsupp) goto Filtering (Step 2)
//
//
// STAGE 2
// -------
// This stage contains two threads.
//
// Stage2.Thread1
// ..............
//
// Set X_lt_0 if X < 0 (using fcmp)
// sgn := +1.0
// If (X_lt_0) goto Filtering (Step 2)
//
// Stage2.Thread2
// ..............
//
// Set Y_is_1 if Y = +1 (using fcmp)
// If (Y_is_1) goto Filtering (Step 2)
//
// STAGE 3
// -------
// This stage contains two threads.
//
//
// Stage3.Thread1
// ..............
//
// X := fnorm(X) in prevailing traps
//
//
// Stage3.Thread2
// ..............
//
// Y := fnorm(Y) in prevailing traps
//
// STAGE 4
// -------
//
// Go to Case_Normal.
//
// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
// double-extended 1/ln(2)
// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
// 3fff b8aa 3b29 5c17 f0bc
// For speed the significand will be loaded directly with a movl and setf.sig
// and the exponent will be bias+63 instead of bias+0. Thus subsequent
// computations need to scale appropriately.
// The constant 2^12/ln(2) is needed for the computation of N. This is also
// obtained by scaling the computations.
//
// Two shifting constants are loaded directly with movl and setf.d.
// 1. RSHF_2TO51 = 1.1000..00 * 2^(63-12)
// This constant is added to x*1/ln2 to shift the integer part of
// x*2^12/ln2 into the rightmost bits of the significand.
// The result of this fma is N_signif.
// 2. RSHF = 1.1000..00 * 2^(63)
// This constant is subtracted from N_signif * 2^(-51) to give
// the integer part of N, N_fix, as a floating-point number.
// The result of this fms is float_N.
RODATA
.align 16
// L_hi, L_lo
LOCAL_OBJECT_START(Constants_exp_64_Arg)
data8 0xB17217F400000000,0x00003FF2 // L_hi = hi part log(2)/2^12
data8 0xF473DE6AF278ECE6,0x00003FD4 // L_lo = lo part log(2)/2^12
LOCAL_OBJECT_END(Constants_exp_64_Arg)
LOCAL_OBJECT_START(Constants_exp_64_A)
// Reversed
data8 0xAAAAAAABB1B736A0,0x00003FFA
data8 0xAAAAAAAB90CD6327,0x00003FFC
data8 0xFFFFFFFFFFFFFFFF,0x00003FFD
LOCAL_OBJECT_END(Constants_exp_64_A)
LOCAL_OBJECT_START(Constants_exp_64_P)
// Reversed
data8 0xD00D6C8143914A8A,0x00003FF2
data8 0xB60BC4AC30304B30,0x00003FF5
data8 0x888888887474C518,0x00003FF8
data8 0xAAAAAAAA8DAE729D,0x00003FFA
data8 0xAAAAAAAAAAAAAF61,0x00003FFC
data8 0x80000000000004C7,0x00003FFE
LOCAL_OBJECT_END(Constants_exp_64_P)
LOCAL_OBJECT_START(Constants_exp_64_T1)
data4 0x3F800000,0x3F8164D2,0x3F82CD87,0x3F843A29
data4 0x3F85AAC3,0x3F871F62,0x3F88980F,0x3F8A14D5
data4 0x3F8B95C2,0x3F8D1ADF,0x3F8EA43A,0x3F9031DC
data4 0x3F91C3D3,0x3F935A2B,0x3F94F4F0,0x3F96942D
data4 0x3F9837F0,0x3F99E046,0x3F9B8D3A,0x3F9D3EDA
data4 0x3F9EF532,0x3FA0B051,0x3FA27043,0x3FA43516
data4 0x3FA5FED7,0x3FA7CD94,0x3FA9A15B,0x3FAB7A3A
data4 0x3FAD583F,0x3FAF3B79,0x3FB123F6,0x3FB311C4
data4 0x3FB504F3,0x3FB6FD92,0x3FB8FBAF,0x3FBAFF5B
data4 0x3FBD08A4,0x3FBF179A,0x3FC12C4D,0x3FC346CD
data4 0x3FC5672A,0x3FC78D75,0x3FC9B9BE,0x3FCBEC15
data4 0x3FCE248C,0x3FD06334,0x3FD2A81E,0x3FD4F35B
data4 0x3FD744FD,0x3FD99D16,0x3FDBFBB8,0x3FDE60F5
data4 0x3FE0CCDF,0x3FE33F89,0x3FE5B907,0x3FE8396A
data4 0x3FEAC0C7,0x3FED4F30,0x3FEFE4BA,0x3FF28177
data4 0x3FF5257D,0x3FF7D0DF,0x3FFA83B3,0x3FFD3E0C
LOCAL_OBJECT_END(Constants_exp_64_T1)
LOCAL_OBJECT_START(Constants_exp_64_T2)
data4 0x3F800000,0x3F80058C,0x3F800B18,0x3F8010A4
data4 0x3F801630,0x3F801BBD,0x3F80214A,0x3F8026D7
data4 0x3F802C64,0x3F8031F2,0x3F803780,0x3F803D0E
data4 0x3F80429C,0x3F80482B,0x3F804DB9,0x3F805349
data4 0x3F8058D8,0x3F805E67,0x3F8063F7,0x3F806987
data4 0x3F806F17,0x3F8074A8,0x3F807A39,0x3F807FCA
data4 0x3F80855B,0x3F808AEC,0x3F80907E,0x3F809610
data4 0x3F809BA2,0x3F80A135,0x3F80A6C7,0x3F80AC5A
data4 0x3F80B1ED,0x3F80B781,0x3F80BD14,0x3F80C2A8
data4 0x3F80C83C,0x3F80CDD1,0x3F80D365,0x3F80D8FA
data4 0x3F80DE8F,0x3F80E425,0x3F80E9BA,0x3F80EF50
data4 0x3F80F4E6,0x3F80FA7C,0x3F810013,0x3F8105AA
data4 0x3F810B41,0x3F8110D8,0x3F81166F,0x3F811C07
data4 0x3F81219F,0x3F812737,0x3F812CD0,0x3F813269
data4 0x3F813802,0x3F813D9B,0x3F814334,0x3F8148CE
data4 0x3F814E68,0x3F815402,0x3F81599C,0x3F815F37
LOCAL_OBJECT_END(Constants_exp_64_T2)
LOCAL_OBJECT_START(Constants_exp_64_W1)
data8 0x0000000000000000, 0xBE384454171EC4B4
data8 0xBE6947414AA72766, 0xBE5D32B6D42518F8
data8 0x3E68D96D3A319149, 0xBE68F4DA62415F36
data8 0xBE6DDA2FC9C86A3B, 0x3E6B2E50F49228FE
data8 0xBE49C0C21188B886, 0x3E64BFC21A4C2F1F
data8 0xBE6A2FBB2CB98B54, 0x3E5DC5DE9A55D329
data8 0x3E69649039A7AACE, 0x3E54728B5C66DBA5
data8 0xBE62B0DBBA1C7D7D, 0x3E576E0409F1AF5F
data8 0x3E6125001A0DD6A1, 0xBE66A419795FBDEF
data8 0xBE5CDE8CE1BD41FC, 0xBE621376EA54964F
data8 0x3E6370BE476E76EE, 0x3E390D1A3427EB92
data8 0x3E1336DE2BF82BF8, 0xBE5FF1CBD0F7BD9E
data8 0xBE60A3550CEB09DD, 0xBE5CA37E0980F30D
data8 0xBE5C541B4C082D25, 0xBE5BBECA3B467D29
data8 0xBE400D8AB9D946C5, 0xBE5E2A0807ED374A
data8 0xBE66CB28365C8B0A, 0x3E3AAD5BD3403BCA
data8 0x3E526055C7EA21E0, 0xBE442C75E72880D6
data8 0x3E58B2BB85222A43, 0xBE5AAB79522C42BF
data8 0xBE605CB4469DC2BC, 0xBE589FA7A48C40DC
data8 0xBE51C2141AA42614, 0xBE48D087C37293F4
data8 0x3E367A1CA2D673E0, 0xBE51BEBB114F7A38
data8 0xBE6348E5661A4B48, 0xBDF526431D3B9962
data8 0x3E3A3B5E35A78A53, 0xBE46C46C1CECD788
data8 0xBE60B7EC7857D689, 0xBE594D3DD14F1AD7
data8 0xBE4F9C304C9A8F60, 0xBE52187302DFF9D2
data8 0xBE5E4C8855E6D68F, 0xBE62140F667F3DC4
data8 0xBE36961B3BF88747, 0x3E602861C96EC6AA
data8 0xBE3B5151D57FD718, 0x3E561CD0FC4A627B
data8 0xBE3A5217CA913FEA, 0x3E40A3CC9A5D193A
data8 0xBE5AB71310A9C312, 0x3E4FDADBC5F57719
data8 0x3E361428DBDF59D5, 0x3E5DB5DB61B4180D
data8 0xBE42AD5F7408D856, 0x3E2A314831B2B707
LOCAL_OBJECT_END(Constants_exp_64_W1)
LOCAL_OBJECT_START(Constants_exp_64_W2)
data8 0x0000000000000000, 0xBE641F2537A3D7A2
data8 0xBE68DD57AD028C40, 0xBE5C77D8F212B1B6
data8 0x3E57878F1BA5B070, 0xBE55A36A2ECAE6FE
data8 0xBE620608569DFA3B, 0xBE53B50EA6D300A3
data8 0x3E5B5EF2223F8F2C, 0xBE56A0D9D6DE0DF4
data8 0xBE64EEF3EAE28F51, 0xBE5E5AE2367EA80B
data8 0x3E47CB1A5FCBC02D, 0xBE656BA09BDAFEB7
data8 0x3E6E70C6805AFEE7, 0xBE6E0509A3415EBA
data8 0xBE56856B49BFF529, 0x3E66DD3300508651
data8 0x3E51165FC114BC13, 0x3E53333DC453290F
data8 0x3E6A072B05539FDA, 0xBE47CD877C0A7696
data8 0xBE668BF4EB05C6D9, 0xBE67C3E36AE86C93
data8 0xBE533904D0B3E84B, 0x3E63E8D9556B53CE
data8 0x3E212C8963A98DC8, 0xBE33138F032A7A22
data8 0x3E530FA9BC584008, 0xBE6ADF82CCB93C97
data8 0x3E5F91138370EA39, 0x3E5443A4FB6A05D8
data8 0x3E63DACD181FEE7A, 0xBE62B29DF0F67DEC
data8 0x3E65C4833DDE6307, 0x3E5BF030D40A24C1
data8 0x3E658B8F14E437BE, 0xBE631C29ED98B6C7
data8 0x3E6335D204CF7C71, 0x3E529EEDE954A79D
data8 0x3E5D9257F64A2FB8, 0xBE6BED1B854ED06C
data8 0x3E5096F6D71405CB, 0xBE3D4893ACB9FDF5
data8 0xBDFEB15801B68349, 0x3E628D35C6A463B9
data8 0xBE559725ADE45917, 0xBE68C29C042FC476
data8 0xBE67593B01E511FA, 0xBE4A4313398801ED
data8 0x3E699571DA7C3300, 0x3E5349BE08062A9E
data8 0x3E5229C4755BB28E, 0x3E67E42677A1F80D
data8 0xBE52B33F6B69C352, 0xBE6B3550084DA57F
data8 0xBE6DB03FD1D09A20, 0xBE60CBC42161B2C1
data8 0x3E56ED9C78A2B771, 0xBE508E319D0FA795
data8 0xBE59482AFD1A54E9, 0xBE2A17CEB07FD23E
data8 0x3E68BF5C17365712, 0x3E3956F9B3785569
LOCAL_OBJECT_END(Constants_exp_64_W2)
LOCAL_OBJECT_START(Constants_log_80_P)
// P_8, P_7, ..., P_1
data8 0xCCCE8B883B1042BC, 0x0000BFFB // P_8
data8 0xE38997B7CADC2149, 0x00003FFB // P_7
data8 0xFFFFFFFEB1ACB090, 0x0000BFFB // P_6
data8 0x9249249806481C81, 0x00003FFC // P_5
data8 0x0000000000000000, 0x00000000 // Pad for bank conflicts
data8 0xAAAAAAAAAAAAB0EF, 0x0000BFFC // P_4
data8 0xCCCCCCCCCCC91416, 0x00003FFC // P_3
data8 0x8000000000000000, 0x0000BFFD // P_2
data8 0xAAAAAAAAAAAAAAAB, 0x00003FFD // P_1
LOCAL_OBJECT_END(Constants_log_80_P)
LOCAL_OBJECT_START(Constants_log_80_Q)
// log2_hi, log2_lo, Q_6, Q_5, Q_4, Q_3, Q_2, Q_1
data8 0xB172180000000000,0x00003FFE
data8 0x82E308654361C4C6,0x0000BFE2
data8 0x92492453A51BE0AF,0x00003FFC
data8 0xAAAAAB73A0CFD29F,0x0000BFFC
data8 0xCCCCCCCCCCCE3872,0x00003FFC
data8 0xFFFFFFFFFFFFB4FB,0x0000BFFC
data8 0xAAAAAAAAAAAAAAAB,0x00003FFD
data8 0x8000000000000000,0x0000BFFE
LOCAL_OBJECT_END(Constants_log_80_Q)
LOCAL_OBJECT_START(Constants_log_80_Z_G_H_h1)
// Z1 - 16 bit fixed, G1 and H1 IEEE single, h1 IEEE double
data4 0x00008000,0x3F800000,0x00000000,0x00000000
data4 0x00000000,0x00000000,0x00000000,0x00000000
data4 0x00007879,0x3F70F0F0,0x3D785196,0x00000000
data4 0xEBA0E0D1,0x8B1D330B,0x00003FDA,0x00000000
data4 0x000071C8,0x3F638E38,0x3DF13843,0x00000000
data4 0x9EADD553,0xE2AF365E,0x00003FE2,0x00000000
data4 0x00006BCB,0x3F579430,0x3E2FF9A0,0x00000000
data4 0x752F34A2,0xF585FEC3,0x0000BFE3,0x00000000
data4 0x00006667,0x3F4CCCC8,0x3E647FD6,0x00000000
data4 0x893B03F3,0xF3546435,0x00003FE2,0x00000000
data4 0x00006187,0x3F430C30,0x3E8B3AE7,0x00000000
data4 0x39CDD2AC,0xBABA62E0,0x00003FE4,0x00000000
data4 0x00005D18,0x3F3A2E88,0x3EA30C68,0x00000000
data4 0x457978A1,0x8718789F,0x00003FE2,0x00000000
data4 0x0000590C,0x3F321640,0x3EB9CEC8,0x00000000
data4 0x3185E56A,0x9442DF96,0x0000BFE4,0x00000000
data4 0x00005556,0x3F2AAAA8,0x3ECF9927,0x00000000
data4 0x2BBE2CBD,0xCBF9A4BF,0x00003FE4,0x00000000
data4 0x000051EC,0x3F23D708,0x3EE47FC5,0x00000000
data4 0x852D5935,0xF3537535,0x00003FE3,0x00000000
data4 0x00004EC5,0x3F1D89D8,0x3EF8947D,0x00000000
data4 0x46CDF32F,0xA1F1E699,0x0000BFDF,0x00000000
data4 0x00004BDB,0x3F17B420,0x3F05F3A1,0x00000000
data4 0xD8484CE3,0x84A61856,0x00003FE4,0x00000000
data4 0x00004925,0x3F124920,0x3F0F4303,0x00000000
data4 0xFF28821B,0xC7DD97E0,0x0000BFE2,0x00000000
data4 0x0000469F,0x3F0D3DC8,0x3F183EBF,0x00000000
data4 0xEF1FD32F,0xD3C4A887,0x00003FE3,0x00000000
data4 0x00004445,0x3F088888,0x3F20EC80,0x00000000
data4 0x464C76DA,0x84672BE6,0x00003FE5,0x00000000
data4 0x00004211,0x3F042108,0x3F29516A,0x00000000
data4 0x18835FB9,0x9A43A511,0x0000BFE5,0x00000000
LOCAL_OBJECT_END(Constants_log_80_Z_G_H_h1)
LOCAL_OBJECT_START(Constants_log_80_Z_G_H_h2)
// Z2 - 16 bit fixed, G2 and H2 IEEE single, h2 IEEE double
data4 0x00008000,0x3F800000,0x00000000,0x00000000
data4 0x00000000,0x00000000,0x00000000,0x00000000
data4 0x00007F81,0x3F7F00F8,0x3B7F875D,0x00000000
data4 0x211398BF,0xAD08B116,0x00003FDB,0x00000000
data4 0x00007F02,0x3F7E03F8,0x3BFF015B,0x00000000
data4 0xC376958E,0xB106790F,0x00003FDE,0x00000000
data4 0x00007E85,0x3F7D08E0,0x3C3EE393,0x00000000
data4 0x79A7679A,0xFD03F242,0x0000BFDA,0x00000000
data4 0x00007E08,0x3F7C0FC0,0x3C7E0586,0x00000000
data4 0x05E7AE08,0xF03F81C3,0x0000BFDF,0x00000000
data4 0x00007D8D,0x3F7B1880,0x3C9E75D2,0x00000000
data4 0x049EB22F,0xD1B87D3C,0x00003FDE,0x00000000
data4 0x00007D12,0x3F7A2328,0x3CBDC97A,0x00000000
data4 0x3A9E81E0,0xFABC8B95,0x00003FDF,0x00000000
data4 0x00007C98,0x3F792FB0,0x3CDCFE47,0x00000000
data4 0x7C4B5443,0xF5F3653F,0x00003FDF,0x00000000
data4 0x00007C20,0x3F783E08,0x3CFC15D0,0x00000000
data4 0xF65A1773,0xE78AB204,0x00003FE0,0x00000000
data4 0x00007BA8,0x3F774E38,0x3D0D874D,0x00000000
data4 0x7B8EF695,0xDB7CBFFF,0x0000BFE0,0x00000000
data4 0x00007B31,0x3F766038,0x3D1CF49B,0x00000000
data4 0xCF773FB3,0xC0241AEA,0x0000BFE0,0x00000000
data4 0x00007ABB,0x3F757400,0x3D2C531D,0x00000000
data4 0xC9539FDF,0xFC8F4D48,0x00003FE1,0x00000000
data4 0x00007A45,0x3F748988,0x3D3BA322,0x00000000
data4 0x954665C2,0x9CD035FB,0x0000BFE1,0x00000000
data4 0x000079D1,0x3F73A0D0,0x3D4AE46F,0x00000000
data4 0xDD367A30,0xEC9017C7,0x00003FE1,0x00000000
data4 0x0000795D,0x3F72B9D0,0x3D5A1756,0x00000000
data4 0xCB11189C,0xEE6625D3,0x0000BFE1,0x00000000
data4 0x000078EB,0x3F71D488,0x3D693B9D,0x00000000
data4 0xBE11C424,0xA49C8DB5,0x0000BFE0,0x00000000
LOCAL_OBJECT_END(Constants_log_80_Z_G_H_h2)
LOCAL_OBJECT_START(Constants_log_80_h3_G_H)
// h3 IEEE double extended, H3 and G3 IEEE single
data4 0x112666B0,0xAAACAAB1,0x00003FD3,0x3F7FFC00
data4 0x9B7FAD21,0x90051030,0x00003FD8,0x3F7FF400
data4 0xF4D783C4,0xA6B46F46,0x00003FDA,0x3F7FEC00
data4 0x11C6DDCA,0xDA148D88,0x0000BFD8,0x3F7FE400
data4 0xCA964D95,0xCE65C1D8,0x0000BFD8,0x3F7FDC00
data4 0x23412D13,0x883838EE,0x0000BFDB,0x3F7FD400
data4 0x983ED687,0xB7E5CFA1,0x00003FDB,0x3F7FCC08
data4 0xE3C3930B,0xDBE23B16,0x0000BFD9,0x3F7FC408
data4 0x48AA4DFC,0x9B92F1FC,0x0000BFDC,0x3F7FBC10
data4 0xCE9C8F7E,0x9A8CEB15,0x0000BFD9,0x3F7FB410
data4 0x0DECE74A,0x8C220879,0x00003FDC,0x3F7FAC18
data4 0x2F053150,0xB25CA912,0x0000BFDA,0x3F7FA420
data4 0xD9A5BE20,0xA5876555,0x00003FDB,0x3F7F9C20
data4 0x2053F087,0xC919BB6E,0x00003FD9,0x3F7F9428
data4 0x041E9A77,0xB70BDA79,0x00003FDC,0x3F7F8C30
data4 0xEA1C9C30,0xF18A5C08,0x00003FDA,0x3F7F8438
data4 0x796D89E5,0xA3790D84,0x0000BFDD,0x3F7F7C40
data4 0xA2915A3A,0xE1852369,0x0000BFDD,0x3F7F7448
data4 0xA39ED868,0xD803858F,0x00003FDC,0x3F7F6C50
data4 0x9417EBB7,0xB2EEE356,0x0000BFDD,0x3F7F6458
data4 0x9BB0D07F,0xED5C1F8A,0x0000BFDC,0x3F7F5C68
data4 0xE87C740A,0xD6D201A0,0x0000BFDD,0x3F7F5470
data4 0x1CA74025,0xE8DEBF5E,0x00003FDC,0x3F7F4C78
data4 0x1F34A7EB,0x9A995A97,0x0000BFDC,0x3F7F4488
data4 0x359EED97,0x9CB0F742,0x0000BFDA,0x3F7F3C90
data4 0xBBC6A1C8,0xD6F833C2,0x0000BFDD,0x3F7F34A0
data4 0xE71090EC,0xE1F68F2A,0x00003FDC,0x3F7F2CA8
data4 0xC160A74F,0xD1881CF1,0x0000BFDB,0x3F7F24B8
data4 0xD78CB5A4,0x9AD05AE2,0x00003FD6,0x3F7F1CC8
data4 0x9A77DC4B,0xE658CB8E,0x0000BFDD,0x3F7F14D8
data4 0x6BD6D312,0xBA281296,0x00003FDC,0x3F7F0CE0
data4 0xF95210D0,0xB478BBEB,0x0000BFDB,0x3F7F04F0
data4 0x38800100,0x39400480,0x39A00640,0x39E00C41 // H's start here
data4 0x3A100A21,0x3A300F22,0x3A4FF51C,0x3A6FFC1D
data4 0x3A87F20B,0x3A97F68B,0x3AA7EB86,0x3AB7E101
data4 0x3AC7E701,0x3AD7DD7B,0x3AE7D474,0x3AF7CBED
data4 0x3B03E1F3,0x3B0BDE2F,0x3B13DAAA,0x3B1BD766
data4 0x3B23CC5C,0x3B2BC997,0x3B33C711,0x3B3BBCC6
data4 0x3B43BAC0,0x3B4BB0F4,0x3B53AF6D,0x3B5BA620
data4 0x3B639D12,0x3B6B9444,0x3B7393BC,0x3B7B8B6D
LOCAL_OBJECT_END(Constants_log_80_h3_G_H)
GR_sig_inv_ln2 = r14
GR_rshf_2to51 = r15
GR_exp_2tom51 = r16
GR_rshf = r17
GR_exp_half = r18
GR_sign_mask = r19
GR_exp_square_oflow = r20
GR_exp_square_uflow = r21
GR_exp_ynear1_oflow = r22
GR_exp_ynear1_uflow = r23
GR_signif_Z = r24
GR_signexp_x = r32
GR_exp_x = r33
GR_Table_Ptr = r34
GR_Table_Ptr1 = r35
GR_Index1 = r36
GR_Index2 = r37
GR_Expo_X = r37
GR_M = r38
GR_X_0 = r39
GR_Mask = r39
GR_X_1 = r40
GR_W1_ptr = r40
GR_W2_ptr = r41
GR_X_2 = r41
GR_Z_1 = r42
GR_M2 = r42
GR_M1 = r43
GR_Z_2 = r43
GR_N = r44
GR_k = r44
GR_Big_Pos_Exp = r45
GR_exp_pos_max = r46
GR_exp_bias_p_k = r47
GR_Index3 = r48
GR_temp = r48
GR_vsm_expo = r49
GR_T1_ptr = r50
GR_P_ptr1 = r50
GR_T2_ptr = r51
GR_P_ptr2 = r51
GR_N_fix = r52
GR_exp_y = r53
GR_signif_y = r54
GR_signexp_y = r55
GR_fraction_y = r55
GR_low_order_bit = r56
GR_exp_mask = r57
GR_exp_bias = r58
GR_y_sign = r59
GR_table_base = r60
GR_ptr_exp_Arg = r61
GR_Delta_Exp = r62
GR_Special_Exp = r63
GR_exp_neg_max = r64
GR_Big_Neg_Exp = r65
//** Registers for unwind support
GR_SAVE_PFS = r59
GR_SAVE_B0 = r60
GR_SAVE_GP = r61
GR_Parameter_X = r62
GR_Parameter_Y = r63
GR_Parameter_RESULT = r64
GR_Parameter_TAG = r65
//**
FR_Input_X = f8
FR_Result = f8
FR_Input_Y = f9
FR_Neg = f10
FR_P_hi = f10
FR_X = f10
FR_Half = f11
FR_h_3 = f11
FR_poly_hi = f11
FR_Sgn = f12
FR_half_W = f13
FR_X_cor = f14
FR_P_lo = f14
FR_W = f15
FR_X_lo = f32
FR_S = f33
FR_W3 = f33
FR_Y_hi = f34
FR_logx_hi = f34
FR_Z = f35
FR_logx_lo = f35
FR_GS_hi = f35
FR_Y_lo = f35
FR_r_cor = f36
FR_Scale = f36
FR_G_1 = f37
FR_G = f37
FR_Wsq = f37
FR_temp = f37
FR_H_1 = f38
FR_H = f38
FR_W4 = f38
FR_h = f39
FR_h_1 = f39
FR_N = f39
FR_P_7 = f39
FR_G_2 = f40
FR_P_8 = f40
FR_L_hi = f40
FR_H_2 = f41
FR_L_lo = f41
FR_A_1 = f41
FR_h_2 = f42
FR_W1 = f43
FR_G_3 = f44
FR_P_8 = f44
FR_T1 = f44
FR_log2_hi = f45
FR_W2 = f45
FR_GS_lo = f46
FR_T2 = f46
FR_W_1_p1 = f47
FR_H_3 = f47
FR_float_N = f48
FR_A_2 = f49
FR_Q_4 = f50
FR_r4 = f50
FR_Q_3 = f51
FR_A_3 = f51
FR_Q_2 = f52
FR_P_2 = f52
FR_Q_1 = f53
FR_P_1 = f53
FR_T = f53
FR_Wp1 = f54
FR_Q_5 = f54
FR_P_3 = f54
FR_Q_6 = f55
FR_log2_lo = f56
FR_Two = f56
FR_Big = f57
FR_neg_2_mK = f58
FR_r = f59
FR_poly_lo = f60
FR_poly = f61
FR_P_5 = f62
FR_Result_small = f62
FR_rsq = f63
FR_Delta = f64
FR_save_Input_X = f65
FR_norm_X = f66
FR_norm_Y = f67
FR_Y_lo_2 = f68
FR_P_6 = f69
FR_Result_big = f69
FR_RSHF_2TO51 = f70
FR_INV_LN2_2TO63 = f71
FR_2TOM51 = f72
FR_RSHF = f73
FR_TMP1 = f74
FR_TMP2 = f75
FR_TMP3 = f76
FR_Tscale = f77
FR_P_4 = f78
FR_NBig = f79
.section .text
GLOBAL_LIBM_ENTRY(powl)
//
// Get significand of x. It is the critical path.
//
{ .mfi
getf.sig GR_signif_Z = FR_Input_X // Get significand of x
fclass.m p11, p12 = FR_Input_X, 0x0b // Test x unorm
nop.i 999
}
{ .mfi
nop.m 999
fnorm.s1 FR_norm_X = FR_Input_X // Normalize x
mov GR_exp_half = 0xffff - 1 // Exponent for 0.5
}
;;
{ .mfi
alloc r32 = ar.pfs,0,30,4,0
fclass.m p7, p0 = FR_Input_Y, 0x1E7 // Test y natval, nan, inf, zero
mov GR_exp_pos_max = 0x13fff // Max exponent for pos oflow test
}
{ .mfi
addl GR_table_base = @ltoff(Constants_exp_64_Arg#), gp // Ptr to tables
fnorm.s1 FR_norm_Y = FR_Input_Y // Normalize y
mov GR_exp_neg_max = 0x33fff // Max exponent for neg oflow test
}
;;
{ .mfi
getf.exp GR_signexp_y = FR_Input_Y // Get sign and exp of y
(p12) fclass.m p11, p0 = FR_Input_Y, 0x0b // Test y unorm
mov GR_sign_mask = 0x20000 // Sign mask
}
{ .mfi
ld8 GR_table_base = [GR_table_base] // Get base address for tables
fadd.s1 FR_Two = f1, f1 // Form 2.0 for square test
mov GR_exp_mask = 0x1FFFF // Exponent mask
}
;;
{ .mfi
getf.sig GR_signif_y = FR_Input_Y // Get significand of y
fclass.m p6, p0 = FR_Input_X, 0x1E7 // Test x natval, nan, inf, zero
nop.i 999
}
;;
{ .mfi
getf.exp GR_signexp_x = FR_Input_X // Get signexp of x
fmerge.s FR_save_Input_X = FR_Input_X, FR_Input_X
extr.u GR_Index1 = GR_signif_Z, 59, 4 // Extract upper 4 signif bits of x
}
{ .mfb
setf.exp FR_Half = GR_exp_half // Load half
nop.f 999
(p11) br.cond.spnt POWL_DENORM // Branch if x or y denorm/unorm
}
;;
// Return here from POWL_DENORM
POWL_COMMON:
{ .mfi
setf.exp FR_Big = GR_exp_pos_max // Form big pos value for oflow test
fclass.nm p11, p0 = FR_Input_Y, 0x1FF // Test Y unsupported
shl GR_Index1 = GR_Index1,5 // Adjust index1 pointer x 32
}
{ .mfi
add GR_Table_Ptr = 0x7c0, GR_table_base // Constants_log_80_Z_G_H_h1
fma.s1 FR_Sgn = f1,f1,f0 // Assume result positive
mov GR_exp_bias = 0xFFFF // Form exponent bias
}
;;
//
// Identify NatVals, NaNs, Infs, and Zeros.
//
//
// Remove sign bit from exponent of y.
// Check for x = 1
// Branch on Infs, Nans, Zeros, and Natvals
// Check to see that exponent < 0
//
{ .mfi
setf.exp FR_NBig = GR_exp_neg_max // Form big neg value for oflow test
fclass.nm p8, p0 = FR_Input_X, 0x1FF // Test X unsupported
and GR_exp_y = GR_exp_mask,GR_signexp_y // Get biased exponent of y
}
{ .mfb
add GR_Index1 = GR_Index1,GR_Table_Ptr
nop.f 999
(p6) br.cond.spnt POWL_64_SPECIAL // Branch if x natval, nan, inf, zero
}
;;
// load Z_1 from Index1
// There is logic starting here to determine if y is an integer when x < 0.
// If 0 < |y| < 1 then clearly y is not an integer.
// If |y| > 1, then the significand of y is shifted left by the size of
// the exponent of y. This preserves the lsb of the integer part + the
// fractional bits. The lsb of the integer can be tested to determine if
// the integer is even or odd. The fractional bits can be tested. If zero,
// then y is an integer.
//
{ .mfi
ld2 GR_Z_1 =[GR_Index1],4 // Load Z_1
fmerge.s FR_Z = f0, FR_norm_X // Z = |x|
extr.u GR_X_0 = GR_signif_Z, 49, 15 // Extract X_0 from significand
}
{ .mfb
cmp.lt p9, p0 = GR_exp_y,GR_exp_bias // Test 0 < |y| < 1
nop.f 999
(p7) br.cond.spnt POWL_64_SPECIAL // Branch if y natval, nan, inf, zero
}
;;
{ .mfb
ldfs FR_G_1 = [GR_Index1],4 // Load G_1
fcmp.eq.s1 p10, p0 = FR_Input_Y, f1 // Test Y = +1.0
(p8) br.cond.spnt POWL_64_UNSUPPORT // Branch if x unsupported
}
;;
//
// X_0 = High order 15 bit of Z
//
{ .mfb
ldfs FR_H_1 = [GR_Index1],8 // Load H_1
(p9) fcmp.lt.unc.s1 p9, p0 = FR_Input_X, f0 // Test x<0, 0 <|y|<1
(p11) br.cond.spnt POWL_64_UNSUPPORT // Branch if y unsupported
}
;;
{ .mfi
ldfe FR_h_1 = [GR_Index1] // Load h_1
fcmp.eq.s1 p7, p0 = FR_Input_Y, FR_Two // Test y = 2.0
pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // X_1 = X_0 * Z_1 (bits 15-30)
// Wait 4 cycles to use result
}
{ .mfi
add GR_Table_Ptr = 0x9c0, GR_table_base // Constants_log_80_Z_G_H_h2
nop.f 999
sub GR_exp_y = GR_exp_y,GR_exp_bias // Get true exponent of y
}
;;
//
// Branch for (x < 0) and Y not an integer.
//
{ .mfb
nop.m 999
fcmp.lt.s1 p6, p0 = FR_Input_X, f0 // Test x < 0
(p9) br.cond.spnt POWL_64_XNEG // Branch if x < 0, 0 < |y| < 1
}
;;
{ .mfi
nop.m 999
fcmp.eq.s1 p12, p0 = FR_Input_X, f1 // Test x=+1.0
nop.i 999
}
{ .mfb
nop.m 999
fsub.s1 FR_W = FR_Z, f1 // W = Z - 1
(p7) br.cond.spnt POWL_64_SQUARE // Branch if y=2
}
;;
{ .mfi
nop.m 999
(p10) fmpy.s0 FR_Result = FR_Input_X, f1 // If y=+1.0, result=x
(p6) shl GR_fraction_y= GR_signif_y,GR_exp_y // Get lsb of int + fraction
// Wait 4 cycles to use result
}
;;
{ .mfi
nop.m 999
(p12) fma.s0 FR_Result = FR_Input_Y, f0, f1 // If x=1.0, result=1, chk denorm
extr.u GR_Index2 = GR_X_1, 6, 4 // Extract index2
}
;;
//
// N = exponent of Z
//
{ .mib
getf.exp GR_N = FR_Z // Get exponent of Z (also x)
shl GR_Index2=GR_Index2,5 // Index2 x 32 bytes
(p10) br.ret.spnt b0 // Exit if y=+1.0
}
;;
{ .mib
add GR_Index2 = GR_Index2, GR_Table_Ptr // Pointer to table 2
nop.i 999
(p12) br.ret.spnt b0 // Exit if x=+1.0
}
;;
{ .mmi
ld2 GR_Z_2 =[GR_Index2],4 // Load Z_2
;;
ldfs FR_G_2 = [GR_Index2],4 // Load G_2
nop.i 999
}
;;
{ .mii
ldfs FR_H_2 = [GR_Index2],8 // Load H_2
(p6) tbit.nz.unc p9, p0 = GR_fraction_y, 63 // Test x<0 and y odd integer
add GR_Table_Ptr = 0xbcc, GR_table_base // Constants_log_80_h3_G_H, G_3
}
;;
//
// For x < 0 and y odd integer,, set sign = -1.
//
{ .mfi
getf.exp GR_M = FR_W // Get signexp of W
nop.f 999
pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // X_2 = X_1 * Z_2 (bits 15-30)
}
{ .mfi
ldfe FR_h_2 = [GR_Index2] // Load h_2
(p9) fnma.s1 FR_Sgn = f1, f1, f0 // If x<0, y odd int, result negative
sub GR_N = GR_N, GR_exp_bias // Get true exponent of x = N
}
;;
{ .mfi
add GR_Table_Ptr1 = 0xdc0, GR_table_base // Ptr to H_3
fcmp.eq.s0 p11, p0 = FR_Input_Y, FR_Half // Test y=0.5, also set denorm
(p6) shl GR_fraction_y= GR_fraction_y, 1 // Shift left 1 to get fraction
}
;;
{ .mmb
setf.sig FR_float_N = GR_N
(p6) cmp.ne.unc p8, p0 = GR_fraction_y, r0 // Test x<0 and y not integer
(p8) br.cond.spnt POWL_64_XNEG // Branch if x<0 and y not int
}
;;
//
// Raise possible denormal operand exception for both X and Y.
// Set pointers in case |x| near 1
// Branch to embedded sqrt(x) if y=0.5
//
{ .mfi
add GR_P_ptr1 = 0x6b0, GR_table_base // Constants_log_80_P, P8, NEAR path
fcmp.eq.s0 p12, p0 = FR_Input_X, FR_Input_Y // Dummy to set denormal
add GR_P_ptr2 = 0x700, GR_table_base // Constants_log_80_P, P4, NEAR path
}
{ .mfb
cmp.eq p15, p14 = r0, r0 // Assume result safe (no over/under)
fsub.s1 FR_Delta = FR_Input_Y,f1 // Delta = y - 1.0
(p11) br.cond.spnt POWL_64_SQRT // Branch if y=0.5
}
;;
//
// Computes ln( x ) to extra precision
// Input FR 1: FR_X
// Output FR 2: FR_Y_hi
// Output FR 3: FR_Y_lo
// Output PR 1: PR_Safe
//
{ .mfi
and GR_M = GR_exp_mask, GR_M // Mask to get exponent of W
nop.f 999
extr.u GR_Index3 = GR_X_2, 1, 5 // Get index3
}
;;
{ .mmi
shladd GR_Table_Ptr1 = GR_Index3,2,GR_Table_Ptr1 // Ptr to H_3
shladd GR_Index3 = GR_Index3,4,GR_Table_Ptr // Ptr to G_3
sub GR_M = GR_M, GR_exp_bias // Get true exponent of W
}
;;
{ .mib
ldfs FR_G_3 = [GR_Index3],-12 // Load G_3
cmp.gt p7, p14 = -8, GR_M // Test if |x-1| < 2^-8
(p7) br.cond.spnt LOGL80_NEAR // Branch if |x-1| < 2^-8
}
;;
// Here if |x-1| >= 2^-8
{ .mmf
ldfs FR_H_3 = [GR_Table_Ptr1] // Load H_3
nop.m 999
nop.f 999
}
;;
{ .mfi
ldfe FR_h_3 = [GR_Index3] // Load h_3
fmerge.se FR_S = f1,FR_Z // S = merge of 1.0 and signif(Z)
nop.i 999
}
{ .mfi
add GR_Table_Ptr = 0x740, GR_table_base // Constants_log_80_Q
fmpy.s1 FR_G = FR_G_1, FR_G_2 // G = G_1 * G_2
nop.i 999
}
;;
//
// Begin Loading Q's - load log2_hi part
//
{ .mfi
ldfe FR_log2_hi = [GR_Table_Ptr],16 // Load log2_hi
fadd.s1 FR_H = FR_H_1, FR_H_2 // H = H_1 + H_2
nop.i 999
};;
//
// h = h_1 + h_2
//
{ .mfi
ldfe FR_log2_lo = [GR_Table_Ptr],16 // Load log2_lo
fadd.s1 FR_h = FR_h_1, FR_h_2 // h = h_1 + h_2
nop.i 999
}
;;
{ .mfi
ldfe FR_Q_6 = [GR_Table_Ptr],16 // Load Q_6
fcvt.xf FR_float_N = FR_float_N
nop.i 999
}
;;
{ .mfi
ldfe FR_Q_5 = [GR_Table_Ptr],16 // Load Q_5
nop.f 999
nop.i 999
}
;;
//
// G = G_1 * G_2 * G_3
//
{ .mfi
ldfe FR_Q_4 = [GR_Table_Ptr],16 // Load Q_4
fmpy.s1 FR_G = FR_G, FR_G_3
nop.i 999
}
;;
//
// H = H_1 + H_2 + H_3
//
{ .mfi
ldfe FR_Q_3 = [GR_Table_Ptr],16 // Load Q_3
fadd.s1 FR_H = FR_H, FR_H_3
nop.i 999
}
;;
//
// Y_lo = poly + Y_lo
//
// h = h_1 + h_2 + h_3
//
{ .mfi
ldfe FR_Q_2 = [GR_Table_Ptr],16 // Load Q_2
fadd.s1 FR_h = FR_h, FR_h_3
nop.i 999
}
;;
//
// GS_hi = G*S
// r = G*S -1
//
{ .mfi
ldfe FR_Q_1 = [GR_Table_Ptr],16 // Load Q_1
fmpy.s1 FR_GS_hi = FR_G, FR_S
nop.i 999
}
{ .mfi
nop.m 999
fms.s1 FR_r = FR_G, FR_S, f1
nop.i 999
}
;;
//
// poly_lo = Q_5 + r * Q_6
//
{ .mfi
getf.exp GR_Delta_Exp = FR_Delta // Get signexp of y-1 for exp calc
fma.s1 FR_poly_lo = FR_r, FR_Q_6, FR_Q_5
nop.i 999
}
//
// r_cor = GS_hi -1
//
{ .mfi
nop.m 999
fsub.s1 FR_r_cor = FR_GS_hi, f1
nop.i 999
}
;;
//
// GS_lo = G*S - GS_hi
//
{ .mfi
nop.m 999
fms.s1 FR_GS_lo = FR_G, FR_S, FR_GS_hi
nop.i 999
}
;;
//
// rsq = r * r
//
{ .mfi
nop.m 999
fmpy.s1 FR_rsq = FR_r, FR_r
nop.i 999
}
//
// G = float_N*log2_hi + H
//
{ .mfi
nop.m 999
fma.s1 FR_G = FR_float_N, FR_log2_hi, FR_H
nop.i 999
}
;;
//
// Y_lo = float_N*log2_lo + h
//
{ .mfi
nop.m 999
fma.s1 FR_Y_lo = FR_float_N, FR_log2_lo, FR_h
nop.i 999
}
;;
//
// poly_lo = Q_4 + r * poly_lo
// r_cor = r_cor - r
//
{ .mfi
nop.m 999
fma.s1 FR_poly_lo = FR_r, FR_poly_lo, FR_Q_4
nop.i 999
}
{ .mfi
nop.m 999
fsub.s1 FR_r_cor = FR_r_cor, FR_r
nop.i 999
}
;;
//
// poly_hi = r * Q_2 + Q_1
// Y_hi = G + r
//
{ .mfi
nop.m 999
fma.s1 FR_poly = FR_r, FR_Q_2, FR_Q_1
nop.i 999
}
{ .mfi
nop.m 999
fadd.s1 FR_Y_hi = FR_G, FR_r
nop.i 999
}
;;
//
// poly_lo = Q_3 + r * poly_lo
// r_cor = r_cor + GS_lo
//
{ .mfi
nop.m 999
fma.s1 FR_poly_lo = FR_r, FR_poly_lo, FR_Q_3
nop.i 999
}
{ .mfi
nop.m 999
fadd.s1 FR_r_cor = FR_r_cor, FR_GS_lo
nop.i 999
}
;;
//
// Y_lo = G - Y_hi
//
{ .mfi
nop.m 999
fsub.s1 FR_Y_lo_2 = FR_G, FR_Y_hi
nop.i 999
}
;;
//
// r_cor = r_cor + Y_lo
// poly = poly_hi + rsq * poly_lo
//
{ .mfi
add GR_Table_Ptr = 0x0, GR_table_base // Constants_exp_64_Arg
fadd.s1 FR_r_cor = FR_r_cor, FR_Y_lo
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 FR_poly = FR_rsq, FR_poly_lo, FR_poly
nop.i 999
}
;;
//
// Load L_hi
// Load L_lo
// all long before they are needed.
// They are used in LOGL_RETURN PATH
//
// Y_lo = Y_lo + r
// poly = rsq * poly + r_cor
//
{ .mfi
ldfe FR_L_hi = [GR_Table_Ptr],16 // Load L_hi
fadd.s1 FR_Y_lo = FR_Y_lo_2, FR_r
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 FR_poly = FR_rsq, FR_poly, FR_r_cor
nop.i 999
}
;;
{ .mfb
ldfe FR_L_lo = [GR_Table_Ptr],16 // Load L_lo
fadd.s1 FR_Y_lo = FR_Y_lo, FR_poly
br.cond.sptk LOGL_RETURN // Branch to common code
}
;;
LOGL80_NEAR:
// Here if |x-1| < 2^-8
//
// Branch LOGL80_NEAR
//
{ .mmf
ldfe FR_P_8 = [GR_P_ptr1],16 // Load P_8
ldfe FR_P_4 = [GR_P_ptr2],16 // Load P_4
fmpy.s1 FR_Wsq = FR_W, FR_W
}
;;
{ .mmi
ldfe FR_P_7 = [GR_P_ptr1],16 // Load P_7
ldfe FR_P_3 = [GR_P_ptr2],16 // Load P_3
nop.i 999
}
;;
{ .mmi
ldfe FR_P_6 = [GR_P_ptr1],16 // Load P_6
ldfe FR_P_2 = [GR_P_ptr2],16 // Load P_2
nop.i 999
}
;;
{ .mmi
ldfe FR_P_5 = [GR_P_ptr1],16 // Load P_5
ldfe FR_P_1 = [GR_P_ptr2],16 // Load P_1
nop.i 999
}
;;
{ .mfi
getf.exp GR_Delta_Exp = FR_Delta // Get signexp of y-1 for exp calc
fmpy.s1 FR_W4 = FR_Wsq, FR_Wsq
nop.i 999
}
{ .mfi
add GR_Table_Ptr = 0x0, GR_table_base // Constants_exp_64_Arg
fmpy.s1 FR_W3 = FR_Wsq, FR_W
nop.i 999
}
;;
{ .mfi
nop.m 999
fmpy.s1 FR_half_W = FR_Half, FR_W
nop.i 999
}
;;
{ .mfi
ldfe FR_L_hi = [GR_Table_Ptr],16
fma.s1 FR_poly_lo = FR_W, FR_P_8,FR_P_7
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 FR_poly = FR_W, FR_P_4, FR_P_3
nop.i 999
}
;;
{ .mfi
ldfe FR_L_lo = [GR_Table_Ptr],16
fnma.s1 FR_Y_hi = FR_W, FR_half_W, FR_W
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_poly_lo = FR_W, FR_poly_lo, FR_P_6
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 FR_poly = FR_W, FR_poly, FR_P_2
nop.i 999
}
;;
{ .mfi
nop.m 999
fsub.s1 FR_Y_lo = FR_W, FR_Y_hi
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_poly_lo = FR_W, FR_poly_lo, FR_P_5
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 FR_poly = FR_W, FR_poly, FR_P_1
nop.i 999
}
;;
{ .mfi
nop.m 999
fnma.s1 FR_Y_lo = FR_W, FR_half_W, FR_Y_lo
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_poly = FR_poly_lo, FR_W4, FR_poly
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_Y_lo = FR_poly, FR_W3, FR_Y_lo
nop.i 999
}
;;
LOGL_RETURN:
// Common code for completion of both logx paths
//
// L_hi, L_lo already loaded.
//
//
// kernel_log_80 computed ln(X)
// and return logX_hi and logX_lo as results.
// PR_pow_Safe set as well.
//
//
// Compute Y * (logX_hi + logX_lo)
// P_hi -> X
// P_lo -> X_cor
// (Manipulate names so that inputs are in
// the place kernel_exp expects them)
//
// This function computes exp( x + x_cor)
// Input FR 1: FR_X
// Input FR 2: FR_X_cor
// Output FR 3: FR_Y_hi
// Output FR 4: FR_Y_lo
// Output FR 5: FR_Scale
// Output PR 1: PR_Safe
//
// P15 is True
//
// Load constants used in computing N using right-shift technique
{ .mlx
mov GR_exp_2tom51 = 0xffff-51
movl GR_sig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
}
{ .mlx
add GR_Special_Exp = -50,GR_exp_bias
movl GR_rshf_2to51 = 0x4718000000000000 // 1.10000 2^(63+51)
}
;;
//
// Point to Table of W1s
// Point to Table of W2s
//
{ .mmi
add GR_W1_ptr = 0x2b0, GR_table_base // Constants_exp_64_W1
add GR_W2_ptr = 0x4b0, GR_table_base // Constants_exp_64_W2
cmp.le p6,p0= GR_Delta_Exp,GR_Special_Exp
};;
// Form two constants we need
// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128
// 1.1000..000 * 2^(63+63-12) to right shift int(N) into the significand
{ .mfi
setf.sig FR_INV_LN2_2TO63 = GR_sig_inv_ln2 // form 1/ln2 * 2^63
nop.f 999
and GR_Delta_Exp=GR_Delta_Exp,GR_exp_mask // Get exponent of y-1
}
{ .mlx
setf.d FR_RSHF_2TO51 = GR_rshf_2to51 // Form const 1.1000 * 2^(63+51)
movl GR_rshf = 0x43e8000000000000 // 1.10000 2^63 for right shift
}
;;
{ .mfi
nop.m 999
fmpy.s1 FR_X_lo = FR_Input_Y, FR_logx_lo // logx_lo is Y_lo
cmp.eq p15, p0= r0, r0 // Set p15, assume safe
};;
{ .mmi
setf.exp FR_2TOM51 = GR_exp_2tom51 // Form 2^-51 for scaling float_N
setf.d FR_RSHF = GR_rshf // Form right shift const 1.1000 * 2^63
add GR_Table_Ptr1 = 0x50, GR_table_base // Constants_exp_64_P for
// EXPL_SMALL path
}
;;
{ .mmi
ldfe FR_P_6 = [GR_Table_Ptr1],16 // Load P_6 for EXPL_SMALL path
;;
ldfe FR_P_5 = [GR_Table_Ptr1],16 // Load P_5 for EXPL_SMALL path
nop.i 999
}
;;
{ .mfi
ldfe FR_P_4 = [GR_Table_Ptr1],16 // Load P_4 for EXPL_SMALL path
fma.s1 FR_P_hi = FR_Input_Y, FR_logx_hi,FR_X_lo // logx_hi ix Y_hi
nop.i 999
}
;;
{ .mmi
ldfe FR_P_3 = [GR_Table_Ptr1],16 // Load P_3 for EXPL_SMALL path
;;
ldfe FR_P_2 = [GR_Table_Ptr1],16 // Load P_2 for EXPL_SMALL path
nop.i 999
}
;;
// N = X * Inv_log2_by_2^12
// By adding 1.10...0*2^63 we shift and get round_int(N_signif) in significand.
// We actually add 1.10...0*2^51 to X * Inv_log2 to do the same thing.
{ .mfi
ldfe FR_P_1 = [GR_Table_Ptr1] // Load P_1 for EXPL_SMALL path
fma.s1 FR_N = FR_X, FR_INV_LN2_2TO63, FR_RSHF_2TO51
nop.i 999
}
{ .mfb
nop.m 999
fms.s1 FR_P_lo= FR_Input_Y, FR_logx_hi, FR_P_hi // P_hi is X
(p6) br.cond.spnt POWL_Y_ALMOST_1 // Branch if |y-1| < 2^-50
}
;;
{ .mmi
getf.exp GR_Expo_X = FR_X
add GR_T1_ptr = 0x0b0, GR_table_base // Constants_exp_64_T1
add GR_T2_ptr = 0x1b0, GR_table_base // Constants_exp_64_T2
}
;;
// float_N = round_int(N)
// The signficand of N contains the rounded integer part of X * 2^12/ln2,
// as a twos complement number in the lower bits (that is, it may be negative).
// That twos complement number (called N) is put into GR_N_fix.
// Since N is scaled by 2^51, it must be multiplied by 2^-51
// before the shift constant 1.10000 * 2^63 is subtracted to yield float_N.
// Thus, float_N contains the floating point version of N
{ .mfi
add GR_Table_Ptr = 0x20, GR_table_base // Constants_exp_64_A
fms.s1 FR_float_N = FR_N, FR_2TOM51, FR_RSHF // Form float_N
nop.i 999
}
// Create low part of Y(ln(x)_hi + ln(x)_lo) as P_lo
{ .mfi
mov GR_Big_Pos_Exp = 0x3ffe // 16382, largest safe exponent
fadd.s1 FR_P_lo = FR_P_lo, FR_X_lo
mov GR_Big_Neg_Exp = -0x3ffd // -16381 smallest safe exponent
};;
{ .mfi
nop.m 999
fmpy.s1 FR_rsq = FR_X, FR_X // rsq = X*X for EXPL_SMALL path
mov GR_vsm_expo = -70 // Exponent for very small path
}
{ .mfi
nop.m 999
fma.s1 FR_poly_lo = FR_P_6, FR_X, FR_P_5 // poly_lo for EXPL_SMALL path
add GR_temp = 0x1,r0 // For tiny signif if small path
}
;;
//
// If expo_X < -6 goto exp_small
//
{ .mmi
getf.sig GR_N_fix = FR_N
ldfe FR_A_3 = [GR_Table_Ptr],16 // Load A_3
and GR_Expo_X = GR_Expo_X, GR_exp_mask // Get exponent of X
}
;;
{ .mfi
ldfe FR_A_2 = [GR_Table_Ptr],16 // Load A_2
nop.f 999
sub GR_Expo_X = GR_Expo_X, GR_exp_bias // Get true exponent of X
}
;;
//
// If -6 > Expo_X, set P9 and branch
//
{ .mfb
cmp.gt p9, p0 = -6, GR_Expo_X
fnma.s1 FR_r = FR_L_hi, FR_float_N, FR_X // r = X - L_hi * float_N
(p9) br.cond.spnt EXPL_SMALL // Branch if |X| < 2^-6
}
;;
//
// If 14 <= Expo_X, set P10
//
{ .mib
cmp.le p10, p0 = 14, GR_Expo_X
nop.i 999
(p10) br.cond.spnt EXPL_HUGE // Branch if |X| >= 2^14
}
;;
//
// Load single T1
// Load single T2
// W_1_p1 = W_1 + 1
//
{ .mmi
nop.m 999
nop.m 999
extr.u GR_M1 = GR_N_fix, 6, 6 // Extract index M_1
}
;;
//
// k = extr.u(N_fix,0,6)
//
{ .mmi
shladd GR_W1_ptr = GR_M1,3,GR_W1_ptr // Point to W1
shladd GR_T1_ptr = GR_M1,2,GR_T1_ptr // Point to T1
extr.u GR_M2 = GR_N_fix, 0, 6 // Extract index M_2
}
;;
// N_fix is only correct up to 50 bits because of our right shift technique.
// Actually in the normal path we will have restricted K to about 14 bits.
// Somewhat arbitrarily we extract 32 bits.
{ .mmi
ldfd FR_W1 = [GR_W1_ptr]
shladd GR_W2_ptr = GR_M2,3,GR_W2_ptr // Point to W2
extr GR_k = GR_N_fix, 12, 32 // Extract k
}
;;
{ .mfi
ldfs FR_T1 = [GR_T1_ptr]
fnma.s1 FR_r = FR_L_lo, FR_float_N, FR_r
shladd GR_T2_ptr = GR_M2,2,GR_T2_ptr // Point to T2
}
{ .mfi
add GR_exp_bias_p_k = GR_exp_bias, GR_k
nop.f 999
cmp.gt p14,p15 = GR_k,GR_Big_Pos_Exp
}
;;
//
// if k < big_neg_exp, set p14 and Safe=False
//
{ .mmi
ldfs FR_T2 = [GR_T2_ptr]
(p15) cmp.lt p14,p15 = GR_k,GR_Big_Neg_Exp
nop.i 999
}
;;
{ .mmi
setf.exp FR_Scale = GR_exp_bias_p_k
ldfd FR_W2 = [GR_W2_ptr]
nop.i 999
}
;;
{ .mfi
ldfe FR_A_1 = [GR_Table_Ptr],16
fadd.s1 FR_r = FR_r, FR_X_cor
nop.i 999
}
;;
{ .mfi
nop.m 999
fadd.s1 FR_W_1_p1 = FR_W1, f1
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_poly = FR_r, FR_A_3, FR_A_2
nop.i 999
}
{ .mfi
nop.m 999
fmpy.s1 FR_rsq = FR_r, FR_r
nop.i 999
}
;;
{ .mfi
nop.m 999
fmpy.s1 FR_T = FR_T1, FR_T2
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_W = FR_W2, FR_W_1_p1, FR_W1
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_TMP1 = FR_Scale, FR_Sgn, f0
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_poly = FR_r, FR_poly, FR_A_1
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_TMP2 = FR_T, f1, f0 // TMP2 = Y_hi = T
nop.i 999
}
;;
{ .mfi
nop.m 999
fadd.s1 FR_Wp1 = FR_W, f1
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_poly = FR_rsq, FR_poly,FR_r
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_Tscale = FR_T, FR_TMP1, f0 // Scale * Sgn * T
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 FR_Y_lo = FR_Wp1, FR_poly, FR_W
nop.i 999
}
;;
{ .mfb
nop.m 999
fmpy.s1 FR_TMP3 = FR_Y_lo, FR_Tscale
br.cond.sptk POWL_64_SHARED
}
;;
EXPL_SMALL:
// Here if |ylogx| < 2^-6
//
// Begin creating lsb to perturb final result
//
{ .mfi
setf.sig FR_temp = GR_temp
fma.s1 FR_poly_lo = FR_poly_lo, FR_X, FR_P_4
cmp.lt p12, p0 = GR_Expo_X, GR_vsm_expo // Test |ylogx| < 2^-70
}
{ .mfi
nop.m 999
fma.s1 FR_poly_hi = FR_P_2, FR_X, FR_P_1
nop.i 999
}
;;
{ .mfi
nop.m 999
fmpy.s1 FR_TMP2 = f1, f1
nop.i 999
}
{ .mfi
nop.m 999
fmpy.s1 FR_TMP1 = FR_Sgn, f1
nop.i 999
}
;;
{ .mfi
nop.m 999
fmpy.s1 FR_r4 = FR_rsq, FR_rsq
(p12) cmp.eq p15, p0 = r0, r0 // Set safe if |ylogx| < 2^-70
}
{ .mfb
nop.m 999
(p12) fmpy.s1 FR_TMP3 = FR_Sgn, FR_X
(p12) br.cond.spnt POWL_64_SHARED // Branch if |ylogx| < 2^-70
}
;;
{ .mfi
nop.m 999
fma.s1 FR_poly_lo = FR_poly_lo, FR_X, FR_P_3
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 FR_poly_hi = FR_poly_hi, FR_rsq, FR_X
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s1 FR_Y_lo = FR_poly_lo, FR_r4, FR_poly_hi
nop.i 999
}
;;
{ .mfi
nop.m 999
fmpy.s1 FR_TMP3 = FR_Y_lo, FR_TMP1 // Add sign info
nop.i 999
}
;;
//
// Toggle on last bit of Y_lo
// Set lsb of Y_lo to 1
//
{ .mfi
nop.m 999
for FR_temp = FR_Y_lo,FR_temp
nop.i 999
}
;;
{ .mfb
nop.m 999
fmerge.se FR_TMP3 = FR_TMP3,FR_temp
br.cond.sptk POWL_64_SHARED
}
;;
EXPL_HUGE:
// Here if |ylogx| >= 2^14
{ .mfi
mov GR_temp = 0x0A1DC // If X < 0, exponent -24100
fcmp.gt.s1 p12, p13 = FR_X, f0 // Test X > 0
cmp.eq p14, p15 = r0, r0 // Set Safe to false
}
;;
{ .mmi
(p12) mov GR_Mask = 0x15DC0 // If X > 0, exponent +24000
(p13) mov GR_Mask = 0x0A240 // If X < 0, exponent -24000
nop.i 999
}
;;
{ .mmf
setf.exp FR_TMP2 = GR_Mask // Form Y_hi = TMP2
(p13) setf.exp FR_Y_lo = GR_temp // If X < 0, Y_lo = 2^-24100
(p12) mov FR_Y_lo = f1 // IF X > 0, Y_lo = 1.0
}
;;
{ .mfi
nop.m 999
fmpy.s1 FR_TMP1 = FR_TMP2, FR_Sgn // TMP1 = Y_hi * Sgn
nop.i 999
}
;;
{ .mfb
nop.m 999
fmpy.s1 FR_TMP3 = FR_Y_lo,FR_TMP1 // TMP3 = Y_lo * (Y_hi * Sgn)
br.cond.sptk POWL_64_SHARED
}
;;
POWL_Y_ALMOST_1:
// Here if delta = |y-1| < 2^-50
//
// x**(1 + delta) = x * e (ln(x)*delta) = x ( 1 + ln(x) * delta)
//
// Computation will be safe for 2^-16381 <= x < 2^16383
{ .mfi
mov GR_exp_ynear1_oflow = 0xffff + 16383
fma.s1 FR_TMP1 = FR_Input_X,FR_Delta,f0
and GR_exp_x = GR_exp_mask, GR_signexp_x
}
;;
{ .mfi
cmp.lt p15, p14 = GR_exp_x, GR_exp_ynear1_oflow
fma.s1 FR_TMP2 = FR_logx_hi,f1,FR_X_lo
mov GR_exp_ynear1_uflow = 0xffff - 16381
}
;;
{ .mfb
(p15) cmp.ge p15, p14 = GR_exp_x, GR_exp_ynear1_uflow
fma.s1 FR_TMP3 = FR_Input_X,f1,f0
br.cond.sptk POWL_64_SHARED
};;
POWL_64_SQUARE:
//
// Here if x not zero and y=2.
//
// Setup for multipath code
//
{ .mfi
mov GR_exp_square_oflow = 0xffff + 8192 // Exponent where x*x overflows
fmerge.se FR_TMP1 = FR_Input_X, FR_Input_X
and GR_exp_x = GR_exp_mask, GR_signexp_x // Get exponent of x
}
;;
{ .mfi
cmp.lt p15, p14 = GR_exp_x, GR_exp_square_oflow // Decide safe/unsafe
fmerge.se FR_TMP2 = FR_Input_X, FR_Input_X
mov GR_exp_square_uflow = 0xffff - 8191 // Exponent where x*x underflows
}
;;
{ .mfi
(p15) cmp.ge p15, p14 = GR_exp_x, GR_exp_square_uflow // Decide safe/unsafe
fma.s1 FR_TMP3 = f0,f0,f0
nop.i 999
}
;;
//
// This is the shared path that will set overflow and underflow.
//
POWL_64_SHARED:
//
// Return if no danger of over or underflow.
//
{ .mfb
nop.m 999
fma.s0 FR_Result = FR_TMP1, FR_TMP2, FR_TMP3
(p15) br.ret.sptk b0 // Main path return if certain no over/underflow
}
;;
//
// S0 user supplied status
// S2 user supplied status + WRE + TD (Overflows)
// S2 user supplied status + FZ + TD (Underflows)
//
//
// If (Safe) is true, then
// Compute result using user supplied status field.
// No overflow or underflow here, but perhaps inexact.
// Return
// Else
// Determine if overflow or underflow was raised.
// Fetch +/- overflow threshold for IEEE double extended
{ .mfi
nop.m 999
fsetc.s2 0x7F,0x41 // For underflow test, set S2=User+TD+FTZ
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s2 FR_Result_small = FR_TMP1, FR_TMP2, FR_TMP3
nop.i 999
}
;;
{ .mfi
nop.m 999
fsetc.s2 0x7F,0x42 // For overflow test, set S2=User+TD+WRE
nop.i 999
}
;;
{ .mfi
nop.m 999
fma.s2 FR_Result_big = FR_TMP1, FR_TMP2,FR_TMP3
nop.i 999
}
;;
{ .mfi
nop.m 999
fsetc.s2 0x7F,0x40 // Reset S2=User
nop.i 999
}
;;
{ .mfi
nop.m 999
fclass.m p11, p0 = FR_Result_small, 0x00F // Test small result unorm/zero
nop.i 999
}
;;
{ .mfi
nop.m 999
fcmp.ge.s1 p8, p0 = FR_Result_big , FR_Big // Test >= + oflow threshold
nop.i 999
}
;;
{ .mfb
(p11) mov GR_Parameter_TAG = 19 // Set tag for underflow
fcmp.le.s1 p9, p0 = FR_Result_big, FR_NBig // Test <= - oflow threshold
(p11) br.cond.spnt __libm_error_region // Branch if pow underflowed
}
;;
{ .mfb
(p8) mov GR_Parameter_TAG = 18 // Set tag for overflow
nop.f 999
(p8) br.cond.spnt __libm_error_region // Branch if pow +overflow
}
;;
{ .mbb
(p9) mov GR_Parameter_TAG = 18 // Set tag for overflow
(p9) br.cond.spnt __libm_error_region // Branch if pow -overflow
br.ret.sptk b0 // Branch if result really ok
}
;;
POWL_64_SPECIAL:
// Here if x or y is NatVal, nan, inf, or zero
{ .mfi
nop.m 999
fcmp.eq.s1 p15, p0 = FR_Input_X, f1 // Test x=+1
nop.i 999
}
;;
{ .mfi
nop.m 999
fclass.m p8, p0 = FR_Input_X, 0x143 // Test x natval, snan
nop.i 999
}
;;
{ .mfi
nop.m 999
(p15) fcmp.eq.unc.s0 p6,p0 = FR_Input_Y, f0 // If x=1, flag invalid if y=SNaN
nop.i 999
}
{ .mfb
nop.m 999
(p15) fmpy.s0 FR_Result = f1,f1 // If x=1, result=1
(p15) br.ret.spnt b0 // Exit if x=1
}
;;
{ .mfi
nop.m 999
fclass.m p6, p0 = FR_Input_Y, 0x007 // Test y zero
nop.i 999
}
;;
{ .mfi
nop.m 999
fclass.m p9, p0 = FR_Input_Y, 0x143 // Test y natval, snan
nop.i 999
}
;;
{ .mfi
nop.m 999
fclass.m p10, p0 = FR_Input_X, 0x083 // Test x qnan
nop.i 999
}
{ .mfi
nop.m 999
(p8) fmpy.s0 FR_Result = FR_Input_Y, FR_Input_X // If x=snan, result=qnan
(p6) cmp.ne p8,p0 = r0,r0 // Don't exit if x=snan, y=0 ==> result=+1
}
;;
{ .mfi
nop.m 999
(p6) fclass.m.unc p15, p0 = FR_Input_X,0x007 // Test x=0, y=0
nop.i 999
}
{ .mfb
nop.m 999
(p9) fmpy.s0 FR_Result = FR_Input_Y, FR_Input_X // If y=snan, result=qnan
(p8) br.ret.spnt b0 // Exit if x=snan, y not 0,
// result=qnan
}
;;
{ .mfi
nop.m 999
fcmp.eq.s1 p7, p0 = FR_Input_Y, f1 // Test y +1.0
nop.i 999
}
{ .mfb
nop.m 999
(p10) fmpy.s0 FR_Result = FR_Input_X, f0 // If x=qnan, result=qnan
(p9) br.ret.spnt b0 // Exit if y=snan, result=qnan
}
;;
{ .mfi
nop.m 999
(p6) fclass.m.unc p8, p0 = FR_Input_X,0x0C3 // Test x=nan, y=0
nop.i 999
}
;;
{ .mfi
nop.m 999
(p6) fcmp.eq.s0 p9,p0 = FR_Input_X, f0 // If y=0, flag if x denormal
nop.i 999
}
{ .mfi
nop.m 999
(p6) fadd.s0 FR_Result = f1, f0 // If y=0, result=1
nop.i 999
}
;;
{ .mfi
nop.m 999
fclass.m p11, p0 = FR_Input_Y, 0x083 // Test y qnan
nop.i 999
}
{ .mfb
(p15) mov GR_Parameter_TAG = 20 // Error tag for x=0, y=0
(p7) fmpy.s0 FR_Result = FR_Input_X,f1 // If y=1, result=x
(p15) br.cond.spnt __libm_error_region // Branch if x=0, y=0, result=1
}
;;
{ .mfb
(p8) mov GR_Parameter_TAG = 23 // Error tag for x=nan, y=0
fclass.m p14, p0 = FR_Input_Y, 0x023 // Test y inf
(p8) br.cond.spnt __libm_error_region // Branch if x=snan, y=0,
// result=1
}
;;
{ .mfb
nop.m 999
fclass.m p13, p0 = FR_Input_X, 0x023 // Test x inf
(p6) br.ret.spnt b0 // Exit y=0, x not nan or 0,
// result=1
}
;;
{ .mfb
nop.m 999
(p14) fcmp.eq.unc.s1 p0,p14 = FR_Input_X,f0 // Test x not 0, y=inf
(p7) br.ret.spnt b0 // Exit y=1, x not snan,
// result=x
}
;;
{ .mfb
nop.m 999
(p10) fmpy.s0 FR_Result = FR_Input_Y,FR_Input_X // If x=qnan, y not snan,
// result=qnan
(p10) br.ret.spnt b0 // Exit x=qnan, y not snan,
// result=qnan
}
;;
{ .mfb
nop.m 999
(p11) fmpy.s0 FR_Result = FR_Input_Y,FR_Input_X // If y=qnan, x not nan or 1,
// result=qnan
(p11) br.ret.spnt b0 // Exit y=qnan, x not nan or 1,
// result=qnan
}
;;
{ .mbb
nop.m 999
(p14) br.cond.spnt POWL_64_Y_IS_INF // Branch if y=inf, x not 1 or nan
(p13) br.cond.spnt POWL_64_X_IS_INF // Branch if x=inf, y not 1 or nan
}
;;
POWL_64_X_IS_ZERO:
// Here if x=0, y not nan or 1 or inf or 0
// There is logic starting here to determine if y is an integer when x = 0.
// If 0 < |y| < 1 then clearly y is not an integer.
// If |y| > 1, then the significand of y is shifted left by the size of
// the exponent of y. This preserves the lsb of the integer part + the
// fractional bits. The lsb of the integer can be tested to determine if
// the integer is even or odd. The fractional bits can be tested. If zero,
// then y is an integer.
//
{ .mfi
and GR_exp_y = GR_exp_mask,GR_signexp_y // Get biased exponent of y
nop.f 999
and GR_y_sign = GR_sign_mask,GR_signexp_y // Get sign of y
}
;;
//
// Maybe y is < 1 already, so
// can never be an integer.
//
{ .mfi
cmp.lt p9, p8 = GR_exp_y,GR_exp_bias // Test 0 < |y| < 1
nop.f 999
sub GR_exp_y = GR_exp_y,GR_exp_bias // Get true exponent of y
}
;;
//
// Shift significand of y looking for nonzero bits
// For y > 1, shift signif_y exp_y bits to the left
// For y < 1, turn on 4 low order bits of significand of y
// so that the fraction will always be non-zero
//
{ .mmi
(p9) or GR_exp_y= 0xF,GR_signif_y // Force nonzero fraction if y<1
;;
nop.m 999
(p8) shl GR_exp_y= GR_signif_y,GR_exp_y // Get lsb of int + fraction
// Wait 4 cycles to use result
}
;;
{ .mmi
nop.m 999
;;
nop.m 999
nop.i 999
}
;;
{ .mmi
nop.m 999
;;
nop.m 999
shl GR_fraction_y= GR_exp_y,1 // Shift left 1 to get fraction
}
;;
//
// Integer part of y shifted off.
// Get y's low even or odd bit - y might not be an int.
//
{ .mii
cmp.eq p13,p0 = GR_fraction_y, r0 // Test for y integer
cmp.eq p8,p0 = GR_y_sign, r0 // Test for y > 0
;;
(p13) tbit.nz.unc p13,p0 = GR_exp_y, 63 // Test if y an odd integer
}
;;
{ .mfi
(p13) cmp.eq.unc p13,p14 = GR_y_sign, r0 // Test y pos odd integer
(p8) fcmp.eq.s0 p12,p0 = FR_Input_Y, f0 // If x=0 and y>0 flag if y denormal
nop.i 999
}
;;
//
// Return +/-0 when x=+/-0 and y is positive odd integer
//
{ .mfb
nop.m 999
(p13) mov FR_Result = FR_Input_X // If x=0, y pos odd int, result=x
(p13) br.ret.spnt b0 // Exit x=0, y pos odd int, result=x
}
;;
//
// Return +/-inf when x=+/-0 and y is negative odd int
//
{ .mfb
(p14) mov GR_Parameter_TAG = 21
(p14) frcpa.s0 FR_Result, p0 = f1, FR_Input_X // Result +-inf, set Z flag
(p14) br.cond.spnt __libm_error_region
}
;;
//
// Return +0 when x=+/-0 and y positive and not an odd integer
//
{ .mfb
nop.m 999
(p8) mov FR_Result = f0 // If x=0, y>0 and not odd integer, result=+0
(p8) br.ret.sptk b0 // Exit x=0, y>0 and not odd integer, result=+0
}
;;
//
// Return +inf when x=+/-0 and y is negative and not odd int
//
{ .mfb
mov GR_Parameter_TAG = 21
frcpa.s0 FR_Result, p10 = f1,f0 // Result +inf, raise Z flag
br.cond.sptk __libm_error_region
}
;;
POWL_64_X_IS_INF:
//
// Here if x=inf, y not 1 or nan
//
{ .mfi
and GR_exp_y = GR_exp_mask,GR_signexp_y // Get biased exponent y
fclass.m p13, p0 = FR_Input_X,0x022 // Test x=-inf
nop.i 999
}
;;
{ .mfi
and GR_y_sign = GR_sign_mask,GR_signexp_y // Get sign of y
fcmp.eq.s0 p9,p0 = FR_Input_Y, f0 // Dummy to set flag if y denorm
nop.i 999
}
;;
//
// Maybe y is < 1 already, so
// isn't an int.
//
{ .mfi
(p13) cmp.lt.unc p9, p8 = GR_exp_y,GR_exp_bias // Test 0 < |y| < 1 if x=-inf
fclass.m p11, p0 = FR_Input_X,0x021 // Test x=+inf
sub GR_exp_y = GR_exp_y,GR_exp_bias // Get true exponent y
}
;;
//
// Shift significand of y looking for nonzero bits
// For y > 1, shift signif_y exp_y bits to the left
// For y < 1, turn on 4 low order bits of significand of y
// so that the fraction will always be non-zero
//
{ .mmi
(p9) or GR_exp_y= 0xF,GR_signif_y // Force nonzero fraction if y<1
;;
(p11) cmp.eq.unc p14,p12 = GR_y_sign, r0 // Test x=+inf, y>0
(p8) shl GR_exp_y= GR_signif_y,GR_exp_y // Get lsb of int + fraction
// Wait 4 cycles to use result
}
;;
//
// Return +inf for x=+inf, y > 0
// Return +0 for x=+inf, y < 0
//
{ .mfi
nop.m 999
(p12) mov FR_Result = f0 // If x=+inf, y<0, result=+0
nop.i 999
}
{ .mfb
nop.m 999
(p14) fma.s0 FR_Result = FR_Input_X,f1,f0 // If x=+inf, y>0, result=+inf
(p11) br.ret.sptk b0 // Exit x=+inf
}
;;
//
// Here only if x=-inf. Wait until can use result of shl...
//
{ .mmi
nop.m 999
;;
nop.m 999
nop.i 999
}
;;
{ .mfi
cmp.eq p8,p9 = GR_y_sign, r0 // Test y pos
nop.f 999
shl GR_fraction_y = GR_exp_y,1 // Shift left 1 to get fraction
}
;;
{ .mmi
cmp.eq p13,p0 = GR_fraction_y, r0 // Test y integer
;;
nop.m 999
(p13) tbit.nz.unc p13,p0 = GR_exp_y, 63 // Test y odd integer
}
;;
//
// Is y even or odd?
//
{ .mii
(p13) cmp.eq.unc p14,p10 = GR_y_sign, r0 // Test x=-inf, y pos odd int
(p13) cmp.ne.and p8,p9 = r0,r0 // If y odd int, turn off p8,p9
nop.i 999
}
;;
//
// Return -0 for x = -inf and y < 0 and odd int.
// Return -Inf for x = -inf and y > 0 and odd int.
//
{ .mfi
nop.m 999
(p10) fmerge.ns FR_Result = f0, f0 // If x=-inf, y neg odd int, result=-0
nop.i 999
}
{ .mfi
nop.m 999
(p14) fmpy.s0 FR_Result = FR_Input_X,f1 // If x=-inf, y pos odd int, result=-inf
nop.i 999
}
;;
//
// Return Inf for x = -inf and y > 0 not an odd int.
// Return +0 for x = -inf and y < 0 not an odd int.
//
.pred.rel "mutex",p8,p9
{ .mfi
nop.m 999
(p8) fmerge.ns FR_Result = FR_Input_X, FR_Input_X // If x=-inf, y>0 not odd int
// result=+inf
nop.i 999
}
{ .mfb
nop.m 999
(p9) fmpy.s0 FR_Result = f0,f0 // If x=-inf, y<0 not odd int
// result=+0
br.ret.sptk b0 // Exit for x=-inf
}
;;
POWL_64_Y_IS_INF:
// Here if y=inf, x not 1 or nan
//
// For y = +Inf and |x| < 1 returns 0
// For y = +Inf and |x| > 1 returns Inf
// For y = -Inf and |x| < 1 returns Inf
// For y = -Inf and |x| > 1 returns 0
// For y = Inf and |x| = 1 returns 1
//
{ .mfi
nop.m 999
fclass.m p8, p0 = FR_Input_Y, 0x021 // Test y=+inf
nop.i 999
}
;;
{ .mfi
nop.m 999
fclass.m p9, p0 = FR_Input_Y, 0x022 // Test y=-inf
nop.i 999
}
;;
{ .mfi
nop.m 999
fabs FR_X = FR_Input_X // Form |x|
nop.i 999
}
;;
{ .mfi
nop.m 999
fcmp.eq.s0 p10,p0 = FR_Input_X, f0 // flag if x denormal
nop.i 999
}
;;
{ .mfi
nop.m 999
(p8) fcmp.lt.unc.s1 p6, p0 = FR_X, f1 // Test y=+inf, |x|<1
nop.i 999
}
;;
{ .mfi
nop.m 999
(p8) fcmp.gt.unc.s1 p7, p0 = FR_X, f1 // Test y=+inf, |x|>1
nop.i 999
}
;;
{ .mfi
nop.m 999
(p9) fcmp.lt.unc.s1 p12, p0 = FR_X, f1 // Test y=-inf, |x|<1
nop.i 999
}
{ .mfi
nop.m 999
(p6) fmpy.s0 FR_Result = f0,f0 // If y=+inf, |x|<1, result=+0
nop.i 999
}
;;
{ .mfi
nop.m 999
(p9) fcmp.gt.unc.s1 p13, p0 = FR_X, f1 // Test y=-inf, |x|>1
nop.i 999
}
{ .mfi
nop.m 999
(p7) fmpy.s0 FR_Result = FR_Input_Y, f1 // If y=+inf, |x|>1, result=+inf
nop.i 999
}
;;
{ .mfi
nop.m 999
fcmp.eq.s1 p14, p0 = FR_X, f1 // Test y=inf, |x|=1
nop.i 999
}
{ .mfi
nop.m 999
(p12) fnma.s0 FR_Result = FR_Input_Y, f1, f0 // If y=-inf, |x|<1, result=+inf
nop.i 999
}
;;
{ .mfi
nop.m 999
(p13) mov FR_Result = f0 // If y=-inf, |x|>1, result=+0
nop.i 999
}
;;
{ .mfb
nop.m 999
(p14) fmpy.s0 FR_Result = f1,f1 // If y=inf, |x|=1, result=+1
br.ret.sptk b0 // Common return for y=inf
}
;;
// Here if x or y denorm/unorm
POWL_DENORM:
{ .mmi
getf.sig GR_signif_Z = FR_norm_X // Get significand of x
;;
getf.exp GR_signexp_y = FR_norm_Y // Get sign and exp of y
nop.i 999
}
;;
{ .mfi
getf.sig GR_signif_y = FR_norm_Y // Get significand of y
nop.f 999
nop.i 999
}
;;
{ .mib
getf.exp GR_signexp_x = FR_norm_X // Get sign and exp of x
extr.u GR_Index1 = GR_signif_Z, 59, 4 // Extract upper 4 signif bits of x
br.cond.sptk POWL_COMMON // Branch back to main path
}
;;
POWL_64_UNSUPPORT:
//
// Raise exceptions for specific
// values - pseudo NaN and
// infinities.
// Return NaN and raise invalid
//
{ .mfb
nop.m 999
fmpy.s0 FR_Result = FR_Input_X,f0
br.ret.sptk b0
}
;;
POWL_64_XNEG:
//
// Raise invalid for x < 0 and
// y not an integer
//
{ .mfi
nop.m 999
frcpa.s0 FR_Result, p8 = f0, f0
mov GR_Parameter_TAG = 22
}
{ .mib
nop.m 999
nop.i 999
br.cond.sptk __libm_error_region
}
;;
POWL_64_SQRT:
{ .mfi
nop.m 999
frsqrta.s0 FR_Result,p10 = FR_save_Input_X
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fma.s1 f62=FR_Half,FR_save_Input_X,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fma.s1 f63=FR_Result,FR_Result,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fnma.s1 f32=f63,f62,FR_Half
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fma.s1 f33=f32,FR_Result,FR_Result
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fma.s1 f34=f33,f62,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fnma.s1 f35=f34,f33,FR_Half
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fma.s1 f63=f35,f33,f33
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fma.s1 f32=FR_save_Input_X,f63,f0
nop.i 999
}
{ .mfi
nop.m 999
(p10) fma.s1 FR_Result=f63,f62,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fma.s1 f33=f11,f63,f0
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fnma.s1 f34=f32,f32,FR_save_Input_X
nop.i 999
}
{ .mfi
nop.m 999
(p10) fnma.s1 f35=FR_Result,f63,FR_Half
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fma.s1 f62=f33,f34,f32
nop.i 999
}
{ .mfi
nop.m 999
(p10) fma.s1 f63=f33,f35,f33
nop.i 999 ;;
}
{ .mfi
nop.m 999
(p10) fnma.s1 f32=f62,f62,FR_save_Input_X
nop.i 999 ;;
}
{ .mfb
nop.m 999
(p10) fma.s0 FR_Result=f32,f63,f62
br.ret.sptk b0 // Exit for x > 0, y = 0.5
}
;;
GLOBAL_LIBM_END(powl)
libm_alias_ldouble_other (pow, pow)
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
stfe [GR_Parameter_Y] = FR_Input_Y,16 // Save Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mib
stfe [GR_Parameter_X] = FR_save_Input_X // Store Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y
nop.b 0 // Parameter 3 address
}
{ .mib
stfe [GR_Parameter_Y] = FR_Result // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
add GR_Parameter_RESULT = 48,sp
nop.m 0
nop.i 0
};;
{ .mmi
ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region#)
.type __libm_error_support#,@function
.global __libm_error_support#
|