1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
|
.file "log2l.s"
// Copyright (c) 2000 - 2003, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 09/25/00 Initial version
// 11/22/00 Fixed accuracy bug (for mantissas near 1, 2)
// 12/07/00 Fixed C_1l constant, eliminated rounding errors in
// reduced argument (x*frcpa(x)-1)
// 05/20/02 Cleaned up namespace and sf0 syntax
// 02/10/03 Reordered header: .section, .global, .proc, .align
//
// API
//==============================================================
// long double log2l(long double)
//
// Overview of operation
//==============================================================
// Background
//
// Implementation
//
// Let x = 2^l * m, where m=1.b1 b2 ... b8 b9 ... b52
// y=frcpa(m), r=m*y-1, f=b1 b2 .. b8
// T_hi is a table that stores the 24 most significant bits of log2(1/y)
// (in entries 1..255) in single precision format
// T_low is a table that stores (log2(1/y)-T_high), rounded to double
// precision
//
// f is used as an index; T_high[255]=T_low[255]=0
//
// If f=0 and b9=0, r is set to 2^{-8}* 0.b9 b10 ... b52 = m-1 (fractional part of m),
// and 0 is used instead of T_high[0], T_low[0]
// (polynomial evaluation only, for m=1+r, 0<=r<2^{-9})
// If f=255, r is set to (m-2)/2 (T[255]=0, and only polynomial evaluation is used
// for m=2(1-r'), 0<=r'<2^{-9})
//
// If 2^{-9}<=m<2-2^{-8} or (input not near 1), let C1r=(2^{16}+C1*r)-2^{16}
// and let E=((RN(m*y)-1)-r)+(m*y-RN(m*y))
// Else let C1r=C1*r (rounded to 64 significant bits) and let E=0
//
// Let D=C1*r-C1r
//
//
// log2l(x) is approximated as
// (l+T_high[f]+C1r) + (D+r*(c1+c2*r+c3*r^2...+c8*r^7)+(T_low[f]+C_1*E))
//
// Special values
//==============================================================
// log2l(0)=-inf, raises Divide by Zero
// log2l(+inf)=inf
// log2l(x)=NaN, raises Invalid if x<0
//
// Registers used
//==============================================================
// f6-f15, f32-f36
// r2-r3, r23-r23
// p6,p7,p8,p12
//
GR_SAVE_B0 = r33
GR_SAVE_PFS = r34
GR_SAVE_GP = r35 // This reg. can safely be used
GR_SAVE_SP = r36
GR_Parameter_X = r37
GR_Parameter_Y = r38
GR_Parameter_RESULT = r39
GR_Parameter_TAG = r40
FR_X = f10
FR_Y = f1
FR_RESULT = f8
// Data tables
//==============================================================
RODATA
.align 16
LOCAL_OBJECT_START(poly_coeffs)
data8 0xb8aa3b295c17f0bc, 0x00003fff // C_1
data8 0x3fca61762a7aded9, 0xbfc71547652b82fe // C_7, C_8
data8 0x3fd2776c50ef9bfe, 0xbfcec709dc3a03fd // C_5, C_6
data8 0x3fdec709dc3a03fd, 0xbfd71547652b82fe // C_3, C_4
//data8 0xd871319ff0342580, 0x0000bfbd // C_1l (low part of C1)
data8 0x82f0025f2dc582ee, 0x0000bfbe // C_1l (low part of C1)
data8 0xb8aa3b295c17f0bc, 0x0000bffe // C_2
LOCAL_OBJECT_END(poly_coeffs)
LOCAL_OBJECT_START(T_table)
data4 0x3b38d875, 0x3c0ae7f4, 0x3c67f738, 0x3ca2b253
data4 0x3ccbb91d, 0x3cfac91e, 0x3d1504a5, 0x3d29c4a0
data4 0x3d419264, 0x3d567aa6, 0x3d6e76ca, 0x3d81c3f7
data4 0x3d8c5630, 0x3d9876e9, 0x3da31e0a, 0x3dadcf09
data4 0x3db889f9, 0x3dc34eec, 0x3dce1df5, 0x3dd8f726
data4 0x3de3da94, 0x3deec851, 0x3df82ea4, 0x3e0197dd
data4 0x3e071dad, 0x3e0ca8ca, 0x3e116d6e, 0x3e170281
data4 0x3e1bcfbc, 0x3e216ee9, 0x3e2644dc, 0x3e2b1ee1
data4 0x3e30cd12, 0x3e35affd, 0x3e3a970f, 0x3e3f824f
data4 0x3e4544c0, 0x3e4a3926, 0x3e4f31d1, 0x3e542ec7
data4 0x3e593012, 0x3e5e35b7, 0x3e633fbf, 0x3e677625
data4 0x3e6c884b, 0x3e719eea, 0x3e76ba0a, 0x3e7bd9b2
data4 0x3e80111d, 0x3e82a523, 0x3e84ccec, 0x3e876533
data4 0x3e89ffd1, 0x3e8c2d22, 0x3e8e5c18, 0x3e90fd0a
data4 0x3e932fa9, 0x3e95d506, 0x3e980b5a, 0x3e9a4361
data4 0x3e9c7d1f, 0x3e9f2b16, 0x3ea168a0, 0x3ea3a7ea
data4 0x3ea5e8f5, 0x3ea82bc4, 0x3eaa705b, 0x3eacb6bb
data4 0x3eaefee7, 0x3eb148e3, 0x3eb394b1, 0x3eb5e255
data4 0x3eb831d0, 0x3eba8327, 0x3ebcd65c, 0x3ebeb3e0
data4 0x3ec10a7a, 0x3ec362f9, 0x3ec5bd63, 0x3ec7a0b3
data4 0x3ec9fe96, 0x3ecc5e6c, 0x3ece4619, 0x3ed0a978
data4 0x3ed293fe, 0x3ed4faf1, 0x3ed6e859, 0x3ed952eb
data4 0x3edb433c, 0x3eddb178, 0x3edfa4bc, 0x3ee19953
data4 0x3ee40cee, 0x3ee60484, 0x3ee7fd73, 0x3ee9f7bb
data4 0x3eec7280, 0x3eee6fda, 0x3ef06e94, 0x3ef26eb1
data4 0x3ef47031, 0x3ef67317, 0x3ef8f8b2, 0x3efafec5
data4 0x3efd0644, 0x3eff0f32, 0x3f008cc8, 0x3f0192b0
data4 0x3f029952, 0x3f03a0b0, 0x3f0466b2, 0x3f056f5a
data4 0x3f0678c0, 0x3f0782e6, 0x3f088dcc, 0x3f099973
data4 0x3f0aa5dd, 0x3f0b6fac, 0x3f0c7d6d, 0x3f0d8bf4
data4 0x3f0e575b, 0x3f0f673e, 0x3f1077e9, 0x3f1144ef
data4 0x3f1256fc, 0x3f1369d6, 0x3f143880, 0x3f154cc1
data4 0x3f161c7a, 0x3f173227, 0x3f1802f2, 0x3f191a0f
data4 0x3f19ebee, 0x3f1b047e, 0x3f1bd775, 0x3f1cf17b
data4 0x3f1dc58e, 0x3f1ee10f, 0x3f1fb63f, 0x3f208bea
data4 0x3f21a98f, 0x3f22805c, 0x3f2357a7, 0x3f247778
data4 0x3f254fe9, 0x3f2628d9, 0x3f270249, 0x3f2824fb
data4 0x3f28ff97, 0x3f29dab4, 0x3f2ab654, 0x3f2b9277
data4 0x3f2cb8c8, 0x3f2d961e, 0x3f2e73fa, 0x3f2f525b
data4 0x3f303143, 0x3f3110b1, 0x3f31f0a7, 0x3f32d125
data4 0x3f33b22b, 0x3f3493bc, 0x3f3575d6, 0x3f36587b
data4 0x3f373bab, 0x3f381f68, 0x3f3903b1, 0x3f39e888
data4 0x3f3acdec, 0x3f3bb3e0, 0x3f3c9a63, 0x3f3d8177
data4 0x3f3e1bd4, 0x3f3f03d9, 0x3f3fec71, 0x3f40d59b
data4 0x3f41bf59, 0x3f42a9ab, 0x3f434635, 0x3f443180
data4 0x3f451d61, 0x3f4609d9, 0x3f46a7d3, 0x3f479549
data4 0x3f488357, 0x3f492261, 0x3f4a1171, 0x3f4b011c
data4 0x3f4ba139, 0x3f4c91e8, 0x3f4d8334, 0x3f4e246a
data4 0x3f4f16be, 0x3f5009b1, 0x3f50ac02, 0x3f51a001
data4 0x3f524305, 0x3f533812, 0x3f53dbca, 0x3f54d1e7
data4 0x3f55c8a8, 0x3f566d85, 0x3f57655b, 0x3f580af0
data4 0x3f58b0d0, 0x3f59aa2c, 0x3f5a50c7, 0x3f5b4b3c
data4 0x3f5bf294, 0x3f5cee26, 0x3f5d963c, 0x3f5e92ed
data4 0x3f5f3bc3, 0x3f5fe4e7, 0x3f60e32d, 0x3f618d13
data4 0x3f623748, 0x3f63372a, 0x3f63e223, 0x3f648d6b
data4 0x3f658eee, 0x3f663afe, 0x3f66e75e, 0x3f67ea86
data4 0x3f6897b0, 0x3f69452c, 0x3f69f2f9, 0x3f6af847
data4 0x3f6ba6e2, 0x3f6c55d0, 0x3f6d0510, 0x3f6e0c8d
data4 0x3f6ebc9f, 0x3f6f6d04, 0x3f701dbe, 0x3f70cecd
data4 0x3f718030, 0x3f728ae6, 0x3f733d20, 0x3f73efaf
data4 0x3f74a296, 0x3f7555d3, 0x3f760967, 0x3f76bd53
data4 0x3f777197, 0x3f7880a1, 0x3f7935c2, 0x3f79eb3c
data4 0x3f7aa10f, 0x3f7b573b, 0x3f7c0dc2, 0x3f7cc4a3
data4 0x3f7d7bdf, 0x3f7e3376, 0x3f7eeb68, 0x00000000
LOCAL_OBJECT_END(T_table)
LOCAL_OBJECT_START(T_low)
data8 0x3dc0b97f689876ef, 0x3dfd5d906028ac01
data8 0x3df8b9cbb8d7240b, 0x3de0c941a2f220cd
data8 0x3e09c6aecba15936, 0x3dfa6d528241827c
data8 0x3dd0bad25714903c, 0x3e2776b01dc036a2
data8 0x3e2b914bc77f158b, 0x3e1c0fafd29dc74a
data8 0x3e28dadc119cd3de, 0x3e3bca869da085be
data8 0x3e19d1e700f2200a, 0x3e3e13530cc37504
data8 0x3e3936464d9c41ee, 0x3e3c3fa21c9499d0
data8 0x3e3259e079b6c6e8, 0x3e2a364069c4f7f3
data8 0x3e1274c84f6c6364, 0x3e3796170159f454
data8 0x3e26e1e389f4364e, 0x3e28cedda8c7f658
data8 0x3e376c2028433268, 0x3e4aee6d650c82e1
data8 0x3e33e65094fbeeb4, 0x3e4c7d125aa92c5d
data8 0x3e1559a4b69691d8, 0x3e18efabeb7d7221
data8 0x3e4c2b255abaa8de, 0x3e37436952a4538b
data8 0x3e4e6807f4ba00b8, 0x3e33ff5964190e42
data8 0x3e4f5d798cead43c, 0x3e4f3676443bf453
data8 0x3e4660f8d5bc1bf5, 0x3e2d4f9f3ab04f36
data8 0x3e357f7a64ccd537, 0x3e394caf7c9b05af
data8 0x3e225c7d17ab29b0, 0x3e4eb202f6d55a12
data8 0x3e32faa68b19bcd2, 0x3e45ee1c9b566a8b
data8 0x3e4770a67de054ff, 0x3e42234fb9de6d6b
data8 0x3e4ad139825c6e19, 0x3e47f3d334814a93
data8 0x3e2af1ec402867b6, 0x3e2bfbda0c956e3d
data8 0x3e4287b831e77ff2, 0x3e54bf0eb77f7b89
data8 0x3e5b9259a1029607, 0x3e4a764b015e699d
data8 0x3e4d0b68ea883ab5, 0x3e33e829ecdadf46
data8 0x3e52f27efef3031b, 0x3e3073979e4af89e
data8 0x3e3b980f2cd6c253, 0x3e2a5f0f5f7f66a9
data8 0x3e37788738117b02, 0x3e58aa29a784d52f
data8 0x3e4f5504c4ff2466, 0x3e002d40340fa647
data8 0x3e5f53b64592f4c3, 0x3e543f222c526802
data8 0x3e5680e547a872fa, 0x3e5e234bd1154450
data8 0x3e3000edc18b6d21, 0x3e1c3c1f000942a8
data8 0x3e51eeae0e442d6e, 0x3e4fb265376623f2
data8 0x3e57b5941782d830, 0x3e3a4b83f24ae52c
data8 0x3e5a5fb4f23978de, 0x3e51ed071563fb02
data8 0x3e49e2071f51a7a8, 0x3e5e43ae5b924234
data8 0x3dfa2be9aedf374a, 0x3e56dea3dbba67d5
data8 0x3e3375fe732b3c3e, 0x3e5a0c6f91f2e77e
data8 0x3e55e1bf1c969e41, 0x3e30a5a5166b8eee
data8 0x3e53e6e9a539d46c, 0x3e542981b3d7b0e6
data8 0x3e595fd8ff36ad64, 0x3e5edeb9e65cbbb4
data8 0x3e46aeab4d3434c1, 0x3e4ea3ff0564b010
data8 0x3e59b00be2e3c25a, 0x3e5b887cd7b0821f
data8 0x3e5f666668547b4d, 0x3e4d0733a805273f
data8 0x3e26a2ff21c4aec5, 0x3e4c336f7a3a78f3
data8 0x3e11ad12b628e2d0, 0x3e56d43ff3f0ea64
data8 0x3e238809433cccd2, 0x3e40d9734147d40f
data8 0x3e54245fe3e24e06, 0x3e251441fce4d48c
data8 0x3e517114efc5d1f9, 0x3e5e9a99154b0d82
data8 0x3e442a71337970f8, 0x3e420c7c69211fdf
data8 0x3e537e7d5d43c6a7, 0x3e4376c66ad9ad8b
data8 0x3e49054d678a4f1c, 0x3e5d23cb3bc19f18
data8 0x3e6ebcd449dcab2b, 0x3e67f5fc2849c88a
data8 0x3e63f388395d3e84, 0x3e65c1103b0ad7e9
data8 0x3e6d5d1dd031f353, 0x3e5a159dae75c4d0
data8 0x3e4d5e22aa75f71d, 0x3e5e379ee62e1e35
data8 0x3e4df082213cb2dc, 0x3e6bfa06c156f521
data8 0x3e66e2d3c19b517b, 0x3e426b7098590071
data8 0x3e541bd027e9854e, 0x3e5061dd924b0ac0
data8 0x3e6dae01df373a03, 0x3e3baec80b207b0b
data8 0x3e6b6a6fe06bebac, 0x3e61aebcfc3ab5d1
data8 0x3e584ee3e7c79d83, 0x3e6b3c1b2840cb40
data8 0x3e6c842085d6befd, 0x3e6ac04fd7b141e0
data8 0x3e6c48250474141d, 0x3e2d889b86125f69
data8 0x3e6e74740225dad0, 0x3e45940d31d50a7c
data8 0x3e695476a6c39ddc, 0x3e6d9a6d857a060a
data8 0x3e4a3e9bb4b69337, 0x3e484f3ce4707ed6
data8 0x3e39dd125d25fc27, 0x3e563fb400de8732
data8 0x3e5fdd6d0ee28b48, 0x3e669d15b869bb07
data8 0x3e40687cfad7964d, 0x3e69317990d43957
data8 0x3e633d57e24ae1bd, 0x3e618bf03710eabb
data8 0x3e4b4df6fccd1160, 0x3e3fb26ddaa1ec45
data8 0x3e3810a5e1817fd4, 0x3e6857373642fa5c
data8 0x3e673db6193add31, 0x3e63200c8acbc9c3
data8 0x3e3d2dee448ebb62, 0x3e6a19723a80db6a
data8 0x3e5e7cdab8fd3e6a, 0x3e671855cd660672
data8 0x3e473c3c78a85ecd, 0x3e5f5e23056a7cf2
data8 0x3e52538519527367, 0x3e4b573bcf2580e9
data8 0x3e6d6f856fe90c60, 0x3e2d932a8487642e
data8 0x3e5236fc78b6174c, 0x3e50cb91d406db50
data8 0x3e650e8bd562aa57, 0x3e424ee3d9a82f2e
data8 0x3e59363960e1e3d9, 0x3e379604c1150a3e
data8 0x3e6d914f6c2ac258, 0x3e62967a451a7b48
data8 0x3e684b5f01139cb2, 0x3e448bbfbf6d292c
data8 0x3e6227e7fb487e73, 0x3e6d39d50290f458
data8 0x3e58368342b4b668, 0x3e65dc0c25bd1763
data8 0x3e61b7dc362e22b5, 0x3e671691f094bb80
data8 0x3e5011642d5123f2, 0x3e4c4eb7f11e41be
data8 0x3e5dcee36ca242cf, 0x3e6791cefff688f1
data8 0x3e60e23c8dda4ecd, 0x3e48e6a22fe78cfe
data8 0x3e6d703f244adc86, 0x3e6a281a85a5049d
data8 0x3e570f20e6403d9e, 0x3e2211518a12956f
data8 0x3e6737d1e54d71df, 0x3e66b1881476f5e9
data8 0x3e6e1bbeef085376, 0x3e47cad4944a32be
data8 0x3e527f2c738e7ee9, 0x3e699883a4b9fb29
data8 0x3e5c17d1108740d9, 0x3e5d4a9c79a43389
data8 0x3e49fdc24462ba3b, 0x3e24dbb3a60cceb2
data8 0x3e5c5bf618780748, 0x3e5c38005b0c778c
data8 0x3e6be168dd6dd3fe, 0x3e633ab9370693b0
data8 0x3dd290556b0ae339, 0x3e607c317927096a
data8 0x3e59651353b3d90e, 0x3e4d8751e5e0ae0d
data8 0x3e46c81023272a85, 0x3e6b23c988f391b2
data8 0x3e608741d215209c, 0x3e60b8ba506d758f
data8 0x3e62ddbe74803297, 0x3e5dbb8b5087587d
data8 0x3e642aa529048131, 0x3e3dcbda6835dcf4
data8 0x3e6db503ce854d2a, 0x3e6dd00b49bc6849
data8 0x3e4db2f11243bc84, 0x3e3b9848efc2ea97
data8 0x3e58f18e17c82609, 0x3e6ed8645e16c312
data8 0x3e4065bdb60a5dd4, 0x3e490453c6e6c30a
data8 0x3e62373994aa31ba, 0x3e56305f0e6b2a95
data8 0x3e68c1601a6614ee, 0x3e614e204f19d93f
data8 0x3e6e5037ca773299, 0x3e693f98892561a6
data8 0x3e639de4f4bf700d, 0x3e416c071e93fd97
data8 0x3e65466991b415ef, 0x3e6896a324afac9d
data8 0x3e44f64802e2f11c, 0x3e64d7d747e2191a
data8 0x3e6174b7581de84c, 0x3e44c7b946e1d43c
data8 0x3e6a3bcbe30512ec, 0x3e5d3ed411c95ce4
data8 0x3e3e5b5735cfaf8e, 0x3e6e538ab34efb51
data8 0x3e514e204f19d93f, 0x3e5a88e6550c89a4
data8 0x3e66b97a5d9dfd8b, 0x3e5f46b1e14ebaf3
data8 0x3e357665f6893f5d, 0x3e6bbf633078d1d5
data8 0x3e5e7337a212c417, 0x3e3570fde15fc8cc
data8 0x3e21119402da92b4, 0x3e6566e830d1ff3b
data8 0x3e558883e480e220, 0x3e589ca3a68da411
data8 0x3e44eb66df73d648, 0x3e1a0a629b1b7e68
data8 0x3e54cc207b8c1116, 0x0000000000000000
LOCAL_OBJECT_END(T_low)
.section .text
GLOBAL_IEEE754_ENTRY(log2l)
{ .mfi
alloc r32=ar.pfs,1,4,4,0
// normalize x
// y=frcpa(x)
frcpa.s1 f41,p0=f1,f8
// r26=bias-1
mov r26=0xfffe
}
{.mfi
// r23=bias+16
mov r23=0xffff+16
fma.s1 f7=f8,f1,f0
// r2 = pointer to C_1...C_6 followed by T_table
addl r2 = @ltoff(poly_coeffs), gp;;
}
{.mfi
// get significand
getf.sig r25=f8
// f8 denormal ?
fclass.m p8,p10=f8,0x9
// r24=bias-8
mov r24=0xffff-8;;
}
{.mfi
setf.exp f36=r26
nop.f 0
// r27=bias
mov r27=0xffff;;
}
{.mmf
getf.exp r29=f8
// load start address for C_1...C_7 followed by T_table
ld8 r2=[r2]
// will continue only for positive normal/unnormal numbers
fclass.m.unc p0,p12 = f8, 0x19;;
}
.pred.rel "mutex",p8,p10
{.mfi
// denormal input, repeat get significand (after normalization)
(p8) getf.sig r25=f7
// x=1 ?
fcmp.eq.s0 p6,p0=f8,f1
// get T_index
(p10) shr.u r28=r25,63-8
}
{.mfi
// f32=2^16
setf.exp f32=r23
nop.f 0
mov r26=0x804;;
}
{.mfi
// denormal input, repeat get exponent (after normalization)
(p8) getf.exp r29=f7
// f33=0
mov f33=f0
// r26=0x80400...0 (threshold for using polynomial approximation)
shl r26=r26,64-12;;
}
{.mfb
add r3=16,r2
// r=x*y-1
fms.s1 f6=f41,f8,f1
(p12) br.cond.spnt SPECIAL_log2l
}
{.mfi
// load C_1
ldfe f14=[r2],48
// RN(x*y)
fma.s1 f43=f41,f8,f0
mov r23=0xff;;
}
{.mmi
// load C_7, C_8
ldfpd f10,f11=[r3],16
// load C_3,C_4
ldfpd f15,f42=[r2],16
(p8) shr.u r28=r25,63-8;;
}
{.mfi
// load C_5, C_6
ldfpd f12,f13=[r3]
// pseudo-zero ?
fcmp.eq.s0 p7,p0=f7,f0
// if first 9 bits after leading 1 are all zero, then p8=1
cmp.ltu p8,p12=r25,r26
}
{.mfi
// load C1l
ldfe f34=[r2],16
fmerge.se f7=f1,f7
// get T_index
and r28=r28,r23;;
}
{.mfi
// r29=exponent-bias
sub r29=r29,r27
// if first 8 bits after leading bit are 0, use polynomial approx. only
(p8) fms.s1 f6=f7,f1,f1
// start address of T_low
add r3=1024+16,r2
}
{.mfi
// load C_2
ldfe f35=[r2],16
// x=1, return 0
(p6) fma.s0 f8=f0,f0,f0
// first 8 bits after leading 1 are all ones ?
cmp.eq p10,p0=r23,r28;;
}
{.mfb
// if first 8 bits after leading 1 are all ones, use polynomial approx. only
// add 1 to the exponent additive term, and estimate log2(1-r)
(p10) add r29=1,r29
nop.f 0
(p7) br.cond.spnt LOG2_PSEUDO_ZERO
}
{.mfi
// get T_low address
shladd r3=r28,3,r3
// if first 8 bits after leading 1 are all ones, use polynomial approx. only
(p10) fms.s1 f6=f7,f36,f1
// p10 --> p8=1, p12=0
(p10) cmp.eq p8,p12=r0,r0;;
}
{.mfi
// get T_high address
shladd r2=r28,2,r2
// L(x*y)=x*y-RN(x*y)
fms.s1 f41=f41,f8,f43
nop.i 0
}
{.mfi
// p13=p12
(p12) cmp.eq.unc p13,p0=r0,r0
// RtH=RN(x*y)-1 (will eliminate rounding errors in r)
fms.s1 f43=f43,f1,f1
nop.i 0;;
}
.pred.rel "mutex",p8,p12
{.mfb
// load T_high (unless first 9 bits after leading 1 are 0)
(p12) ldfs f7=[r2]
// set T_high=0 (if first 9 bits after leading 1 are 0)
(p8) fma.s1 f7=f0,f0,f0
// x=1, return
(p6) br.ret.spnt b0
}
.pred.rel "mutex",p8,p12
{.mfi
// p12: load T_low
(p12) ldfd f36=[r3]
// p8: set T_low=0
(p8) fma.s1 f36=f0,f0,f0
(p8) cmp.eq p8,p12=r29,r0;; //nop.i 0;;
}
.pred.rel "mutex",p8,p12
{.mfi
// f8=expon - bias
setf.sig f8=r29
// general case: 2^{16}+C1*r
(p12) fma.s1 f33=f6,f14,f32
nop.i 0
}
{.mfi
// r26=1
mov r26=1
// p8 (mantissa is close to 1, or close to 2): 2^{-8}+C1*r
(p8) fma.s1 f32=f6,f14,f33
nop.i 0;;
}
{.mfi
nop.m 0
// P78=C_7+C_8*r
fma.s1 f10=f11,f6,f10
// r26=2^{63}
shl r26=r26,63
}
{.mfi
nop.m 0
// P34=C_3+r*C_4
fma.s1 f15=f42,f6,f15
nop.i 0;;
}
{.mfi
nop.m 0
// r2=r*r
fma.s1 f11=f6,f6,f0
nop.i 0
}
{.mfi
nop.m 0
// P56=C_5+C_6*r
fma.s1 f13=f13,f6,f12
nop.i 0;;
}
{.mfi
nop.m 0
// Rth-r
(p13) fms.s1 f43=f43,f1,f6
nop.i 0
}
{.mfi
// significand(x)=1 ?
cmp.eq p0,p6=r25,r26
// P12=C1l+C_2*r
fma.s1 f34=f35,f6,f34
nop.i 0;;
}
.pred.rel "mutex",p8,p12
{.mfi
nop.m 0
// p12: C1r=(2^{16}+C1*r)-2^{16}
(p12) fms.s1 f32=f33,f1,f32
nop.i 0
}
{.mfi
nop.m 0
// p8: C1r=C1*r (double extended)
(p8) fms.s1 f32=f32,f1,f33
nop.i 0;;
}
{.mfi
nop.m 0
// L(x*y)*C_1+T_low
(p13) fma.s1 f36=f41,f14,f36
nop.i 0
}
{.mfi
nop.m 0
// P58=P56+r2*P78
fma.s1 f13=f11,f10,f13
nop.i 0;;
}
{.mfi
nop.m 0
// P14=P12+r2*P34
fma.s1 f15=f15,f11,f34
nop.i 0
}
{.mfi
nop.m 0
// r4=r2*r2
fma.s1 f11=f11,f11,f0
nop.i 0;;
}
{.mfi
nop.m 0
// normalize additive term (l=exponent of x)
fcvt.xf f8=f8
nop.i 0;;
}
{.mfi
nop.m 0
// D=C1*r-C1r
(p6) fms.s1 f12=f14,f6,f32
nop.i 0;;
}
{.mfi
nop.m 0
// T_low'=(Rth-r)*C1+(L(x*y)*C1+T_low)
(p13) fma.s1 f36=f43,f14,f36
nop.i 0;;
}
{.mfi
nop.m 0
// P18=P14+r4*P58
(p6) fma.s1 f13=f11,f13,f15
nop.i 0;;
}
{.mfi
nop.m 0
// add T_high+l
(p6) fma.s1 f8=f8,f1,f7
nop.i 0;;
}
{.mfi
nop.m 0
// D+T_low
(p6) fma.s1 f12=f12,f1,f36
nop.i 0;;
}
{.mfi
nop.m 0
// (T_high+l)+C1r
(p6) fma.s1 f8=f8,f1,f32
nop.i 0
}
{.mfi
nop.m 0
// (D+T_low)+r*P18
(p6) fma.s1 f13=f13,f6,f12
nop.i 0;;
}
//{.mfb
//nop.m 0
//mov f8=f36
//fma.s0 f8=f13,f6,f0
//br.ret.sptk b0;;
//}
{.mfb
nop.m 0
// result=((T_high+l)+C1r)+((D+T_low)+r*P18)
(p6) fma.s0 f8=f13,f1,f8
// return
br.ret.sptk b0;;
}
SPECIAL_log2l:
{.mfi
nop.m 0
mov FR_X=f8
nop.i 0
}
{.mfi
nop.m 0
// x=+Infinity ?
fclass.m p7,p0=f8,0x21
nop.i 0;;
}
{.mfi
nop.m 0
// x=+/-Zero ?
fclass.m p8,p0=f7,0x7
nop.i 0;;
}
{.mfi
nop.m 0
// x=-Infinity, -normal, -denormal ?
fclass.m p6,p0=f8,0x3a
nop.i 0;;
}
{.mfb
nop.m 0
// log2l(+Infinity)=+Infinity
nop.f 0
(p7) br.ret.spnt b0;;
}
{.mfi
(p8) mov GR_Parameter_TAG = 168
// log2l(+/-0)=-infinity, raises Divide by Zero
// set f8=-0
(p8) fmerge.ns f8=f0,f8
nop.i 0;;
}
{.mfb
nop.m 0
(p8) frcpa.s0 f8,p0=f1,f8
(p8) br.cond.sptk __libm_error_region;;
}
{.mfb
(p6) mov GR_Parameter_TAG = 169
// x<0: return NaN, raise Invalid
(p6) frcpa.s0 f8,p0=f0,f0
(p6) br.cond.sptk __libm_error_region;;
}
{.mfb
nop.m 0
// Remaining cases: NaNs
fma.s0 f8=f8,f1,f0
br.ret.sptk b0;;
}
LOG2_PSEUDO_ZERO:
{.mfi
nop.m 0
mov FR_X=f8
nop.i 0
}
{.mfi
mov GR_Parameter_TAG = 168
// log2l(+/-0)=-infinity, raises Divide by Zero
// set f8=-0
fmerge.ns f8=f0,f8
nop.i 0;;
}
{.mfb
nop.m 0
frcpa.s0 f8,p0=f1,f8
br.cond.sptk __libm_error_region;;
}
GLOBAL_IEEE754_END(log2l)
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
stfe [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mib
stfe [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
nop.b 0
}
{ .mib
stfe [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
nop.m 0
nop.m 0
add GR_Parameter_RESULT = 48,sp
};;
{ .mmi
ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
|