1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
|
.file "expf.s"
// Copyright (c) 2000 - 2005, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
// History
//*********************************************************************
// 02/02/00 Original version
// 04/04/00 Unwind support added
// 08/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
// 08/21/00 Improvements to save 2 cycles on main path, and shorten x=0 case
// 12/07/00 Widen main path, shorten x=inf, nan paths
// 03/15/01 Fix monotonicity problem around x=0 for round to +inf
// 02/05/02 Corrected uninitialize predicate in POSSIBLE_UNDERFLOW path
// 05/20/02 Cleaned up namespace and sf0 syntax
// 07/26/02 Algorithm changed, accuracy improved
// 09/26/02 support of higher precision inputs added, underflow threshold
// corrected
// 11/15/02 Improved performance on Itanium 2, added possible over/under paths
// 05/30/03 Set inexact flag on unmasked overflow/underflow
// 03/31/05 Reformatted delimiters between data tables
//
//
// API
//*********************************************************************
// float expf(float)
//
// Overview of operation
//*********************************************************************
// Take the input x. w is "how many log2/128 in x?"
// w = x * 64/log2
// NJ = int(w)
// x = NJ*log2/64 + R
// NJ = 64*n + j
// x = n*log2 + (log2/64)*j + R
//
// So, exp(x) = 2^n * 2^(j/64)* exp(R)
//
// T = 2^n * 2^(j/64)
// Construct 2^n
// Get 2^(j/64) table
// actually all the entries of 2^(j/64) table are stored in DP and
// with exponent bits set to 0 -> multiplication on 2^n can be
// performed by doing logical "or" operation with bits presenting 2^n
// exp(R) = 1 + (exp(R) - 1)
// P = exp(R) - 1 approximated by Taylor series of 3rd degree
// P = A3*R^3 + A2*R^2 + R, A3 = 1/6, A2 = 1/2
//
// The final result is reconstructed as follows
// exp(x) = T + T*P
// Special values
//*********************************************************************
// expf(+0) = 1.0
// expf(-0) = 1.0
// expf(+qnan) = +qnan
// expf(-qnan) = -qnan
// expf(+snan) = +qnan
// expf(-snan) = -qnan
// expf(-inf) = +0
// expf(+inf) = +inf
// Overflow and Underflow
//*********************************************************************
// expf(x) = largest single normal when
// x = 88.72283 = 0x42b17217
// expf(x) = smallest single normal when
// x = -87.33654 = 0xc2aeac4f
// expf(x) = largest round-to-nearest single zero when
// x = -103.97208 = 0xc2cff1b5
// Registers used
//*********************************************************************
// Floating Point registers used:
// f8, input
// f6,f7, f9 -> f15, f32 -> f40
// General registers used:
// r3, r23 -> r38
// Predicate registers used:
// p10 -> p15
// Assembly macros
//*********************************************************************
// integer registers used
// scratch
rNJ = r3
rTmp = r23
rJ = r23
rN = r24
rTblAddr = r25
rA3 = r26
rExpHalf = r27
rLn2Div64 = r28
r17ones_m1 = r29
rGt_ln = r29
rRightShifter = r30
r64DivLn2 = r31
// stacked
GR_SAVE_PFS = r32
GR_SAVE_B0 = r33
GR_SAVE_GP = r34
GR_Parameter_X = r35
GR_Parameter_Y = r36
GR_Parameter_RESULT = r37
GR_Parameter_TAG = r38
// floating point registers used
FR_X = f10
FR_Y = f1
FR_RESULT = f8
// scratch
fRightShifter = f6
f64DivLn2 = f7
fNormX = f9
fNint = f10
fN = f11
fR = f12
fLn2Div64 = f13
fA2 = f14
fA3 = f15
// stacked
fP = f32
fT = f33
fMIN_SGL_OFLOW_ARG = f34
fMAX_SGL_ZERO_ARG = f35
fMAX_SGL_NORM_ARG = f36
fMIN_SGL_NORM_ARG = f37
fRSqr = f38
fTmp = f39
fGt_pln = f39
fWre_urm_f8 = f40
fFtz_urm_f8 = f40
RODATA
.align 16
LOCAL_OBJECT_START(_expf_table)
data4 0x42b17218 // Smallest sgl arg to overflow sgl result, +88.7228
data4 0xc2cff1b5 // Largest sgl for rnd-to-nearest 0 result, -103.9720
data4 0x42b17217 // Largest sgl arg to give normal sgl result, +88.7228
data4 0xc2aeac4f // Smallest sgl arg to give normal sgl result, -87.3365
//
// 2^(j/64) table, j goes from 0 to 63
data8 0x0000000000000000 // 2^(0/64)
data8 0x00002C9A3E778061 // 2^(1/64)
data8 0x000059B0D3158574 // 2^(2/64)
data8 0x0000874518759BC8 // 2^(3/64)
data8 0x0000B5586CF9890F // 2^(4/64)
data8 0x0000E3EC32D3D1A2 // 2^(5/64)
data8 0x00011301D0125B51 // 2^(6/64)
data8 0x0001429AAEA92DE0 // 2^(7/64)
data8 0x000172B83C7D517B // 2^(8/64)
data8 0x0001A35BEB6FCB75 // 2^(9/64)
data8 0x0001D4873168B9AA // 2^(10/64)
data8 0x0002063B88628CD6 // 2^(11/64)
data8 0x0002387A6E756238 // 2^(12/64)
data8 0x00026B4565E27CDD // 2^(13/64)
data8 0x00029E9DF51FDEE1 // 2^(14/64)
data8 0x0002D285A6E4030B // 2^(15/64)
data8 0x000306FE0A31B715 // 2^(16/64)
data8 0x00033C08B26416FF // 2^(17/64)
data8 0x000371A7373AA9CB // 2^(18/64)
data8 0x0003A7DB34E59FF7 // 2^(19/64)
data8 0x0003DEA64C123422 // 2^(20/64)
data8 0x0004160A21F72E2A // 2^(21/64)
data8 0x00044E086061892D // 2^(22/64)
data8 0x000486A2B5C13CD0 // 2^(23/64)
data8 0x0004BFDAD5362A27 // 2^(24/64)
data8 0x0004F9B2769D2CA7 // 2^(25/64)
data8 0x0005342B569D4F82 // 2^(26/64)
data8 0x00056F4736B527DA // 2^(27/64)
data8 0x0005AB07DD485429 // 2^(28/64)
data8 0x0005E76F15AD2148 // 2^(29/64)
data8 0x0006247EB03A5585 // 2^(30/64)
data8 0x0006623882552225 // 2^(31/64)
data8 0x0006A09E667F3BCD // 2^(32/64)
data8 0x0006DFB23C651A2F // 2^(33/64)
data8 0x00071F75E8EC5F74 // 2^(34/64)
data8 0x00075FEB564267C9 // 2^(35/64)
data8 0x0007A11473EB0187 // 2^(36/64)
data8 0x0007E2F336CF4E62 // 2^(37/64)
data8 0x00082589994CCE13 // 2^(38/64)
data8 0x000868D99B4492ED // 2^(39/64)
data8 0x0008ACE5422AA0DB // 2^(40/64)
data8 0x0008F1AE99157736 // 2^(41/64)
data8 0x00093737B0CDC5E5 // 2^(42/64)
data8 0x00097D829FDE4E50 // 2^(43/64)
data8 0x0009C49182A3F090 // 2^(44/64)
data8 0x000A0C667B5DE565 // 2^(45/64)
data8 0x000A5503B23E255D // 2^(46/64)
data8 0x000A9E6B5579FDBF // 2^(47/64)
data8 0x000AE89F995AD3AD // 2^(48/64)
data8 0x000B33A2B84F15FB // 2^(49/64)
data8 0x000B7F76F2FB5E47 // 2^(50/64)
data8 0x000BCC1E904BC1D2 // 2^(51/64)
data8 0x000C199BDD85529C // 2^(52/64)
data8 0x000C67F12E57D14B // 2^(53/64)
data8 0x000CB720DCEF9069 // 2^(54/64)
data8 0x000D072D4A07897C // 2^(55/64)
data8 0x000D5818DCFBA487 // 2^(56/64)
data8 0x000DA9E603DB3285 // 2^(57/64)
data8 0x000DFC97337B9B5F // 2^(58/64)
data8 0x000E502EE78B3FF6 // 2^(59/64)
data8 0x000EA4AFA2A490DA // 2^(60/64)
data8 0x000EFA1BEE615A27 // 2^(61/64)
data8 0x000F50765B6E4540 // 2^(62/64)
data8 0x000FA7C1819E90D8 // 2^(63/64)
LOCAL_OBJECT_END(_expf_table)
.section .text
GLOBAL_IEEE754_ENTRY(expf)
{ .mlx
addl rTblAddr = @ltoff(_expf_table),gp
movl r64DivLn2 = 0x40571547652B82FE // 64/ln(2)
}
{ .mlx
addl rA3 = 0x3E2AA, r0 // high bits of 1.0/6.0 rounded to SP
movl rRightShifter = 0x43E8000000000000 // DP Right Shifter
}
;;
{ .mfi
// point to the beginning of the table
ld8 rTblAddr = [rTblAddr]
fclass.m p14, p0 = f8, 0x22 // test for -INF
shl rA3 = rA3, 12 // 0x3E2AA000, approx to 1.0/6.0 in SP
}
{ .mfi
nop.m 0
fnorm.s1 fNormX = f8 // normalized x
addl rExpHalf = 0xFFFE, r0 // exponent of 1/2
}
;;
{ .mfi
setf.d f64DivLn2 = r64DivLn2 // load 64/ln(2) to FP reg
fclass.m p15, p0 = f8, 0x1e1 // test for NaT,NaN,+Inf
nop.i 0
}
{ .mlx
// load Right Shifter to FP reg
setf.d fRightShifter = rRightShifter
movl rLn2Div64 = 0x3F862E42FEFA39EF // DP ln(2)/64 in GR
}
;;
{ .mfi
nop.m 0
fcmp.eq.s1 p13, p0 = f0, f8 // test for x = 0.0
nop.i 0
}
{ .mfb
setf.s fA3 = rA3 // load A3 to FP reg
(p14) fma.s.s0 f8 = f0, f1, f0 // result if x = -inf
(p14) br.ret.spnt b0 // exit here if x = -inf
}
;;
{ .mfi
setf.exp fA2 = rExpHalf // load A2 to FP reg
fcmp.eq.s0 p6, p0 = f8, f0 // Dummy to flag denorm
nop.i 0
}
{ .mfb
setf.d fLn2Div64 = rLn2Div64 // load ln(2)/64 to FP reg
(p15) fma.s.s0 f8 = f8, f1, f0 // result if x = NaT,NaN,+Inf
(p15) br.ret.spnt b0 // exit here if x = NaT,NaN,+Inf
}
;;
{ .mfb
// overflow and underflow_zero threshold
ldfps fMIN_SGL_OFLOW_ARG, fMAX_SGL_ZERO_ARG = [rTblAddr], 8
(p13) fma.s.s0 f8 = f1, f1, f0 // result if x = 0.0
(p13) br.ret.spnt b0 // exit here if x =0.0
}
;;
// max normal and underflow_denorm threshold
{ .mfi
ldfps fMAX_SGL_NORM_ARG, fMIN_SGL_NORM_ARG = [rTblAddr], 8
nop.f 0
nop.i 0
}
;;
{ .mfi
nop.m 0
// x*(64/ln(2)) + Right Shifter
fma.s1 fNint = fNormX, f64DivLn2, fRightShifter
nop.i 0
}
;;
// Divide arguments into the following categories:
// Certain Underflow p11 - -inf < x <= MAX_SGL_ZERO_ARG
// Possible Underflow p13 - MAX_SGL_ZERO_ARG < x < MIN_SGL_NORM_ARG
// Certain Safe - MIN_SGL_NORM_ARG <= x <= MAX_SGL_NORM_ARG
// Possible Overflow p14 - MAX_SGL_NORM_ARG < x < MIN_SGL_OFLOW_ARG
// Certain Overflow p15 - MIN_SGL_OFLOW_ARG <= x < +inf
//
// If the input is really a single arg, then there will never be
// "Possible Overflow" arguments.
//
{ .mfi
nop.m 0
// check for overflow
fcmp.ge.s1 p15, p0 = fNormX, fMIN_SGL_OFLOW_ARG
nop.i 0
}
;;
{ .mfi
nop.m 0
// check for underflow and tiny (+0) result
fcmp.le.s1 p11, p0 = fNormX, fMAX_SGL_ZERO_ARG
nop.i 0
}
{ .mfb
nop.m 0
fms.s1 fN = fNint, f1, fRightShifter // n in FP register
// branch out if overflow
(p15) br.cond.spnt EXP_CERTAIN_OVERFLOW
}
;;
{ .mfb
getf.sig rNJ = fNint // bits of n, j
// check for underflow and deno result
fcmp.lt.s1 p13, p0 = fNormX, fMIN_SGL_NORM_ARG
// branch out if underflow and tiny (+0) result
(p11) br.cond.spnt EXP_CERTAIN_UNDERFLOW
}
;;
{ .mfi
nop.m 0
// check for possible overflow
fcmp.gt.s1 p14, p0 = fNormX, fMAX_SGL_NORM_ARG
extr.u rJ = rNJ, 0, 6 // bits of j
}
{ .mfi
addl rN = 0xFFFF - 63, rNJ // biased and shifted n
fnma.s1 fR = fLn2Div64, fN, fNormX // R = x - N*ln(2)/64
nop.i 0
}
;;
{ .mfi
shladd rJ = rJ, 3, rTblAddr // address in the 2^(j/64) table
nop.f 0
shr rN = rN, 6 // biased n
}
;;
{ .mfi
ld8 rJ = [rJ]
nop.f 0
shl rN = rN, 52 // 2^n bits in DP format
}
;;
{ .mfi
or rN = rN, rJ // bits of 2^n * 2^(j/64) in DP format
nop.f 0
nop.i 0
}
;;
{ .mfi
setf.d fT = rN // 2^n * 2^(j/64)
fma.s1 fP = fA3, fR, fA2 // A3*R + A2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fRSqr = fR, fR, f0 // R^2
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fP = fP, fRSqr, fR // P = (A3*R + A2)*R^2 + R
nop.i 0
}
;;
{ .mbb
nop.m 0
// branch out if possible underflow
(p13) br.cond.spnt EXP_POSSIBLE_UNDERFLOW
// branch out if possible overflow result
(p14) br.cond.spnt EXP_POSSIBLE_OVERFLOW
}
;;
{ .mfb
nop.m 0
// final result in the absence of over- and underflow
fma.s.s0 f8 = fP, fT, fT
// exit here in the absence of over- and underflow
br.ret.sptk b0
}
;;
EXP_POSSIBLE_OVERFLOW:
// Here if fMAX_SGL_NORM_ARG < x < fMIN_SGL_OFLOW_ARG
// This cannot happen if input is a single, only if input higher precision.
// Overflow is a possibility, not a certainty.
// Recompute result using status field 2 with user's rounding mode,
// and wre set. If result is larger than largest single, then we have
// overflow
{ .mfi
mov rGt_ln = 0x1007f // Exponent for largest single + 1 ulp
fsetc.s2 0x7F,0x42 // Get user's round mode, set wre
nop.i 0
}
;;
{ .mfi
setf.exp fGt_pln = rGt_ln // Create largest single + 1 ulp
fma.s.s2 fWre_urm_f8 = fP, fT, fT // Result with wre set
nop.i 0
}
;;
{ .mfi
nop.m 0
fsetc.s2 0x7F,0x40 // Turn off wre in sf2
nop.i 0
}
;;
{ .mfi
nop.m 0
fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow
nop.i 0
}
;;
{ .mfb
nop.m 0
nop.f 0
(p6) br.cond.spnt EXP_CERTAIN_OVERFLOW // Branch if overflow
}
;;
{ .mfb
nop.m 0
fma.s.s0 f8 = fP, fT, fT
br.ret.sptk b0 // Exit if really no overflow
}
;;
// here if overflow
EXP_CERTAIN_OVERFLOW:
{ .mmi
addl r17ones_m1 = 0x1FFFE, r0
;;
setf.exp fTmp = r17ones_m1
nop.i 0
}
;;
{ .mfi
alloc r32=ar.pfs,0,3,4,0
fmerge.s FR_X = f8,f8
nop.i 0
}
{ .mfb
mov GR_Parameter_TAG = 16
fma.s.s0 FR_RESULT = fTmp, fTmp, fTmp // Set I,O and +INF result
br.cond.sptk __libm_error_region
}
;;
EXP_POSSIBLE_UNDERFLOW:
// Here if fMAX_SGL_ZERO_ARG < x < fMIN_SGL_NORM_ARG
// Underflow is a possibility, not a certainty
// We define an underflow when the answer with
// ftz set
// is zero (tiny numbers become zero)
// Notice (from below) that if we have an unlimited exponent range,
// then there is an extra machine number E between the largest denormal and
// the smallest normal.
// So if with unbounded exponent we round to E or below, then we are
// tiny and underflow has occurred.
// But notice that you can be in a situation where we are tiny, namely
// rounded to E, but when the exponent is bounded we round to smallest
// normal. So the answer can be the smallest normal with underflow.
// E
// -----+--------------------+--------------------+-----
// | | |
// 1.1...10 2^-3fff 1.1...11 2^-3fff 1.0...00 2^-3ffe
// 0.1...11 2^-3ffe (biased, 1)
// largest dn smallest normal
{ .mfi
nop.m 0
fsetc.s2 0x7F,0x41 // Get user's round mode, set ftz
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s.s2 fFtz_urm_f8 = fP, fT, fT // Result with ftz set
nop.i 0
}
;;
{ .mfi
nop.m 0
fsetc.s2 0x7F,0x40 // Turn off ftz in sf2
nop.i 0
}
;;
{ .mfi
nop.m 0
fcmp.eq.s1 p6, p7 = fFtz_urm_f8, f0 // Test for underflow
nop.i 0
}
{ .mfi
nop.m 0
fma.s.s0 f8 = fP, fT, fT // Compute result, set I, maybe U
nop.i 0
}
;;
{ .mbb
nop.m 0
(p6) br.cond.spnt EXP_UNDERFLOW_COMMON // Branch if really underflow
(p7) br.ret.sptk b0 // Exit if really no underflow
}
;;
EXP_CERTAIN_UNDERFLOW:
// Here if x < fMAX_SGL_ZERO_ARG
// Result will be zero (or smallest denorm if round to +inf) with I, U set
{ .mmi
mov rTmp = 1
;;
setf.exp fTmp = rTmp // Form small normal
nop.i 0
}
;;
{ .mfi
nop.m 0
fmerge.se fTmp = fTmp, f64DivLn2 // Small with non-trial signif
nop.i 0
}
;;
{ .mfb
nop.m 0
fma.s.s0 f8 = fTmp, fTmp, f0 // Set I,U, tiny (+0.0) result
br.cond.sptk EXP_UNDERFLOW_COMMON
}
;;
EXP_UNDERFLOW_COMMON:
// Determine if underflow result is zero or nonzero
{ .mfi
alloc r32=ar.pfs,0,3,4,0
fcmp.eq.s1 p6, p0 = f8, f0
nop.i 0
}
;;
{ .mfb
nop.m 0
fmerge.s FR_X = fNormX,fNormX
(p6) br.cond.spnt EXP_UNDERFLOW_ZERO
}
;;
EXP_UNDERFLOW_NONZERO:
// Here if x < fMIN_SGL_NORM_ARG and result nonzero;
// I, U are set
{ .mfb
mov GR_Parameter_TAG = 17
nop.f 0 // FR_RESULT already set
br.cond.sptk __libm_error_region
}
;;
EXP_UNDERFLOW_ZERO:
// Here if x < fMIN_SGL_NORM_ARG and result zero;
// I, U are set
{ .mfb
mov GR_Parameter_TAG = 17
nop.f 0 // FR_RESULT already set
br.cond.sptk __libm_error_region
}
;;
GLOBAL_IEEE754_END(expf)
libm_alias_float_other (__exp, exp)
#ifdef SHARED
.symver expf,expf@@GLIBC_2.27
.weak __expf_compat
.set __expf_compat,__expf
.symver __expf_compat,expf@GLIBC_2.2
#endif
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
stfs [GR_Parameter_Y] = FR_Y,16 // Store Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mfi
stfs [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
nop.f 0
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
}
{ .mib
stfs [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
add GR_Parameter_RESULT = 48,sp
nop.m 0
nop.i 0
};;
{ .mmi
ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
|