about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/e_atan2f.S
blob: 03a4fed82fa75c295a893d3857df0b69d2ee5395 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
.file "atan2f.s"

// Copyright (C) 2000, 2001, Intel Corporation
// All rights reserved.
//
// Contributed 6/1/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://developer.intel.com/opensource.

// History
//==============================================================
// 6/01/00  Initial version
// 8/15/00  Bundle added after call to __libm_error_support to properly
//          set [the previously overwritten] GR_Parameter_RESULT.
// 8/17/00  Changed predicate register macro-usage to direct predicate
//          names due to an assembler bug.
// 1/05/01  Fixed flag settings for denormal input.
// 1/19/01  Added documentation
// 1/30/01  Improved speed

// Description
//=========================================
// The atan2 function computes the principle value of the arc tangent of y/x using
// the signs of both arguments to determine the quadrant of the return value.
// A domain error may occur if both arguments are zero.

// The atan2 function returns the arc tangent of y/x in the range [-pi,+pi] radians.

//..
//..Let (v,u) = (y,x) if |y| <= |x|, and (v,u) = (x,y) otherwise. Note that
//..v and u can be negative. We state the relationship between atan2(y,x) and
//..atan(v/u).
//..
//..Let swap = false if v = y, and swap = true if v = x.
//..Define C according to the matrix
//..
//..                   TABLE FOR C
//..                              x +ve       x -ve
//..   no swap (swap = false)    sgn(y)*0     sgn(y)*pi
//..   swap    (swap = true )    sgn(y)*pi/2  sgn(y)*pi/2
//..
//..   atan2(y,x) =  C +  atan(v/u)  if no swap
//..   atan2(y,x) =  C -  atan(v/u)  if  swap
//..
//..These relationship is more efficient to compute as we accommodate signs in v and u
//..saving the need to obtain the absolute value before computation can proceed.
//..
//..Suppose (v,u) = (y,x), we calculate atan(v/u) as follows:
//..A = y * frcpa(x)    (so A = (y/x)(1 - beta))
//..atan(y/x) = atan(A) + atan( ((y/x)-A))/(1 + (y/x)A) ), the second term is 
//..a correction.
//..atan(A) is approximated by a polynomial 
//..A + p1 A^3 + p2 A^5 + ... + p10 A^21,
//..atan(G) is approximated as follows:
//..Let G = (y - Ax)/(x + Ay), atan(G) can be approximated by G + g * p1
//..where g is a limited precision approximation to G via g = (y - Ax)*frcpa(x + Ay).
//..
//..Suppose (v,u) = (x,y), we calculate atan(v/u) as follows:
//..Z = x * frcpa(y)    (so Z = (x/y)(1 - beta))
//..atan(x/y) = atan(Z) + atan( ((x/y)-Z))/(1 + (x/y)Z) ), the second term is 
//..a correction.
//..atan(Z) is approximated by a polynomial 
//..Z + p1 Z^3 + p2 Z^5 + ... + p10 Z^21,
//..atan(T) is approximated as follows:
//..Let T = (x - Ay)/(y + Ax), atan(T) can be approximated by T + t * p1
//..where t is a limited precision approximation to T via t = (x - Ay)*frcpa(y + Ax).
//..
//..
//..A = y * frcpa(x)
//..atan(A) ~=~ A + p1 A^3 + ... + P10 A^21
//..
//..This polynomial is computed as follows:
//..Asq = A*A; Acub = A*Asq, A4 = Asq*Asq 
//..A5 = Asq*Acub, A6 = Asq*A4; A11 = A5 * A6
//..
//..poly_A1 = p9 + Asq*p10, poly_A2 = p7 + Asq*p8, poly_A3 = p5 + Asq*p6
//..poly_A1 = poly_A2 + A4 * poly_A1
//..poly_A1 = poly_A3 + A4 * poly_A1
//..
//..poly_A4 = p1 * A
//,,poly_A5 = p3 + Asq * p4, poly_A4 = A + Asq*poly_A4
//..poly_A5 = p2 + Asq * poly_A5 
//..poly_A4 = poly_A4 + A5 * poly_A5
//..
//..atan_A = poly_A4 + A11 * poly_A1
//..
//..atan(G) is approximated as follows:
//..G_numer = y - A*x, G_denom = x + A*y
//..H1 = frcpa(G_denom)
//..H_beta = 1 - H1 * G_denom
//..H2 = H1 + H1 * H_beta
//..H_beta2 = H_beta*H_beta
//..H3 = H2 + H2*H_beta2
//..g = H1 * G_numer; gsq = g*g; atan_G = g*p1, atan_G = atan_G*gsq
//..atan_G = G_numer*H3 + atan_G
//..
//..
//..A = y * frcpa(x)
//..atan(A) ~=~ A + p1 A^3 + ... + P10 A^21
//..
//..This polynomial is computed as follows:
//..Asq = A*A; Acub = A*Asq, A4 = Asq*Asq 
//..A5 = Asq*Acub, A6 = Asq*A4; A11 = A5 * A6
//..
//..poly_A1 = p9 + Asq*p10, poly_A2 = p7 + Asq*p8, poly_A3 = p5 + Asq*p6
//..poly_A1 = poly_A2 + A4 * poly_A1
//..poly_A1 = poly_A3 + A4 * poly_A1
//..
//..poly_A4 = p1 * A
//,,poly_A5 = p3 + Asq * p4, poly_A4 = A + Asq*poly_A4
//..poly_A5 = p2 + Asq * poly_A5 
//..poly_A4 = poly_A4 + A5 * poly_A5
//..
//..atan_A = poly_A4 + A11 * poly_A1
//..
//..
//..====================================================================
//..	COEFFICIENTS USED IN THE COMPUTATION
//..====================================================================

//coef_pj, j = 1,2,...,10;  atan(A) ~=~ A + p1 A^3 + p2 A^5 + ... + p10 A^21
//
//  coef_p1          =      -.3333332707155439167401311806315789E+00
//  coef_p1   in dbl = BFD5 5555 1219 1621 
//
//  coef_p2          =       .1999967670926658391827857030875748E+00
//  coef_p2   in dbl = 3FC9 997E 7AFB FF4E 
//
//  coef_p3          =      -.1427989384500152360161563301087296E+00
//  coef_p3   in dbl = BFC2 473C 5145 EE38 
//
//  coef_p4          =       .1105852823460720770079031213661163E+00
//  coef_p4   in dbl = 3FBC 4F51 2B18 65F5 
//
//  coef_p5          =      -.8811839915595312348625710228448363E-01
//  coef_p5   in dbl = BFB6 8EED 6A8C FA32 
//
//  coef_p6          =       .6742329836955067042153645159059714E-01
//  coef_p6   in dbl = 3FB1 42A7 3D7C 54E3 
//
//  coef_p7          =      -.4468571068774672908561591262231909E-01
//  coef_p7   in dbl = BFA6 E10B A401 393F 
//
//  coef_p8          =       .2252333246746511135532726960586493E-01
//  coef_p8   in dbl = 3F97 105B 4160 F86B 
//
//  coef_p9          =      -.7303884867007574742501716845542314E-02
//  coef_p9   in dbl = BF7D EAAD AA33 6451 
//
//  coef_p10         =       .1109686868355312093949039454619058E-02
//  coef_p10  in dbl = 3F52 2E5D 33BC 9BAA 
//

// Special values
//==============================================================
//              Y                 x          Result
//             +number           +inf        +0
//             -number           +inf        -0
//             +number           -inf        +pi
//             -number           -inf        -pi
//
//             +inf              +number     +pi/2
//             -inf              +number     -pi/2
//             +inf              -number     +pi/2
//             -inf              -number     -pi/2
//
//             +inf              +inf        +pi/4
//             -inf              +inf        -pi/4
//             +inf              -inf        +3pi/4
//             -inf              -inf        -3pi/4
//
//             +1                +1          +pi/4
//             -1                +1          -pi/4
//             +1                -1          +3pi/4
//             -1                -1          -3pi/4
//
//             +number           +0          +pi/2    // does not raise DBZ
//             -number           +0          -pi/2    // does not raise DBZ
//             +number           -0          +pi/2    // does not raise DBZ
//             -number           -0          -pi/2    // does not raise DBZ
//
//             +0                +number     +0
//             -0                +number     -0
//             +0                -number     +pi
//             -0                -number     -pi
//
//             +0                +0          +0      // does not raise invalid
//             -0                +0          -0      // does not raise invalid
//             +0                -0          +pi     // does not raise invalid
//             -0                -0          -pi     // does not raise invalid
//
//            Nan             anything      quiet Y
//            anything        NaN           quiet X

// atan2(+-0/+-0) sets double error tag to 37
// atan2f(+-0/+-0) sets single error tag to 38
// These are domain errors.

#include "libm_support.h"

//
// Assembly macros
//=========================================


// integer registers
atan2f_GR_Addr_1              = r33
atan2f_GR_Addr_2              = r34
GR_SAVE_B0                    = r35

GR_SAVE_PFS                   = r36
GR_SAVE_GP                    = r37

GR_Parameter_X                = r38
GR_Parameter_Y                = r39
GR_Parameter_RESULT           = r40
GR_Parameter_TAG              = r41

// floating point registers
atan2f_coef_p1         = f32
atan2f_coef_p10        = f33
atan2f_coef_p7         = f34
atan2f_coef_p6         = f35

atan2f_coef_p3         = f36
atan2f_coef_p2         = f37
atan2f_coef_p9         = f38
atan2f_coef_p8         = f39
atan2f_coef_p5         = f40

atan2f_coef_p4         = f41
atan2f_const_piby2     = f42
atan2f_const_pi        = f43
atan2f_const_piby4     = f44
atan2f_const_3piby4    = f45

atan2f_xsq             = f46
atan2f_ysq             = f47
atan2f_xy              = f48
atan2f_const_1         = f49
atan2f_sgn_Y           = f50

atan2f_Z0              = f51
atan2f_A0              = f52
atan2f_Z               = f53
atan2f_A               = f54
atan2f_C               = f55

atan2f_U               = f56
atan2f_Usq             = f57
atan2f_U4              = f58
atan2f_U6              = f59
atan2f_U8              = f60

atan2f_poly_u109       = f61
atan2f_poly_u87        = f62
atan2f_poly_u65        = f63
atan2f_poly_u43        = f64
atan2f_poly_u21        = f65

atan2f_poly_u10to7     = f66
atan2f_poly_u6to3      = f67
atan2f_poly_u10to3     = f68
atan2f_poly_u10to0     = f69
atan2f_poly_u210       = f70

atan2f_T_numer         = f71
atan2f_T_denom         = f72
atan2f_G_numer         = f73
atan2f_G_denom         = f74
atan2f_p1rnum          = f75

atan2f_R_denom         = f76
atan2f_R_numer         = f77
atan2f_pR              = f78
atan2f_pRC             = f79
atan2f_pQRC            = f80

atan2f_Q1              = f81
atan2f_Q_beta          = f82
atan2f_Q2              = f83
atan2f_Q_beta2         = f84
atan2f_Q3              = f85

atan2f_r               = f86
atan2f_rsq             = f87
atan2f_poly_atan_U     = f88


// predicate registers
//atan2f_Pred_Swap     = p6 // |y| >  |x|
//atan2f_Pred_noSwap   = p7 // |y| <= |x|
//atan2f_Pred_Xpos     = p8 //  x  >=  0
//atan2f_Pred_Xneg     = p9 //  x  <   0


.data

.align 16

atan2f_coef_table1:
ASM_TYPE_DIRECTIVE(atan2f_coef_table1,@object)
data8 0xBFD5555512191621 // p1
data8 0x3F522E5D33BC9BAA // p10
data8 0xBFA6E10BA401393F // p7
data8 0x3FB142A73D7C54E3 // p6
data8 0xBFC2473C5145EE38 // p3
data8 0x3FC9997E7AFBFF4E // p2
ASM_SIZE_DIRECTIVE(atan2f_coef_table1)

atan2f_coef_table2:
ASM_TYPE_DIRECTIVE(atan2f_coef_table2,@object)
data8 0xBF7DEAADAA336451 // p9
data8 0x3F97105B4160F86B // p8
data8 0xBFB68EED6A8CFA32 // p5
data8 0x3FBC4F512B1865F5 // p4
data8 0x3ff921fb54442d18 // pi/2
data8 0x400921fb54442d18 // pi
data8 0x3fe921fb54442d18 // pi/4
data8 0x4002d97c7f3321d2 // 3pi/4
ASM_SIZE_DIRECTIVE(atan2f_coef_table2)



.global atan2f
#ifdef _LIBC
.global __atan2f
.global __ieee754_atan2f
#endif

.text
.align 32

atan2f:
.proc  atan2f
#ifdef _LIBC
.proc  __atan2f
__atan2f:
.proc  __ieee754_atan2f
__ieee754_atan2f:
#endif

 
 
{     .mfi 
     alloc      r32           = ar.pfs,1,5,4,0
     frcpa.s1  atan2f_Z0,p0     =    f1,f8   // Approx to 1/y
     nop.i  999
} 
{     .mfi 
     addl      atan2f_GR_Addr_1    =    @ltoff(atan2f_coef_table1),gp
     fma.s1    atan2f_xsq     =    f9,f9,f0
     nop.i  999 ;;
}

 
{     .mfi 
     ld8       atan2f_GR_Addr_1    =    [atan2f_GR_Addr_1]
     frcpa.s1  atan2f_A0,p0     =    f1,f9   // Approx to 1/x
     nop.i  999
} 
{     .mfi 
     nop.m  999
     fma.s1    atan2f_ysq     =    f8,f8,f0
     nop.i  999 ;;
}
 
{     .mfi 
     nop.m  999
     fcmp.ge.s1     p8,p9  =    f9,f0  // Set p8 if x>=0, p9 if x<0
     nop.i  999
}
{     .mfi 
     nop.m  999
     fma.s1    atan2f_xy     =    f9,f8,f0
     nop.i  999 ;;
}
 
 
{     .mfi 
     add   atan2f_GR_Addr_2 = 0x30, atan2f_GR_Addr_1
     fmerge.s  atan2f_sgn_Y   =    f8,f1
     nop.i  999 ;;
} 
 
{     .mmf 
     ldfpd     atan2f_coef_p1,atan2f_coef_p10 =    [atan2f_GR_Addr_1],16
     ldfpd     atan2f_coef_p9,atan2f_coef_p8 =    [atan2f_GR_Addr_2],16
     fclass.m  p10,p0 =    f9,0xe7	// Test x @inf|@snan|@qnan|@zero
} 
;;
 
{     .mfi 
     ldfpd     atan2f_coef_p7,atan2f_coef_p6 =    [atan2f_GR_Addr_1],16
     fma.s1    atan2f_T_denom =    atan2f_Z0,atan2f_xsq,f8
     nop.i  999
} 
{     .mfi 
     ldfpd     atan2f_coef_p5,atan2f_coef_p4     =    [atan2f_GR_Addr_2],16
     fma.s1    atan2f_Z                      =    atan2f_Z0,f9,f0
     nop.i  999 ;;
}

 
{     .mfi 
     ldfpd     atan2f_coef_p3,atan2f_coef_p2 =    [atan2f_GR_Addr_1],16
     fma.s1    atan2f_G_denom =    atan2f_A0,atan2f_ysq,f9
     nop.i  999
} 
{     .mfi 
     ldfpd     atan2f_const_piby2,atan2f_const_pi =    [atan2f_GR_Addr_2],16
     fma.s1    atan2f_A                           =    atan2f_A0,f8,f0
     nop.i  999 ;;
}

{     .mfi 
     ldfpd     atan2f_const_piby4,atan2f_const_3piby4 = [atan2f_GR_Addr_2]
     fclass.m  p11,p0 = f8,0xe7	// Test y @inf|@snan|@qnan|@zero
     nop.i  999
} 
{     .mfb 
     nop.m  999
     fnma.s1   atan2f_T_numer =    atan2f_Z0,atan2f_xy,f9
(p10) br.cond.spnt ATAN2F_XY_INF_NAN_ZERO ;;   // Branch on x nan,inf,zero
} 


// p6 if |y|>|x|, p7 if |x|>=|y| , use xsq and ysq for test
{     .mfi 
     nop.m  999
     fcmp.gt.s1 p6,p7 = atan2f_ysq,atan2f_xsq
     nop.i  999
}
{     .mfb 
     nop.m  999
     fnma.s1   atan2f_G_numer =    atan2f_A0,atan2f_xy,f8
(p11) br.cond.spnt ATAN2F_XY_INF_NAN_ZERO ;;  // Branch on y nan,inf,zero
}

 
{     .mfi 
     nop.m  999
(p8) fma.s1    atan2f_const_1 =    atan2f_sgn_Y,f0,f0
     nop.i  999
} 
{     .mfi 
     nop.m  999
(p9) fma.s1    atan2f_const_1 =    atan2f_sgn_Y,f1,f0
     nop.i  999 ;;
}

 
{     .mfi 
     nop.m  999
(p6) fnma.s1    atan2f_U       =    atan2f_Z,f1,f0
     nop.i  999
} 
{     .mfi 
     nop.m  999
(p6) fma.s1    atan2f_Usq     =    atan2f_Z,atan2f_Z,f0
     nop.i  999 ;;
} 

 
{     .mfi 
     nop.m  999
(p7) fma.s1    atan2f_U       =    atan2f_A,f1,f0
     nop.i  999
} 
{     .mfi 
     nop.m  999
(p7) fma.s1    atan2f_Usq     =    atan2f_A,atan2f_A,f0
     nop.i  999 ;;
}


{     .mfi 
     nop.m  999
(p6) frcpa.s1  atan2f_Q1,p0    =    f1,atan2f_T_denom
     nop.i  999
} 
{     .mfi 
     nop.m  999
(p6) fma.s1    atan2f_R_denom =   atan2f_T_denom,f1,f0
     nop.i  999 ;;
} 


{     .mfi 
     nop.m  999
(p7) frcpa.s1  atan2f_Q1,p0    =    f1,atan2f_G_denom
     nop.i  999
} 
{     .mfi 
     nop.m  999
(p7) fma.s1    atan2f_R_denom =   atan2f_G_denom,f1,f0
     nop.i  999 ;;
} 


{     .mfi 
     nop.m  999
(p6) fnma.s1    atan2f_R_numer =   atan2f_T_numer,f1,f0
     nop.i  999
} 
{     .mfi 
     nop.m  999
(p7) fma.s1    atan2f_R_numer =   atan2f_G_numer,f1,f0
     nop.i  999 ;;
} 

 
{     .mfi 
     nop.m  999
(p6) fnma.s1    atan2f_p1rnum =   atan2f_T_numer,atan2f_coef_p1,f0
     nop.i  999 ;;
} 
{     .mfi 
     nop.m  999
(p7) fma.s1    atan2f_p1rnum =   atan2f_G_numer,atan2f_coef_p1,f0
     nop.i  999 ;;
} 

 
{     .mfi 
     nop.m  999
     fma.s1    atan2f_U4 =    atan2f_Usq,atan2f_Usq,f0
     nop.i  999
}
{     .mfi 
     nop.m  999
     fma.s1    atan2f_poly_u109 = atan2f_Usq,atan2f_coef_p10,atan2f_coef_p9
     nop.i  999 ;;
} 
 
{     .mfi 
     nop.m  999
     fma.s1    atan2f_poly_u87 =    atan2f_Usq,atan2f_coef_p8,atan2f_coef_p7
     nop.i  999
} 
{     .mfi 
     nop.m  999
     fma.s1    atan2f_poly_u65 =    atan2f_Usq,atan2f_coef_p6,atan2f_coef_p5
     nop.i  999 ;;
}
 
 
{     .mfi 
     nop.m  999
     fma.s1    atan2f_poly_u43 =    atan2f_Usq,atan2f_coef_p4,atan2f_coef_p3
     nop.i  999
} 
{     .mfi 
     nop.m  999
     fnma.s1   atan2f_Q_beta  =    atan2f_Q1,atan2f_R_denom,f1
     nop.i  999 ;;
}


{     .mfi 
     nop.m  999
     fma.s1    atan2f_poly_u21 =    atan2f_Usq,atan2f_coef_p2,atan2f_coef_p1
     nop.i  999
} 
{     .mfi 
     nop.m  999
     fma.s1    atan2f_r  =    atan2f_Q1,atan2f_R_numer,f0
     nop.i  999 ;;
}

{     .mfi 
     nop.m  999
(p6) fma.s1    atan2f_C  =    atan2f_sgn_Y,atan2f_const_piby2,f0
     nop.i  999
} 
{     .mfi 
     nop.m  999
(p7) fma.s1    atan2f_C  =    atan2f_const_1,atan2f_const_pi,f0
     nop.i  999 ;;
} 

{     .mfi 
     nop.m  999
     fma.s1    atan2f_U6 =    atan2f_U4,atan2f_Usq,f0
     nop.i  999
}
{     .mfi 
     nop.m  999
     fma.s1    atan2f_U8 =    atan2f_U4,atan2f_U4,f0
     nop.i  999 ;;
}

{     .mfi 
     nop.m  999
     fma.s1    atan2f_poly_u10to7 = atan2f_U4,atan2f_poly_u109,atan2f_poly_u87
     nop.i  999
} 
{     .mfi 
     nop.m  999
     fma.s1    atan2f_pR = atan2f_p1rnum,atan2f_Q1,f0
     nop.i  999 ;;
} 

{     .mfi 
     nop.m  999
     fma.s1    atan2f_poly_u6to3 = atan2f_U4,atan2f_poly_u65,atan2f_poly_u43
     nop.i  999
} 
{     .mfi 
     nop.m  999
     fma.s1    atan2f_Q2 =    atan2f_Q1,atan2f_Q_beta,atan2f_Q1
     nop.i  999 ;;
}

{     .mfi 
     nop.m  999
     fma.s1    atan2f_Q_beta2 =    atan2f_Q_beta,atan2f_Q_beta,f0
     nop.i  999
} 
{     .mfi 
     nop.m  999
     fma.s1    atan2f_rsq     =    atan2f_r,atan2f_r,f0
     nop.i  999 ;;
}

{     .mfi 
     nop.m  999
     fma.s1    atan2f_poly_u210 = atan2f_Usq,atan2f_poly_u21,f1
     nop.i  999 ;;
} 
 
{     .mfi
     nop.m 999
     fcmp.eq.s0 p8,p0 = f8,f9      // Dummy op to set flag on denormal inputs
     nop.i 999
}
{     .mfi 
     nop.m  999
     fma.s1 atan2f_poly_u10to3 = atan2f_U8,atan2f_poly_u10to7,atan2f_poly_u6to3
     nop.i  999 ;;
} 

{     .mfi 
     nop.m                 999
     fma.s1    atan2f_Q3 =    atan2f_Q2,atan2f_Q_beta2,atan2f_Q2
     nop.i                 999
} 
{     .mfi 
     nop.m  999
     fma.s1    atan2f_pRC = atan2f_rsq,atan2f_pR,atan2f_C
     nop.i  999 ;;
} 
 
{     .mfi 
     nop.m  999
     fma.s1 atan2f_poly_u10to0 = atan2f_U6,atan2f_poly_u10to3,atan2f_poly_u210
     nop.i  999 ;;
} 

{     .mfi 
     nop.m  999
     fma.s1    atan2f_pQRC = atan2f_R_numer,atan2f_Q3,atan2f_pRC
     nop.i  999 ;;
} 

{     .mfb 
     nop.m  999
     fma.s.s0    f8 = atan2f_U,atan2f_poly_u10to0,atan2f_pQRC
     br.ret.sptk b0 ;;
} 



ATAN2F_XY_INF_NAN_ZERO:

{ .mfi
      nop.m 999
      fclass.m   p10,p0 = f8,0xc3	// Is y nan
      nop.i 999
}
;;

{ .mfi
      nop.m 999
      fclass.m   p12,p0 = f9,0xc3	// Is x nan
      nop.i 999
}
;;

{ .mfi
      nop.m 999
      fclass.m   p6,p0 = f9,0x21	// Is x +inf
      nop.i 999
}
{ .mfb
      nop.m 999
(p10) fma.s f8  = f9,f8,f0          // Result quietized y if y is nan
(p10) br.ret.spnt b0                // Exit if y is nan
}
;;


{ .mfi
      nop.m 999
(p6)  fclass.m.unc   p7,p8 = f8,0x23	// x +inf, is y inf
      nop.i 999
}
{ .mfb
      nop.m 999
(p12) fnorm.s f8 = f9               // Result quietized x if x is nan, y not nan
(p12) br.ret.spnt b0                // Exit if x is nan, y not nan
}
;;

// Here if x or y inf, or x or y zero
{ .mfi
      nop.m 999
      fcmp.eq.s0 p15,p0 = f8,f9     // Dummy op to set flag on denormal inputs
      nop.i 999
}
;;

{ .mfi
      nop.m 999
      fclass.m   p11,p12 = f9,0x22	// Is x -inf
      nop.i 999
}
{ .mfb
      nop.m 999
(p7)  fma.s f8 = atan2f_sgn_Y, atan2f_const_piby4,f0 // Result +-pi/4
(p7)  br.ret.spnt b0            // Exit if x +inf and y inf
}
;;

{ .mfb
      nop.m 999
(p8)  fmerge.s   f8 = f8,f0     // If x +inf and y not inf, result +-0
(p8)  br.ret.spnt b0            // Exit if x +inf and y not inf
}
;;

{ .mfi
      nop.m 999
(p12) fclass.m.unc   p13,p0 = f8,0x23	// x not -inf, is y inf
      nop.i 999
}
;;

{ .mfi
      nop.m 999
(p11) fclass.m.unc   p14,p15 = f8,0x23	// x -inf, is y inf
      nop.i 999
}
;;

{ .mfi
      nop.m 999
      fclass.m  p6,p7 = f9,0x7	// Is x zero
      nop.i 999
}
{ .mfb
      nop.m 999
(p13) fma.s   f8 = atan2f_sgn_Y, atan2f_const_piby2,f0 // Result +-pi/2
(p13) br.ret.spnt b0           // Exit if x not -inf and y inf
}
;;

{ .mfi
      nop.m 999
(p14) fma.s   f8 = atan2f_sgn_Y, atan2f_const_3piby4,f0 // Result +-3pi/4
      nop.i 999
}
{ .mfb
      nop.m 999
(p15) fma.s   f8 = atan2f_sgn_Y, atan2f_const_pi,f0 // Result +-pi
(p11) br.ret.spnt b0           // Exit if x -inf
}
;;

// Here if x or y zero
{ .mfi
      nop.m 999
(p7)  fclass.m.unc   p8,p9 = f9,0x19	// x not zero, y zero, is x > zero
      nop.i 999
}
;;

{ .mfi
      nop.m 999
(p6)  fclass.m.unc   p10,p11 = f8,0x7	// x zero, is y zero
      nop.i 999
}
;;

{ .mfi
      nop.m 999
(p8)  fmerge.s  f8 = f8, f0  // x > zero and y zero, result is +-zero
      nop.i 999
}
{ .mfb
      nop.m 999
(p9)  fma.s  f8 = atan2f_sgn_Y, atan2f_const_pi,f0 // x < 0, y 0, result +-pi
(p10) br.cond.spnt   __libm_error_region // Branch if x zero and y zero
}
;;

{ .mfb
      nop.m 999
(p11) fma.s  f8 = atan2f_sgn_Y, atan2f_const_piby2,f0 // x zero, y not zero
      br.ret.sptk b0         // Final special case exit
}
;;


.endp atan2f
ASM_SIZE_DIRECTIVE(atan2f)


.proc __libm_error_region
__libm_error_region:
.prologue
         mov            GR_Parameter_TAG      = 38
         fclass.m       p10,p11               = f9,0x5	// @zero | @pos
;;
(p10)    fmerge.s       f10                   = f8, f0
(p11)    fma.s          f10                   = atan2f_sgn_Y, atan2f_const_pi,f0
;;

{ .mfi
        add   GR_Parameter_Y=-32,sp             // Parameter 2 value
        nop.f 999
.save   ar.pfs,GR_SAVE_PFS
        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
}

{ .mfi
.fframe 64
        add sp=-64,sp                           // Create new stack
        nop.f 0
        mov GR_SAVE_GP=gp                       // Save gp
}
;;

{ .mmi
        stfs [GR_Parameter_Y] = f9,16         // Store Parameter 2 on stack
        add GR_Parameter_X = 16,sp              // Parameter 1 address
.save   b0, GR_SAVE_B0
        mov GR_SAVE_B0=b0                       // Save b0
}
;;


.body
{ .mib
        stfs [GR_Parameter_X] = f8            // Store Parameter 1 on stack
        add   GR_Parameter_RESULT = 0,GR_Parameter_Y
        nop.b 0                                 // Parameter 3 address
}
{ .mib
        stfs [GR_Parameter_Y] = f10       // Store Parameter 3 on stack
        add   GR_Parameter_Y = -16,GR_Parameter_Y
        br.call.sptk b0=__libm_error_support#   // Call error handling function
}
;;
{ .mmi
        nop.m 0
        nop.m 0
        add   GR_Parameter_RESULT = 48,sp
};;

{ .mmi
        ldfs  f8 = [GR_Parameter_RESULT]       // Get return result off stack
.restore sp
        add   sp = 64,sp                       // Restore stack pointer
        mov   b0 = GR_SAVE_B0                  // Restore return address
}
;;

{ .mib
        mov   gp = GR_SAVE_GP                  // Restore gp
        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
        br.ret.sptk     b0                     // Return
}
;;

.endp __libm_error_region
ASM_SIZE_DIRECTIVE(__libm_error_region)

.type   __libm_error_support#,@function
.global __libm_error_support#