about summary refs log tree commit diff
path: root/sysdeps/aarch64/fpu/erfc_sve.c
blob: c17d3e448457b41c89a79c36b37b4b59f0ac7e8f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/* Double-precision vector (SVE) erfc function

   Copyright (C) 2024 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#include "sv_math.h"
#include "vecmath_config.h"

static const struct data
{
  uint64_t off_idx, off_arr;
  double max, shift;
  double p20, p40, p41, p42;
  double p51, p52;
  double q5, r5;
  double q6, r6;
  double q7, r7;
  double q8, r8;
  double q9, r9;
  uint64_t table_scale;
} data = {
  /* Set an offset so the range of the index used for lookup is 3487, and it
     can be clamped using a saturated add on an offset index.
     Index offset is 0xffffffffffffffff - asuint64(shift) - 3487.  */
  .off_idx = 0xbd3ffffffffff260,
  .off_arr = 0xfffffffffffff260, /* 0xffffffffffffffff - 3487.  */
  .max = 0x1.b3ep+4,		 /* 3487/128.  */
  .shift = 0x1p45,
  .table_scale = 0x37f0000000000000, /* asuint64(0x1p-128).  */
  .p20 = 0x1.5555555555555p-2,	     /* 1/3, used to compute 2/3 and 1/6.  */
  .p40 = -0x1.999999999999ap-4,	     /* 1/10.  */
  .p41 = -0x1.999999999999ap-2,	     /* 2/5.  */
  .p42 = 0x1.1111111111111p-3,	     /* 2/15.  */
  .p51 = -0x1.c71c71c71c71cp-3,	     /* 2/9.  */
  .p52 = 0x1.6c16c16c16c17p-5,	     /* 2/45.  */
  /* Qi = (i+1) / i, for i = 5, ..., 9.  */
  .q5 = 0x1.3333333333333p0,
  .q6 = 0x1.2aaaaaaaaaaabp0,
  .q7 = 0x1.2492492492492p0,
  .q8 = 0x1.2p0,
  .q9 = 0x1.1c71c71c71c72p0,
  /* Ri = -2 * i / ((i+1)*(i+2)), for i = 5, ..., 9.  */
  .r5 = -0x1.e79e79e79e79ep-3,
  .r6 = -0x1.b6db6db6db6dbp-3,
  .r7 = -0x1.8e38e38e38e39p-3,
  .r8 = -0x1.6c16c16c16c17p-3,
  .r9 = -0x1.4f2094f2094f2p-3,
};

/* Optimized double-precision vector erfc(x).
   Approximation based on series expansion near x rounded to
   nearest multiple of 1/128.
   Let d = x - r, and scale = 2 / sqrt(pi) * exp(-r^2). For x near r,

   erfc(x) ~ erfc(r) - scale * d * poly(r, d), with

   poly(r, d) = 1 - r d + (2/3 r^2 - 1/3) d^2 - r (1/3 r^2 - 1/2) d^3
		+ (2/15 r^4 - 2/5 r^2 + 1/10) d^4
		- r * (2/45 r^4 - 2/9 r^2 + 1/6) d^5
		+ p6(r) d^6 + ... + p10(r) d^10

   Polynomials p6(r) to p10(r) are computed using recurrence relation

   2(i+1)p_i + 2r(i+2)p_{i+1} + (i+2)(i+3)p_{i+2} = 0,
   with p0 = 1, and p1(r) = -r.

   Values of erfc(r) and scale are read from lookup tables. Stored values
   are scaled to avoid hitting the subnormal range.

   Note that for x < 0, erfc(x) = 2.0 - erfc(-x).

   Maximum measured error: 1.71 ULP
   _ZGVsMxv_erfc(0x1.46cfe976733p+4) got 0x1.e15fcbea3e7afp-608
				    want 0x1.e15fcbea3e7adp-608.  */
svfloat64_t SV_NAME_D1 (erfc) (svfloat64_t x, const svbool_t pg)
{
  const struct data *dat = ptr_barrier (&data);

  svfloat64_t a = svabs_x (pg, x);

  /* Clamp input at |x| <= 3487/128.  */
  a = svmin_x (pg, a, dat->max);

  /* Reduce x to the nearest multiple of 1/128.  */
  svfloat64_t shift = sv_f64 (dat->shift);
  svfloat64_t z = svadd_x (pg, a, shift);

  /* Saturate index for the NaN case.  */
  svuint64_t i = svqadd (svreinterpret_u64 (z), dat->off_idx);

  /* Lookup erfc(r) and 2/sqrt(pi)*exp(-r^2) in tables.  */
  i = svadd_x (pg, i, i);
  const float64_t *p = &__erfc_data.tab[0].erfc - 2 * dat->off_arr;
  svfloat64_t erfcr = svld1_gather_index (pg, p, i);
  svfloat64_t scale = svld1_gather_index (pg, p + 1, i);

  /* erfc(x) ~ erfc(r) - scale * d * poly(r, d).  */
  svfloat64_t r = svsub_x (pg, z, shift);
  svfloat64_t d = svsub_x (pg, a, r);
  svfloat64_t d2 = svmul_x (pg, d, d);
  svfloat64_t r2 = svmul_x (pg, r, r);

  /* poly (d, r) = 1 + p1(r) * d + p2(r) * d^2 + ... + p9(r) * d^9.  */
  svfloat64_t p1 = r;
  svfloat64_t third = sv_f64 (dat->p20);
  svfloat64_t twothird = svmul_x (pg, third, 2.0);
  svfloat64_t sixth = svmul_x (pg, third, 0.5);
  svfloat64_t p2 = svmls_x (pg, third, r2, twothird);
  svfloat64_t p3 = svmad_x (pg, r2, third, -0.5);
  p3 = svmul_x (pg, r, p3);
  svfloat64_t p4 = svmla_x (pg, sv_f64 (dat->p41), r2, dat->p42);
  p4 = svmls_x (pg, sv_f64 (dat->p40), r2, p4);
  svfloat64_t p5 = svmla_x (pg, sv_f64 (dat->p51), r2, dat->p52);
  p5 = svmla_x (pg, sixth, r2, p5);
  p5 = svmul_x (pg, r, p5);
  /* Compute p_i using recurrence relation:
     p_{i+2} = (p_i + r * Q_{i+1} * p_{i+1}) * R_{i+1}.  */
  svfloat64_t qr5 = svld1rq (svptrue_b64 (), &dat->q5);
  svfloat64_t qr6 = svld1rq (svptrue_b64 (), &dat->q6);
  svfloat64_t qr7 = svld1rq (svptrue_b64 (), &dat->q7);
  svfloat64_t qr8 = svld1rq (svptrue_b64 (), &dat->q8);
  svfloat64_t qr9 = svld1rq (svptrue_b64 (), &dat->q9);
  svfloat64_t p6 = svmla_x (pg, p4, p5, svmul_lane (r, qr5, 0));
  p6 = svmul_lane (p6, qr5, 1);
  svfloat64_t p7 = svmla_x (pg, p5, p6, svmul_lane (r, qr6, 0));
  p7 = svmul_lane (p7, qr6, 1);
  svfloat64_t p8 = svmla_x (pg, p6, p7, svmul_lane (r, qr7, 0));
  p8 = svmul_lane (p8, qr7, 1);
  svfloat64_t p9 = svmla_x (pg, p7, p8, svmul_lane (r, qr8, 0));
  p9 = svmul_lane (p9, qr8, 1);
  svfloat64_t p10 = svmla_x (pg, p8, p9, svmul_lane (r, qr9, 0));
  p10 = svmul_lane (p10, qr9, 1);
  /* Compute polynomial in d using pairwise Horner scheme.  */
  svfloat64_t p90 = svmla_x (pg, p9, d, p10);
  svfloat64_t p78 = svmla_x (pg, p7, d, p8);
  svfloat64_t p56 = svmla_x (pg, p5, d, p6);
  svfloat64_t p34 = svmla_x (pg, p3, d, p4);
  svfloat64_t p12 = svmla_x (pg, p1, d, p2);
  svfloat64_t y = svmla_x (pg, p78, d2, p90);
  y = svmla_x (pg, p56, d2, y);
  y = svmla_x (pg, p34, d2, y);
  y = svmla_x (pg, p12, d2, y);

  y = svmls_x (pg, erfcr, scale, svmls_x (pg, d, d2, y));

  /* Offset equals 2.0 if sign, else 0.0.  */
  svuint64_t sign = svand_x (pg, svreinterpret_u64 (x), 0x8000000000000000);
  svfloat64_t off = svreinterpret_f64 (svlsr_x (pg, sign, 1));
  /* Handle sign and scale back in a single fma.  */
  svfloat64_t fac = svreinterpret_f64 (svorr_x (pg, sign, dat->table_scale));

  return svmla_x (pg, off, fac, y);
}