about summary refs log tree commit diff
path: root/sysdeps/aarch64/fpu/erf_advsimd.c
blob: a48092e838e3edb6819b6bf092b15a633d8f7e57 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/* Double-precision vector (Advanced SIMD) erf function

   Copyright (C) 2024 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#include "v_math.h"

static const struct data
{
  float64x2_t third;
  float64x2_t tenth, two_over_five, two_over_nine;
  double two_over_fifteen, two_over_fortyfive;
  float64x2_t max, shift;
  uint64x2_t max_idx;
#if WANT_SIMD_EXCEPT
  float64x2_t tiny_bound, huge_bound, scale_minus_one;
#endif
} data = {
  .max_idx = V2 (768),
  .third = V2 (0x1.5555555555556p-2), /* used to compute 2/3 and 1/6 too.  */
  .two_over_fifteen = 0x1.1111111111111p-3,
  .tenth = V2 (-0x1.999999999999ap-4),
  .two_over_five = V2 (-0x1.999999999999ap-2),
  .two_over_nine = V2 (-0x1.c71c71c71c71cp-3),
  .two_over_fortyfive = 0x1.6c16c16c16c17p-5,
  .max = V2 (5.9921875), /* 6 - 1/128.  */
  .shift = V2 (0x1p45),
#if WANT_SIMD_EXCEPT
  .huge_bound = V2 (0x1p205),
  .tiny_bound = V2 (0x1p-226),
  .scale_minus_one = V2 (0x1.06eba8214db69p-3), /* 2/sqrt(pi) - 1.0.  */
#endif
};

#define AbsMask 0x7fffffffffffffff

struct entry
{
  float64x2_t erf;
  float64x2_t scale;
};

static inline struct entry
lookup (uint64x2_t i)
{
  struct entry e;
  float64x2_t e1 = vld1q_f64 (&__v_erf_data.tab[vgetq_lane_u64 (i, 0)].erf),
	      e2 = vld1q_f64 (&__v_erf_data.tab[vgetq_lane_u64 (i, 1)].erf);
  e.erf = vuzp1q_f64 (e1, e2);
  e.scale = vuzp2q_f64 (e1, e2);
  return e;
}

/* Double-precision implementation of vector erf(x).
   Approximation based on series expansion near x rounded to
   nearest multiple of 1/128.
   Let d = x - r, and scale = 2 / sqrt(pi) * exp(-r^2). For x near r,

   erf(x) ~ erf(r) + scale * d * [
       + 1
       - r d
       + 1/3 (2 r^2 - 1) d^2
       - 1/6 (r (2 r^2 - 3)) d^3
       + 1/30 (4 r^4 - 12 r^2 + 3) d^4
       - 1/90 (4 r^4 - 20 r^2 + 15) d^5
     ]

   Maximum measure error: 2.29 ULP
   V_NAME_D1 (erf)(-0x1.00003c924e5d1p-8) got -0x1.20dd59132ebadp-8
					 want -0x1.20dd59132ebafp-8.  */
float64x2_t VPCS_ATTR V_NAME_D1 (erf) (float64x2_t x)
{
  const struct data *dat = ptr_barrier (&data);

  float64x2_t a = vabsq_f64 (x);
  /* Reciprocal conditions that do not catch NaNs so they can be used in BSLs
     to return expected results.  */
  uint64x2_t a_le_max = vcaleq_f64 (x, dat->max);
  uint64x2_t a_gt_max = vcagtq_f64 (x, dat->max);

#if WANT_SIMD_EXCEPT
  /* |x| huge or tiny.  */
  uint64x2_t cmp1 = vcgtq_f64 (a, dat->huge_bound);
  uint64x2_t cmp2 = vcltq_f64 (a, dat->tiny_bound);
  uint64x2_t cmp = vorrq_u64 (cmp1, cmp2);
  /* If any lanes are special, mask them with 1 for small x or 8 for large
     values and retain a copy of a to allow special case handler to fix special
     lanes later. This is only necessary if fenv exceptions are to be triggered
     correctly.  */
  if (__glibc_unlikely (v_any_u64 (cmp)))
    {
      a = vbslq_f64 (cmp1, v_f64 (8.0), a);
      a = vbslq_f64 (cmp2, v_f64 (1.0), a);
    }
#endif

  /* Set r to multiple of 1/128 nearest to |x|.  */
  float64x2_t shift = dat->shift;
  float64x2_t z = vaddq_f64 (a, shift);

  /* Lookup erf(r) and scale(r) in table, without shortcut for small values,
     but with saturated indices for large values and NaNs in order to avoid
     segfault.  */
  uint64x2_t i
      = vsubq_u64 (vreinterpretq_u64_f64 (z), vreinterpretq_u64_f64 (shift));
  i = vbslq_u64 (a_le_max, i, dat->max_idx);
  struct entry e = lookup (i);

  float64x2_t r = vsubq_f64 (z, shift);

  /* erf(x) ~ erf(r) + scale * d * poly (r, d).  */
  float64x2_t d = vsubq_f64 (a, r);
  float64x2_t d2 = vmulq_f64 (d, d);
  float64x2_t r2 = vmulq_f64 (r, r);

  float64x2_t two_over_fifteen_and_fortyfive
      = vld1q_f64 (&dat->two_over_fifteen);

  /* poly (d, r) = 1 + p1(r) * d + p2(r) * d^2 + ... + p5(r) * d^5.  */
  float64x2_t p1 = r;
  float64x2_t p2
      = vfmsq_f64 (dat->third, r2, vaddq_f64 (dat->third, dat->third));
  float64x2_t p3 = vmulq_f64 (r, vfmaq_f64 (v_f64 (-0.5), r2, dat->third));
  float64x2_t p4 = vfmaq_laneq_f64 (dat->two_over_five, r2,
				    two_over_fifteen_and_fortyfive, 0);
  p4 = vfmsq_f64 (dat->tenth, r2, p4);
  float64x2_t p5 = vfmaq_laneq_f64 (dat->two_over_nine, r2,
				    two_over_fifteen_and_fortyfive, 1);
  p5 = vmulq_f64 (r, vfmaq_f64 (vmulq_f64 (v_f64 (0.5), dat->third), r2, p5));

  float64x2_t p34 = vfmaq_f64 (p3, d, p4);
  float64x2_t p12 = vfmaq_f64 (p1, d, p2);
  float64x2_t y = vfmaq_f64 (p34, d2, p5);
  y = vfmaq_f64 (p12, d2, y);

  y = vfmaq_f64 (e.erf, e.scale, vfmsq_f64 (d, d2, y));

  /* Solves the |x| = inf and NaN cases.  */
  y = vbslq_f64 (a_gt_max, v_f64 (1.0), y);

  /* Copy sign.  */
  y = vbslq_f64 (v_u64 (AbsMask), y, x);

#if WANT_SIMD_EXCEPT
  if (__glibc_unlikely (v_any_u64 (cmp2)))
    {
      /* Neutralise huge values of x before fixing small values.  */
      x = vbslq_f64 (cmp1, v_f64 (1.0), x);
      /* Fix tiny values that trigger spurious underflow.  */
      return vbslq_f64 (cmp2, vfmaq_f64 (x, dat->scale_minus_one, x), y);
    }
#endif
  return y;
}