1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
/* Test that threads generate distinct streams of randomness.
Copyright (C) 2022 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <array_length.h>
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <support/check.h>
#include <support/namespace.h>
#include <support/support.h>
#include <support/xthread.h>
/* Number of arc4random_buf calls per thread. */
enum { count_per_thread = 2048 };
/* Number of threads computing randomness. */
enum { inner_threads = 4 };
/* Number of threads launching other threads. */
static int outer_threads = 1;
/* Number of launching rounds performed by the outer threads. */
enum { outer_rounds = 10 };
/* Maximum number of bytes generated in an arc4random call. */
enum { max_size = 32 };
/* Sizes generated by threads. Must be long enough to be unique with
high probability. */
static const int sizes[] = { 12, 15, 16, 17, 24, 31, max_size };
/* Data structure to capture randomness results. */
struct blob
{
unsigned int size;
int thread_id;
unsigned int index;
unsigned char bytes[max_size];
};
struct subprocess_args
{
struct blob *blob;
void (*func)(unsigned char *, size_t);
};
static void
generate_arc4random (unsigned char *bytes, size_t size)
{
int i;
for (i = 0; i < size / sizeof (uint32_t); i++)
{
uint32_t x = arc4random ();
memcpy (&bytes[4 * i], &x, sizeof x);
}
int rem = size % sizeof (uint32_t);
if (rem > 0)
{
uint32_t x = arc4random ();
memcpy (&bytes[4 * i], &x, rem);
}
}
static void
generate_arc4random_buf (unsigned char *bytes, size_t size)
{
arc4random_buf (bytes, size);
}
static void
generate_arc4random_uniform (unsigned char *bytes, size_t size)
{
for (int i = 0; i < size; i++)
bytes[i] = arc4random_uniform (256);
}
#define DYNARRAY_STRUCT dynarray_blob
#define DYNARRAY_ELEMENT struct blob
#define DYNARRAY_PREFIX dynarray_blob_
#include <malloc/dynarray-skeleton.c>
/* Sort blob elements by length first, then by comparing the data
member. */
static int
compare_blob (const void *left1, const void *right1)
{
const struct blob *left = left1;
const struct blob *right = right1;
if (left->size != right->size)
/* No overflow due to limited range. */
return left->size - right->size;
return memcmp (left->bytes, right->bytes, left->size);
}
/* Used to store the global result. */
static pthread_mutex_t global_result_lock = PTHREAD_MUTEX_INITIALIZER;
static struct dynarray_blob global_result;
/* Copy data to the global result, with locking. */
static void
copy_result_to_global (struct dynarray_blob *result)
{
xpthread_mutex_lock (&global_result_lock);
size_t old_size = dynarray_blob_size (&global_result);
TEST_VERIFY_EXIT
(dynarray_blob_resize (&global_result,
old_size + dynarray_blob_size (result)));
memcpy (dynarray_blob_begin (&global_result) + old_size,
dynarray_blob_begin (result),
dynarray_blob_size (result) * sizeof (struct blob));
xpthread_mutex_unlock (&global_result_lock);
}
/* Used to assign unique thread IDs. Accessed atomically. */
static int next_thread_id;
static void *
inner_thread (void *closure)
{
void (*func) (unsigned char *, size_t) = closure;
/* Use local result to avoid global lock contention while generating
randomness. */
struct dynarray_blob result;
dynarray_blob_init (&result);
int thread_id = __atomic_fetch_add (&next_thread_id, 1, __ATOMIC_RELAXED);
/* Determine the sizes to be used by this thread. */
int size_slot = thread_id % (array_length (sizes) + 1);
bool switch_sizes = size_slot == array_length (sizes);
if (switch_sizes)
size_slot = 0;
/* Compute the random blobs. */
for (int i = 0; i < count_per_thread; ++i)
{
struct blob *place = dynarray_blob_emplace (&result);
TEST_VERIFY_EXIT (place != NULL);
place->size = sizes[size_slot];
place->thread_id = thread_id;
place->index = i;
func (place->bytes, place->size);
if (switch_sizes)
size_slot = (size_slot + 1) % array_length (sizes);
}
/* Store the blobs in the global result structure. */
copy_result_to_global (&result);
dynarray_blob_free (&result);
return NULL;
}
/* Launch the inner threads and wait for their termination. */
static void *
outer_thread (void *closure)
{
void (*func) (unsigned char *, size_t) = closure;
for (int round = 0; round < outer_rounds; ++round)
{
pthread_t threads[inner_threads];
for (int i = 0; i < inner_threads; ++i)
threads[i] = xpthread_create (NULL, inner_thread, func);
for (int i = 0; i < inner_threads; ++i)
xpthread_join (threads[i]);
}
return NULL;
}
static bool termination_requested;
/* Call arc4random_buf to fill one blob with 16 bytes. */
static void *
get_one_blob_thread (void *closure)
{
struct subprocess_args *arg = closure;
struct blob *result = arg->blob;
result->size = 16;
arg->func (result->bytes, result->size);
return NULL;
}
/* Invoked from fork_thread to actually obtain randomness data. */
static void
fork_thread_subprocess (void *closure)
{
struct subprocess_args *arg = closure;
struct blob *shared_result = arg->blob;
struct subprocess_args args[3] =
{
{ shared_result + 0, arg->func },
{ shared_result + 1, arg->func },
{ shared_result + 2, arg->func }
};
pthread_t thr1 = xpthread_create (NULL, get_one_blob_thread, &args[1]);
pthread_t thr2 = xpthread_create (NULL, get_one_blob_thread, &args[2]);
get_one_blob_thread (&args[0]);
xpthread_join (thr1);
xpthread_join (thr2);
}
/* Continuously fork subprocesses to obtain a little bit of
randomness. */
static void *
fork_thread (void *closure)
{
void (*func)(unsigned char *, size_t) = closure;
struct dynarray_blob result;
dynarray_blob_init (&result);
/* Three blobs from each subprocess. */
struct blob *shared_result
= support_shared_allocate (3 * sizeof (*shared_result));
while (!__atomic_load_n (&termination_requested, __ATOMIC_RELAXED))
{
/* Obtain the results from a subprocess. */
struct subprocess_args arg = { shared_result, func };
support_isolate_in_subprocess (fork_thread_subprocess, &arg);
for (int i = 0; i < 3; ++i)
{
struct blob *place = dynarray_blob_emplace (&result);
TEST_VERIFY_EXIT (place != NULL);
place->size = shared_result[i].size;
place->thread_id = -1;
place->index = i;
memcpy (place->bytes, shared_result[i].bytes, place->size);
}
}
support_shared_free (shared_result);
copy_result_to_global (&result);
dynarray_blob_free (&result);
return NULL;
}
/* Launch the outer threads and wait for their termination. */
static void
run_outer_threads (void (*func)(unsigned char *, size_t))
{
/* Special thread that continuously calls fork. */
pthread_t fork_thread_id = xpthread_create (NULL, fork_thread, func);
pthread_t threads[outer_threads];
for (int i = 0; i < outer_threads; ++i)
threads[i] = xpthread_create (NULL, outer_thread, func);
for (int i = 0; i < outer_threads; ++i)
xpthread_join (threads[i]);
__atomic_store_n (&termination_requested, true, __ATOMIC_RELAXED);
xpthread_join (fork_thread_id);
}
static int
do_test_func (const char *fname, void (*func)(unsigned char *, size_t))
{
dynarray_blob_init (&global_result);
int expected_blobs
= count_per_thread * inner_threads * outer_threads * outer_rounds;
printf ("info: %s: minimum of %d blob results expected\n",
fname, expected_blobs);
run_outer_threads (func);
/* The forking thread delivers a non-deterministic number of
results, which is why expected_blobs is only a minimun number of
results. */
printf ("info: %s: %zu blob results observed\n", fname,
dynarray_blob_size (&global_result));
TEST_VERIFY (dynarray_blob_size (&global_result) >= expected_blobs);
/* Verify that there are no duplicates. */
qsort (dynarray_blob_begin (&global_result),
dynarray_blob_size (&global_result),
sizeof (struct blob), compare_blob);
struct blob *end = dynarray_blob_end (&global_result);
for (struct blob *p = dynarray_blob_begin (&global_result) + 1;
p < end; ++p)
{
if (compare_blob (p - 1, p) == 0)
{
support_record_failure ();
char *quoted = support_quote_blob (p->bytes, p->size);
printf ("error: %s: duplicate blob: \"%s\" (%d bytes)\n",
fname, quoted, (int) p->size);
printf (" first source: thread %d, index %u\n",
p[-1].thread_id, p[-1].index);
printf (" second source: thread %d, index %u\n",
p[0].thread_id, p[0].index);
free (quoted);
}
}
dynarray_blob_free (&global_result);
return 0;
}
static int
do_test (void)
{
/* Do not run more threads than the maximum of schedulable CPUs. */
cpu_set_t cpuset;
if (sched_getaffinity (0, sizeof cpuset, &cpuset) == 0)
{
unsigned int ncpus = CPU_COUNT (&cpuset);
/* Limit the number to not overload the system. */
outer_threads = (ncpus / 2) / inner_threads ?: 1;
}
printf ("info: outer_threads=%d inner_threads=%d\n", outer_threads,
inner_threads);
do_test_func ("arc4random", generate_arc4random);
do_test_func ("arc4random_buf", generate_arc4random_buf);
do_test_func ("arc4random_uniform", generate_arc4random_uniform);
return 0;
}
#include <support/test-driver.c>
|