about summary refs log tree commit diff
path: root/stdlib/msort.c
blob: 7d21c10fc9ac3bebbf44503c669d02cea5cc94b9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
/* An alternative to qsort, with an identical interface.
   This file is part of the GNU C Library.
   Copyright (C) 1992, 1995-1997, 1999, 2000, 2001, 2002
   Free Software Foundation, Inc.
   Original Implementation by Mike Haertel, September 1988.
   Towers of Hanoi Mergesort by Roger Sayle, January 2002.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, write to the Free
   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
   02111-1307 USA.  */

#include <alloca.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <memcopy.h>
#include <errno.h>


/* Check whether pointer P is aligned for access by type T. */
#define TYPE_ALIGNED(P,T)  (((char *) (P) - (char *) 0) % __alignof__ (T) == 0)


static int hanoi_sort (char *b, size_t n, size_t s,
                        __compar_fn_t cmp, char *t);
static int hanoi_sort_int (int *b, size_t n,
                           __compar_fn_t cmp, int *t);
#if INT_MAX != LONG_MAX
static int hanoi_sort_long (long int *b, size_t n,
                            __compar_fn_t cmp, long int *t);
#endif
static void msort_with_tmp (void *b, size_t n, size_t s,
			    __compar_fn_t cmp, void *t);


/* This routine implements "Towers of Hanoi Mergesort".  The algorithm
   sorts the n elements of size s pointed to by array b using comparison
   function cmp.  The argument t points to a suitable temporary buffer.
   If the return value is zero, the sorted array is returned in b, and
   for non-zero return values the sorted array is returned in t.  */
static int
hanoi_sort (char *b, size_t n, size_t s, __compar_fn_t cmp, char *t)
{
  size_t n1, n2;
  char *b1,*b2;
  char *t1,*t2;
  char *s1,*s2;
  size_t size;
  int result;
  char *ptr;

  if (n <= 1)
    return 0;

  if (n == 2)
    {
      b2 = b + s;
      if ((*cmp) (b, b2) <= 0)
	return 0;
      memcpy (__mempcpy (t, b2, s), b, s);
      return 1;
    }

  n1 = n/2;
  n2 = n - n1;
  /* n1 < n2!  */

  size = n1 * s;
  b1 = b;
  b2 = b + size;

  t1 = t;
  t2 = t + size;

  /* Recursively call hanoi_sort to sort the two halves of the array.
     Depending upon the return values, determine the values s1 and s2
     the locations of the two sorted subarrays, ptr, the location to
     contain the sorted array and result, the return value for this
     function.  Note that "ptr = result? t : b".  */
  if (hanoi_sort (b1, n1, s, cmp, t1))
    {
      if (hanoi_sort (b2, n2, s, cmp, t2))
	{
	  result = 0;
	  ptr = b;
	  s1 = t1;
	  s2 = t2;
	}
      else
	{
	  result = 0;
	  ptr = b;
	  s1 = t1;
	  s2 = b2;
	}
    }
  else
    {
      if (hanoi_sort (b2, n2, s, cmp, t2))
	{
	  result = 1;
	  ptr = t;
	  s1 = b1;
	  s2 = t2;
	}
      else
	{
	  result = 1;
	  ptr = t;
	  s1 = b1;
	  s2 = b2;
	}
    }

  /*  Merge the two sorted arrays s1 and s2 of n1 and n2 elements
      respectively, placing the result in ptr.  On entry, n1 > 0
      && n2 > 0, and with each iteration either n1 or n2 is decreased
      until either reaches zero, and the loop terminates via return.  */
  for (;;)
    {
      if ((*cmp) (s1, s2) <= 0)
	{
	  ptr = (char *) __mempcpy (ptr, s1, s);
	  s1 += s;
	  --n1;
	  if (n1 == 0)
            {
              if (ptr != s2)
                memcpy (ptr, s2, n2 * s);
              return result;
            }
	}
      else
	{
	  ptr = (char *) __mempcpy (ptr, s2, s);
	  s2 += s;
	  --n2;
	  if (n2 == 0)
	    {
	      memcpy (ptr, s1, n1 * s);
	      return result;
	    }
        }
    }
}


/* This routine is a variant of hanoi_sort that is optimized for the
   case where items to be sorted are the size of ints, and both b and
   t are suitably aligned.  The parameter s in not needed as it is
   known to be sizeof(int).  */
static int
hanoi_sort_int (int *b, size_t n, __compar_fn_t cmp, int *t)
{
  size_t n1, n2;
  int *b1,*b2;
  int *t1,*t2;
  int *s1,*s2;
  int result;
  int *ptr;

  if (n <= 1)
    return 0;

  if (n == 2)
    {
      if ((*cmp) (b, b + 1) <= 0)
	return 0;
      t[0] = b[1];
      t[1] = b[0];
      return 1;
    }

  n1 = n/2;
  n2 = n - n1;
  /* n1 < n2!  */

  b1 = b;
  b2 = b + n1;

  t1 = t;
  t2 = t + n1;

  /* Recursively call hanoi_sort_int to sort the two halves.  */
  if (hanoi_sort_int (b1, n1, cmp, t1))
    {
      if (hanoi_sort_int (b2, n2, cmp, t2))
	{
	  result = 0;
	  ptr = b;
	  s1 = t1;
	  s2 = t2;
	}
      else
	{
	  result = 0;
	  ptr = b;
	  s1 = t1;
	  s2 = b2;
	}
    }
  else
    {
      if (hanoi_sort_int (b2, n2, cmp, t2))
	{
	  result = 1;
	  ptr = t;
	  s1 = b1;
	  s2 = t2;
	}
      else
	{
	  result = 1;
	  ptr = t;
	  s1 = b1;
	  s2 = b2;
	}
    }

  /*  Merge n1 elements from s1 and n2 elements from s2 into ptr.  */
  for (;;)
    {
      if ((*cmp) (s1, s2) <= 0)
	{
	  *ptr++ = *s1++;
	  --n1;
	  if (n1 == 0)
            {
              if (ptr != s2)
                memcpy (ptr, s2, n2 * sizeof (int));
              return result;
            }
	}
      else
	{
	  *ptr++ = *s2++;
	  --n2;
	  if (n2 == 0)
	    {
	      memcpy (ptr, s1, n1 * sizeof (int));
	      return result;
	    }
	}
    }
}


#if INT_MAX != LONG_MAX
/* This routine is a variant of hanoi_sort that is optimized for the
   case where items to be sorted are the size of longs, and both b and
   t are suitably aligned.  The parameter s in not needed as it is
   known to be sizeof(long).  In case sizeof(int)== sizeof(long) we
   do not need this code since it would be the same as hanoi_sort_int.  */
static int
hanoi_sort_long (long int *b, size_t n, __compar_fn_t cmp, long int *t)
{
  size_t n1, n2;
  long int *b1,*b2;
  long int *t1,*t2;
  long int *s1,*s2;
  int result;
  long int *ptr;

  if (n <= 1)
    return 0;

  if (n == 2)
    {
      if ((*cmp) (b, b + 1) <= 0)
	return 0;
      t[0] = b[1];
      t[1] = b[0];
      return 1;
    }

  n1 = n/2;
  n2 = n - n1;
  /* n1 < n2!  */

  b1 = b;
  b2 = b + n1;

  t1 = t;
  t2 = t + n1;

  /* Recursively call hanoi_sort_long to sort the two halves.  */
  if (hanoi_sort_long (b1, n1, cmp, t1))
    {
      if (hanoi_sort_long (b2, n2, cmp, t2))
	{
	  result = 0;
	  ptr = b;
	  s1 = t1;
	  s2 = t2;
	}
      else
	{
	  result = 0;
	  ptr = b;
	  s1 = t1;
	  s2 = b2;
	}
    }
  else
    {
      if (hanoi_sort_long (b2, n2, cmp, t2))
	{
	  result = 1;
	  ptr = t;
	  s1 = b1;
	  s2 = t2;
	}
      else
	{
	  result = 1;
	  ptr = t;
	  s1 = b1;
	  s2 = b2;
	}
    }

  /*  Merge n1 elements from s1 and n2 elements from s2 into ptr.  */
  for (;;)
    {
      if ((*cmp) (s1, s2) <= 0)
	{
	  *ptr++ = *s1++;
	  --n1;
	  if (n1 == 0)
            {
              if (ptr != s2)
                memcpy (ptr, s2, n2 * sizeof (long));
              return result;
            }
	}
      else
	{
	  *ptr++ = *s2++;
	  --n2;
	  if (n2 == 0)
	    {
	      memcpy (ptr, s1, n1 * sizeof (long));
	      return result;
	    }
        }
    }
}
#endif


/* This routine preserves the original interface to msort_with_tmp and
   determines which variant of hanoi_sort to call, based upon item size
   and alignment.  */

static void
msort_with_tmp (void *b, size_t n, size_t s, __compar_fn_t cmp, void *t)
{
  const size_t size = n * s;

  if (s == sizeof (int) && TYPE_ALIGNED (b, int))
    {
      if (hanoi_sort_int (b, n, cmp, t))
        memcpy (b, t, size);
    }
#if INT_MAX != LONG_MAX
  else if (s == sizeof (long int) && TYPE_ALIGNED (b, long int))
    {
      if (hanoi_sort_long (b, n, cmp, t))
        memcpy (b, t, size);
    }
#endif
  else
    {
      /* Call the generic implementation.  */
      if (hanoi_sort (b, n, s, cmp, t))
        memcpy (b, t, size);
    }
}

void
qsort (void *b, size_t n, size_t s, __compar_fn_t cmp)
{
  const size_t size = n * s;

  if (size < 1024)
    {
      void *buf = __alloca (size);

      /* The temporary array is small, so put it on the stack.  */
      msort_with_tmp (b, n, s, cmp, buf);
    }
  else
    {
      /* We should avoid allocating too much memory since this might
	 have to be backed up by swap space.  */
      static long int phys_pages;
      static int pagesize;

      if (phys_pages == 0)
	{
	  phys_pages = __sysconf (_SC_PHYS_PAGES);

	  if (phys_pages == -1)
	    /* Error while determining the memory size.  So let's
	       assume there is enough memory.  Otherwise the
	       implementer should provide a complete implementation of
	       the `sysconf' function.  */
	    phys_pages = (long int) (~0ul >> 1);

	  /* The following determines that we will never use more than
	     a quarter of the physical memory.  */
	  phys_pages /= 4;

	  pagesize = __sysconf (_SC_PAGESIZE);
	}

      /* Just a comment here.  We cannot compute
	   phys_pages * pagesize
	   and compare the needed amount of memory against this value.
	   The problem is that some systems might have more physical
	   memory then can be represented with a `size_t' value (when
	   measured in bytes.  */

      /* If the memory requirements are too high don't allocate memory.  */
      if ((long int) (size / pagesize) > phys_pages)
	_quicksort (b, n, s, cmp);
      else
	{
	  /* It's somewhat large, so malloc it.  */
	  int save = errno;
	  char *tmp = malloc (size);
	  if (tmp == NULL)
	    {
	      /* Couldn't get space, so use the slower algorithm
		 that doesn't need a temporary array.  */
	      __set_errno (save);
	      _quicksort (b, n, s, cmp);
	    }
	  else
	    {
	      __set_errno (save);
	      msort_with_tmp (b, n, s, cmp, tmp);
	      free (tmp);
	    }
	}
    }
}