about summary refs log tree commit diff
path: root/sysdeps/libm-i387/e_powf.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/libm-i387/e_powf.S')
-rw-r--r--sysdeps/libm-i387/e_powf.S310
1 files changed, 0 insertions, 310 deletions
diff --git a/sysdeps/libm-i387/e_powf.S b/sysdeps/libm-i387/e_powf.S
deleted file mode 100644
index d7342bf56f..0000000000
--- a/sysdeps/libm-i387/e_powf.S
+++ /dev/null
@@ -1,310 +0,0 @@
-/* ix87 specific implementation of pow function.
-   Copyright (C) 1996, 1997 Free Software Foundation, Inc.
-   This file is part of the GNU C Library.
-   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
-
-   The GNU C Library is free software; you can redistribute it and/or
-   modify it under the terms of the GNU Library General Public License as
-   published by the Free Software Foundation; either version 2 of the
-   License, or (at your option) any later version.
-
-   The GNU C Library is distributed in the hope that it will be useful,
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-   Library General Public License for more details.
-
-   You should have received a copy of the GNU Library General Public
-   License along with the GNU C Library; see the file COPYING.LIB.  If not,
-   write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
-   Boston, MA 02111-1307, USA.  */
-
-#include <machine/asm.h>
-
-#ifdef __ELF__
-	.section .rodata
-#else
-	.text
-#endif
-
-	.align ALIGNARG(4)
-	ASM_TYPE_DIRECTIVE(infinity,@object)
-inf_zero:
-infinity:
-	.byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
-	ASM_SIZE_DIRECTIVE(infinity)
-	ASM_TYPE_DIRECTIVE(zero,@object)
-zero:	.double 0.0
-	ASM_SIZE_DIRECTIVE(zero)
-	ASM_TYPE_DIRECTIVE(minf_mzero,@object)
-minf_mzero:
-minfinity:
-	.byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
-mzero:
-	.byte 0, 0, 0, 0, 0, 0, 0, 0x80
-	ASM_SIZE_DIRECTIVE(minf_mzero)
-	ASM_TYPE_DIRECTIVE(one,@object)
-one:	.double 1.0
-	ASM_SIZE_DIRECTIVE(one)
-	ASM_TYPE_DIRECTIVE(limit,@object)
-limit:	.double 0.29
-	ASM_SIZE_DIRECTIVE(limit)
-
-#ifdef PIC
-#define MO(op) op##@GOTOFF(%ecx)
-#define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
-#else
-#define MO(op) op
-#define MOX(op,x,f) op(,x,f)
-#endif
-
-	.text
-ENTRY(__ieee754_powf)
-	flds	8(%esp)	// y
-	fxam
-
-#ifdef	PIC
-	call	1f
-1:	popl	%ecx
-	addl	$_GLOBAL_OFFSET_TABLE_+[.-1b], %ecx
-#endif
-
-	fnstsw
-	movb	%ah, %dl
-	andb	$0x45, %ah
-	cmpb	$0x40, %ah	// is y == 0 ?
-	je	11f
-
-	cmpb	$0x05, %ah	// is y == ±inf ?
-	je	12f
-
-	cmpb	$0x01, %ah	// is y == NaN ?
-	je	30f
-
-	flds	4(%esp)		// x : y
-
-	subl	$4, %esp
-
-	fxam
-	fnstsw
-	movb	%ah, %dh
-	andb	$0x45, %ah
-	cmpb	$0x40, %ah
-	je	20f		// x is ±0
-
-	cmpb	$0x05, %ah
-	je	15f		// x is ±inf
-
-	fxch			// y : x
-
-	/* First see whether `y' is a natural number.  In this case we
-	   can use a more precise algorithm.  */
-	fld	%st		// y : y : x
-	fistpl	(%esp)		// y : x
-	fildl	(%esp)		// int(y) : y : x
-	fucomp	%st(1)		// y : x
-	fnstsw
-	sahf
-	jne	2f
-
-	/* OK, we have an integer value for y.  */
-	popl	%edx
-	orl	$0, %edx
-	fstp	%st(0)		// x
-	jns	4f		// y >= 0, jump
-	fdivrl	MO(one)		// 1/x		(now referred to as x)
-	negl	%edx
-4:	fldl	MO(one)		// 1 : x
-	fxch
-
-6:	shrl	$1, %edx
-	jnc	5f
-	fxch
-	fmul	%st(1)		// x : ST*x
-	fxch
-5:	fmul	%st(0), %st	// x*x : ST*x
-	testl	%edx, %edx
-	jnz	6b
-	fstp	%st(0)		// ST*x
-30:	ret
-
-	.align ALIGNARG(4)
-2:	/* y is a real number.  */
-	fxch			// x : y
-	fldl	MO(one)		// 1.0 : x : y
-	fld	%st(1)		// x : 1.0 : x : y
-	fsub	%st(1)		// x-1 : 1.0 : x : y
-	fabs			// |x-1| : 1.0 : x : y
-	fcompl	MO(limit)	// 1.0 : x : y
-	fnstsw
-	fxch			// x : 1.0 : y
-	sahf
-	ja	7f
-	fsub	%st(1)		// x-1 : 1.0 : y
-	fyl2xp1			// log2(x) : y
-	jmp	8f
-
-7:	fyl2x			// log2(x) : y
-8:	fmul	%st(1)		// y*log2(x) : y
-	fst	%st(1)		// y*log2(x) : y*log2(x)
-	frndint			// int(y*log2(x)) : y*log2(x)
-	fsubr	%st, %st(1)	// int(y*log2(x)) : fract(y*log2(x))
-	fxch			// fract(y*log2(x)) : int(y*log2(x))
-	f2xm1			// 2^fract(y*log2(x))-1 : int(y*log2(x))
-	faddl	MO(one)		// 2^fract(y*log2(x)) : int(y*log2(x))
-	fscale			// 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x))
-	addl	$4, %esp
-	fstp	%st(1)		// 2^fract(y*log2(x))*2^int(y*log2(x))
-	ret
-
-
-	// pow(x,±0) = 1
-	.align ALIGNARG(4)
-11:	fstp	%st(0)		// pop y
-	fldl	MO(one)
-	ret
-
-	// y == ±inf
-	.align ALIGNARG(4)
-12:	fstp	%st(0)		// pop y
-	flds	4(%esp)		// x
-	fabs
-	fcompl	MO(one)		// < 1, == 1, or > 1
-	fnstsw
-	andb	$0x45, %ah
-	cmpb	$0x45, %ah
-	je	13f		// jump if x is NaN
-
-	cmpb	$0x40, %ah
-	je	14f		// jump if |x| == 1
-
-	shlb	$1, %ah
-	xorb	%ah, %dl
-	andl	$2, %edx
-	fldl	MOX(inf_zero, %edx, 4)
-	ret
-
-	.align ALIGNARG(4)
-14:	fldl	MO(infinity)
-	fmull	MO(zero)	// raise invalid exception
-	ret
-
-	.align ALIGNARG(4)
-13:	flds	4(%esp)		// load x == NaN
-	ret
-
-	.align ALIGNARG(4)
-	// x is ±inf
-15:	fstp	%st(0)		// y
-	testb	$2, %dh
-	jz	16f		// jump if x == +inf
-
-	// We must find out whether y is an odd integer.
-	fld	%st		// y : y
-	fistpl	(%esp)		// y
-	fildl	(%esp)		// int(y) : y
-	fucompp			// <empty>
-	fnstsw
-	sahf
-	jne	17f
-
-	// OK, the value is an integer, but is the number of bits small
-	// enough so that all are coming from the mantissa?
-	popl	%edx
-	testb	$1, %dl
-	jz	18f		// jump if not odd
-	movl	%edx, %eax
-	orl	%edx, %edx
-	jns	155f
-	negl	%eax
-155:	cmpl	$0x01000000, %eax
-	ja	18f		// does not fit in mantissa bits
-	// It's an odd integer.
-	shrl	$31, %edx
-	fldl	MOX(minf_mzero, %edx, 8)
-	ret
-
-	.align ALIGNARG(4)
-16:	fcompl	MO(zero)
-	addl	$4, %esp
-	fnstsw
-	shrl	$5, %eax
-	andl	$8, %eax
-	fldl	MOX(inf_zero, %eax, 1)
-	ret
-
-	.align ALIGNARG(4)
-17:	shll	$30, %edx	// sign bit for y in right position
-	addl	$4, %esp
-18:	shrl	$31, %edx
-	fldl	MOX(inf_zero, %edx, 8)
-	ret
-
-	.align ALIGNARG(4)
-	// x is ±0
-20:	fstp	%st(0)		// y
-	testb	$2, %dl
-	jz	21f		// y > 0
-
-	// x is ±0 and y is < 0.  We must find out whether y is an odd integer.
-	testb	$2, %dh
-	jz	25f
-
-	fld	%st		// y : y
-	fistpl	(%esp)		// y
-	fildl	(%esp)		// int(y) : y
-	fucompp			// <empty>
-	fnstsw
-	sahf
-	jne	26f
-
-	// OK, the value is an integer, but is the number of bits small
-	// enough so that all are coming from the mantissa?
-	popl	%edx
-	testb	$1, %dl
-	jz	27f		// jump if not odd
-	cmpl	$0xff000000, %edx
-	jbe	27f		// does not fit in mantissa bits
-	// It's an odd integer.
-	// Raise divide-by-zero exception and get minus infinity value.
-	fldl	MO(one)
-	fdivl	MO(zero)
-	fchs
-	ret
-
-25:	fstp	%st(0)
-26:	popl	%eax
-27:	// Raise divide-by-zero exception and get infinity value.
-	fldl	MO(one)
-	fdivl	MO(zero)
-	ret
-
-	.align ALIGNARG(4)
-	// x is ±0 and y is > 0.  We must find out whether y is an odd integer.
-21:	testb	$2, %dh
-	jz	22f
-
-	fld	%st		// y : y
-	fistpl	(%esp)		// y
-	fildl	(%esp)		// int(y) : y
-	fucompp			// <empty>
-	fnstsw
-	sahf
-	jne	23f
-
-	// OK, the value is an integer, but is the number of bits small
-	// enough so that all are coming from the mantissa?
-	popl	%edx
-	testb	$1, %dl
-	jz	24f		// jump if not odd
-	cmpl	$0xff000000, %edx
-	jae	24f		// does not fit in mantissa bits
-	// It's an odd integer.
-	fldl	MO(mzero)
-	ret
-
-22:	fstp	%st(0)
-23:	popl	%eax
-24:	fldl	MO(zero)
-	ret
-
-END(__ieee754_powf)