about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/s_cosf.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/s_cosf.S')
-rw-r--r--sysdeps/ia64/fpu/s_cosf.S717
1 files changed, 0 insertions, 717 deletions
diff --git a/sysdeps/ia64/fpu/s_cosf.S b/sysdeps/ia64/fpu/s_cosf.S
deleted file mode 100644
index f793e61fd3..0000000000
--- a/sysdeps/ia64/fpu/s_cosf.S
+++ /dev/null
@@ -1,717 +0,0 @@
-.file "sincosf.s"
-
-
-// Copyright (c) 2000 - 2005, Intel Corporation
-// All rights reserved.
-//
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 02/02/00 Initial version
-// 04/02/00 Unwind support added.
-// 06/16/00 Updated tables to enforce symmetry
-// 08/31/00 Saved 2 cycles in main path, and 9 in other paths.
-// 09/20/00 The updated tables regressed to an old version, so reinstated them
-// 10/18/00 Changed one table entry to ensure symmetry
-// 01/03/01 Improved speed, fixed flag settings for small arguments.
-// 02/18/02 Large arguments processing routine excluded
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 06/03/02 Insure inexact flag set for large arg result
-// 09/05/02 Single precision version is made using double precision one as base
-// 02/10/03 Reordered header: .section, .global, .proc, .align
-// 03/31/05 Reformatted delimiters between data tables
-//
-// API
-//==============================================================
-// float sinf( float x);
-// float cosf( float x);
-//
-// Overview of operation
-//==============================================================
-//
-// Step 1
-// ======
-// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k  where k=4
-//    divide x by pi/2^k.
-//    Multiply by 2^k/pi.
-//    nfloat = Round result to integer (round-to-nearest)
-//
-// r = x -  nfloat * pi/2^k
-//    Do this as (x -  nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k)
-
-//    for increased accuracy.
-//    pi/2^k is stored as two numbers that when added make pi/2^k.
-//       pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
-//    HIGH part is rounded to zero, LOW - to nearest
-//
-// x = (nfloat * pi/2^k) + r
-//    r is small enough that we can use a polynomial approximation
-//    and is referred to as the reduced argument.
-//
-// Step 3
-// ======
-// Take the unreduced part and remove the multiples of 2pi.
-// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
-//
-//    nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
-//    N * 2^(k+1)
-//    nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
-//    nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
-//    nfloat * pi/2^k = N2pi + M * pi/2^k
-//
-//
-// Sin(x) = Sin((nfloat * pi/2^k) + r)
-//        = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
-//
-//          Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
-//                               = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
-//                               = Sin(Mpi/2^k)
-//
-//          Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
-//                               = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
-//                               = Cos(Mpi/2^k)
-//
-// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
-//
-//
-// Step 4
-// ======
-// 0 <= M < 2^(k+1)
-// There are 2^(k+1) Sin entries in a table.
-// There are 2^(k+1) Cos entries in a table.
-//
-// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
-//
-//
-// Step 5
-// ======
-// Calculate Cos(r) and Sin(r) by polynomial approximation.
-//
-// Cos(r) = 1 + r^2 q1  + r^4 q2  = Series for Cos
-// Sin(r) = r + r^3 p1  + r^5 p2  = Series for Sin
-//
-// and the coefficients q1, q2 and p1, p2 are stored in a table
-//
-//
-// Calculate
-// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
-//
-// as follows
-//
-//    S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
-//    rsq = r*r
-//
-//
-//    P = P1 + r^2*P2
-//    Q = Q1 + r^2*Q2
-//
-//       rcub = r * rsq
-//       Sin(r) = r + rcub * P
-//              = r + r^3p1  + r^5p2 = Sin(r)
-//
-//            The coefficients are not exactly these values, but almost.
-//
-//            p1 = -1/6  = -1/3!
-//            p2 = 1/120 =  1/5!
-//            p3 = -1/5040 = -1/7!
-//            p4 = 1/362889 = 1/9!
-//
-//       P =  r + r^3 * P
-//
-//    Answer = S[m] Cos(r) + C[m] P
-//
-//       Cos(r) = 1 + rsq Q
-//       Cos(r) = 1 + r^2 Q
-//       Cos(r) = 1 + r^2 (q1 + r^2q2)
-//       Cos(r) = 1 + r^2q1 + r^4q2
-//
-//       S[m] Cos(r) = S[m](1 + rsq Q)
-//       S[m] Cos(r) = S[m] + S[m] rsq Q
-//       S[m] Cos(r) = S[m] + s_rsq Q
-//       Q         = S[m] + s_rsq Q
-//
-// Then,
-//
-//    Answer = Q + C[m] P
-
-
-// Registers used
-//==============================================================
-// general input registers:
-// r14 -> r19
-// r32 -> r45
-
-// predicate registers used:
-// p6 -> p14
-
-// floating-point registers used
-// f9 -> f15
-// f32 -> f61
-
-// Assembly macros
-//==============================================================
-sincosf_NORM_f8                 = f9
-sincosf_W                       = f10
-sincosf_int_Nfloat              = f11
-sincosf_Nfloat                  = f12
-
-sincosf_r                       = f13
-sincosf_rsq                     = f14
-sincosf_rcub                    = f15
-sincosf_save_tmp                = f15
-
-sincosf_Inv_Pi_by_16            = f32
-sincosf_Pi_by_16_1              = f33
-sincosf_Pi_by_16_2              = f34
-
-sincosf_Inv_Pi_by_64            = f35
-
-sincosf_Pi_by_16_3              = f36
-
-sincosf_r_exact                 = f37
-
-sincosf_Sm                      = f38
-sincosf_Cm                      = f39
-
-sincosf_P1                      = f40
-sincosf_Q1                      = f41
-sincosf_P2                      = f42
-sincosf_Q2                      = f43
-sincosf_P3                      = f44
-sincosf_Q3                      = f45
-sincosf_P4                      = f46
-sincosf_Q4                      = f47
-
-sincosf_P_temp1                 = f48
-sincosf_P_temp2                 = f49
-
-sincosf_Q_temp1                 = f50
-sincosf_Q_temp2                 = f51
-
-sincosf_P                       = f52
-sincosf_Q                       = f53
-
-sincosf_srsq                    = f54
-
-sincosf_SIG_INV_PI_BY_16_2TO61  = f55
-sincosf_RSHF_2TO61              = f56
-sincosf_RSHF                    = f57
-sincosf_2TOM61                  = f58
-sincosf_NFLOAT                  = f59
-sincosf_W_2TO61_RSH             = f60
-
-fp_tmp                          = f61
-
-/////////////////////////////////////////////////////////////
-
-sincosf_AD_1                    = r33
-sincosf_AD_2                    = r34
-sincosf_exp_limit               = r35
-sincosf_r_signexp               = r36
-sincosf_AD_beta_table           = r37
-sincosf_r_sincos                = r38
-
-sincosf_r_exp                   = r39
-sincosf_r_17_ones               = r40
-
-sincosf_GR_sig_inv_pi_by_16     = r14
-sincosf_GR_rshf_2to61           = r15
-sincosf_GR_rshf                 = r16
-sincosf_GR_exp_2tom61           = r17
-sincosf_GR_n                    = r18
-sincosf_GR_m                    = r19
-sincosf_GR_32m                  = r19
-sincosf_GR_all_ones             = r19
-
-gr_tmp                          = r41
-GR_SAVE_PFS                     = r41
-GR_SAVE_B0                      = r42
-GR_SAVE_GP                      = r43
-
-RODATA
-.align 16
-
-// Pi/16 parts
-LOCAL_OBJECT_START(double_sincosf_pi)
-   data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
-   data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
-LOCAL_OBJECT_END(double_sincosf_pi)
-
-// Coefficients for polynomials
-LOCAL_OBJECT_START(double_sincosf_pq_k4)
-   data8 0x3F810FABB668E9A2 // P2
-   data8 0x3FA552E3D6DE75C9 // Q2
-   data8 0xBFC555554447BC7F // P1
-   data8 0xBFDFFFFFC447610A // Q1
-LOCAL_OBJECT_END(double_sincosf_pq_k4)
-
-// Sincos table (S[m], C[m])
-LOCAL_OBJECT_START(double_sin_cos_beta_k4)
-    data8 0x0000000000000000 // sin ( 0 Pi / 16 )
-    data8 0x3FF0000000000000 // cos ( 0 Pi / 16 )
-//
-    data8 0x3FC8F8B83C69A60B // sin ( 1 Pi / 16 )
-    data8 0x3FEF6297CFF75CB0 // cos ( 1 Pi / 16 )
-//
-    data8 0x3FD87DE2A6AEA963 // sin ( 2 Pi / 16 )
-    data8 0x3FED906BCF328D46 // cos ( 2 Pi / 16 )
-//
-    data8 0x3FE1C73B39AE68C8 // sin ( 3 Pi / 16 )
-    data8 0x3FEA9B66290EA1A3 // cos ( 3 Pi / 16 )
-//
-    data8 0x3FE6A09E667F3BCD // sin ( 4 Pi / 16 )
-    data8 0x3FE6A09E667F3BCD // cos ( 4 Pi / 16 )
-//
-    data8 0x3FEA9B66290EA1A3 // sin ( 5 Pi / 16 )
-    data8 0x3FE1C73B39AE68C8 // cos ( 5 Pi / 16 )
-//
-    data8 0x3FED906BCF328D46 // sin ( 6 Pi / 16 )
-    data8 0x3FD87DE2A6AEA963 // cos ( 6 Pi / 16 )
-//
-    data8 0x3FEF6297CFF75CB0 // sin ( 7 Pi / 16 )
-    data8 0x3FC8F8B83C69A60B // cos ( 7 Pi / 16 )
-//
-    data8 0x3FF0000000000000 // sin ( 8 Pi / 16 )
-    data8 0x0000000000000000 // cos ( 8 Pi / 16 )
-//
-    data8 0x3FEF6297CFF75CB0 // sin ( 9 Pi / 16 )
-    data8 0xBFC8F8B83C69A60B // cos ( 9 Pi / 16 )
-//
-    data8 0x3FED906BCF328D46 // sin ( 10 Pi / 16 )
-    data8 0xBFD87DE2A6AEA963 // cos ( 10 Pi / 16 )
-//
-    data8 0x3FEA9B66290EA1A3 // sin ( 11 Pi / 16 )
-    data8 0xBFE1C73B39AE68C8 // cos ( 11 Pi / 16 )
-//
-    data8 0x3FE6A09E667F3BCD // sin ( 12 Pi / 16 )
-    data8 0xBFE6A09E667F3BCD // cos ( 12 Pi / 16 )
-//
-    data8 0x3FE1C73B39AE68C8 // sin ( 13 Pi / 16 )
-    data8 0xBFEA9B66290EA1A3 // cos ( 13 Pi / 16 )
-//
-    data8 0x3FD87DE2A6AEA963 // sin ( 14 Pi / 16 )
-    data8 0xBFED906BCF328D46 // cos ( 14 Pi / 16 )
-//
-    data8 0x3FC8F8B83C69A60B // sin ( 15 Pi / 16 )
-    data8 0xBFEF6297CFF75CB0 // cos ( 15 Pi / 16 )
-//
-    data8 0x0000000000000000 // sin ( 16 Pi / 16 )
-    data8 0xBFF0000000000000 // cos ( 16 Pi / 16 )
-//
-    data8 0xBFC8F8B83C69A60B // sin ( 17 Pi / 16 )
-    data8 0xBFEF6297CFF75CB0 // cos ( 17 Pi / 16 )
-//
-    data8 0xBFD87DE2A6AEA963 // sin ( 18 Pi / 16 )
-    data8 0xBFED906BCF328D46 // cos ( 18 Pi / 16 )
-//
-    data8 0xBFE1C73B39AE68C8 // sin ( 19 Pi / 16 )
-    data8 0xBFEA9B66290EA1A3 // cos ( 19 Pi / 16 )
-//
-    data8 0xBFE6A09E667F3BCD // sin ( 20 Pi / 16 )
-    data8 0xBFE6A09E667F3BCD // cos ( 20 Pi / 16 )
-//
-    data8 0xBFEA9B66290EA1A3 // sin ( 21 Pi / 16 )
-    data8 0xBFE1C73B39AE68C8 // cos ( 21 Pi / 16 )
-//
-    data8 0xBFED906BCF328D46 // sin ( 22 Pi / 16 )
-    data8 0xBFD87DE2A6AEA963 // cos ( 22 Pi / 16 )
-//
-    data8 0xBFEF6297CFF75CB0 // sin ( 23 Pi / 16 )
-    data8 0xBFC8F8B83C69A60B // cos ( 23 Pi / 16 )
-//
-    data8 0xBFF0000000000000 // sin ( 24 Pi / 16 )
-    data8 0x0000000000000000 // cos ( 24 Pi / 16 )
-//
-    data8 0xBFEF6297CFF75CB0 // sin ( 25 Pi / 16 )
-    data8 0x3FC8F8B83C69A60B // cos ( 25 Pi / 16 )
-//
-    data8 0xBFED906BCF328D46 // sin ( 26 Pi / 16 )
-    data8 0x3FD87DE2A6AEA963 // cos ( 26 Pi / 16 )
-//
-    data8 0xBFEA9B66290EA1A3 // sin ( 27 Pi / 16 )
-    data8 0x3FE1C73B39AE68C8 // cos ( 27 Pi / 16 )
-//
-    data8 0xBFE6A09E667F3BCD // sin ( 28 Pi / 16 )
-    data8 0x3FE6A09E667F3BCD // cos ( 28 Pi / 16 )
-//
-    data8 0xBFE1C73B39AE68C8 // sin ( 29 Pi / 16 )
-    data8 0x3FEA9B66290EA1A3 // cos ( 29 Pi / 16 )
-//
-    data8 0xBFD87DE2A6AEA963 // sin ( 30 Pi / 16 )
-    data8 0x3FED906BCF328D46 // cos ( 30 Pi / 16 )
-//
-    data8 0xBFC8F8B83C69A60B // sin ( 31 Pi / 16 )
-    data8 0x3FEF6297CFF75CB0 // cos ( 31 Pi / 16 )
-//
-    data8 0x0000000000000000 // sin ( 32 Pi / 16 )
-    data8 0x3FF0000000000000 // cos ( 32 Pi / 16 )
-LOCAL_OBJECT_END(double_sin_cos_beta_k4)
-
-.section .text
-
-////////////////////////////////////////////////////////
-// There are two entry points: sin and cos
-// If from sin, p8 is true
-// If from cos, p9 is true
-
-GLOBAL_IEEE754_ENTRY(sinf)
-
-{ .mlx
-      alloc         r32                 = ar.pfs,1,13,0,0
-      movl  sincosf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A //signd of 16/pi
-}
-{ .mlx
-      addl         sincosf_AD_1         = @ltoff(double_sincosf_pi), gp
-      movl  sincosf_GR_rshf_2to61       = 0x47b8000000000000 // 1.1 2^(63+63-2)
-};;
-
-{ .mfi
-      ld8           sincosf_AD_1        = [sincosf_AD_1]
-      fnorm.s1      sincosf_NORM_f8     = f8     // Normalize argument
-      cmp.eq        p8,p9               = r0, r0 // set p8 (clear p9) for sin
-}
-{ .mib
-      mov           sincosf_GR_exp_2tom61 = 0xffff-61 // exponent of scale 2^-61
-      mov           sincosf_r_sincos      = 0x0       // 0 for sin
-      br.cond.sptk  _SINCOSF_COMMON                 // go to common part
-};;
-
-GLOBAL_IEEE754_END(sinf)
-libm_alias_float_other (__sin, sin)
-
-GLOBAL_IEEE754_ENTRY(cosf)
-
-{ .mlx
-      alloc         r32                 = ar.pfs,1,13,0,0
-      movl  sincosf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A //signd of 16/pi
-}
-{ .mlx
-      addl          sincosf_AD_1        = @ltoff(double_sincosf_pi), gp
-      movl  sincosf_GR_rshf_2to61       = 0x47b8000000000000 // 1.1 2^(63+63-2)
-};;
-
-{ .mfi
-      ld8           sincosf_AD_1        = [sincosf_AD_1]
-      fnorm.s1      sincosf_NORM_f8     = f8        // Normalize argument
-      cmp.eq        p9,p8               = r0, r0    // set p9 (clear p8) for cos
-}
-{ .mib
-      mov           sincosf_GR_exp_2tom61 = 0xffff-61 // exponent of scale 2^-61
-      mov           sincosf_r_sincos      = 0x8       // 8 for cos
-      nop.b         999
-};;
-
-////////////////////////////////////////////////////////
-// All entry points end up here.
-// If from sin, sincosf_r_sincos is 0 and p8 is true
-// If from cos, sincosf_r_sincos is 8 = 2^(k-1) and p9 is true
-// We add sincosf_r_sincos to N
-
-///////////// Common sin and cos part //////////////////
-_SINCOSF_COMMON:
-
-//  Form two constants we need
-//  16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
-//  1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
-//  fcmp used to set denormal, and invalid on snans
-{ .mfi
-      setf.sig      sincosf_SIG_INV_PI_BY_16_2TO61 = sincosf_GR_sig_inv_pi_by_16
-      fclass.m      p6,p0                          = f8, 0xe7 // if x=0,inf,nan
-      mov           sincosf_exp_limit              = 0x10017
-}
-{ .mlx
-      setf.d        sincosf_RSHF_2TO61  = sincosf_GR_rshf_2to61
-      movl          sincosf_GR_rshf     = 0x43e8000000000000 // 1.1000 2^63
-};;                                                          // Right shift
-
-//  Form another constant
-//  2^-61 for scaling Nfloat
-//  0x10017 is register_bias + 24.
-//  So if f8 >= 2^24, go to large argument routines
-{ .mmi
-      getf.exp      sincosf_r_signexp   = f8
-      setf.exp      sincosf_2TOM61      = sincosf_GR_exp_2tom61
-      addl          gr_tmp              = -1,r0 // For "inexect" constant create
-};;
-
-// Load the two pieces of pi/16
-// Form another constant
-//  1.1000...000 * 2^63, the right shift constant
-{ .mmb
-      ldfe          sincosf_Pi_by_16_1  = [sincosf_AD_1],16
-      setf.d        sincosf_RSHF        = sincosf_GR_rshf
-(p6)  br.cond.spnt  _SINCOSF_SPECIAL_ARGS
-};;
-
-// Getting argument's exp for "large arguments" filtering
-{ .mmi
-      ldfe          sincosf_Pi_by_16_2  = [sincosf_AD_1],16
-      setf.sig      fp_tmp              = gr_tmp // constant for inexact set
-      nop.i         999
-};;
-
-// Polynomial coefficients (Q2, Q1, P2, P1) loading
-{ .mmi
-      ldfpd         sincosf_P2,sincosf_Q2 = [sincosf_AD_1],16
-      nop.m         999
-      nop.i         999
-};;
-
-// Select exponent (17 lsb)
-{ .mmi
-      ldfpd         sincosf_P1,sincosf_Q1 = [sincosf_AD_1],16
-      nop.m         999
-      dep.z         sincosf_r_exp         = sincosf_r_signexp, 0, 17
-};;
-
-// p10 is true if we must call routines to handle larger arguments
-// p10 is true if f8 exp is >= 0x10017 (2^24)
-{ .mfb
-      cmp.ge        p10,p0              = sincosf_r_exp,sincosf_exp_limit
-      nop.f         999
-(p10) br.cond.spnt  _SINCOSF_LARGE_ARGS // Go to "large args" routine
-};;
-
-// sincosf_W          = x * sincosf_Inv_Pi_by_16
-// Multiply x by scaled 16/pi and add large const to shift integer part of W to
-//   rightmost bits of significand
-{ .mfi
-      nop.m         999
-      fma.s1 sincosf_W_2TO61_RSH = sincosf_NORM_f8, sincosf_SIG_INV_PI_BY_16_2TO61, sincosf_RSHF_2TO61
-      nop.i         999
-};;
-
-// sincosf_NFLOAT = Round_Int_Nearest(sincosf_W)
-// This is done by scaling back by 2^-61 and subtracting the shift constant
-{ .mfi
-      nop.m         999
-      fms.s1 sincosf_NFLOAT = sincosf_W_2TO61_RSH,sincosf_2TOM61,sincosf_RSHF
-      nop.i         999
-};;
-
-// get N = (int)sincosf_int_Nfloat
-{ .mfi
-      getf.sig      sincosf_GR_n        = sincosf_W_2TO61_RSH // integer N value
-      nop.f         999
-      nop.i         999
-};;
-
-// Add 2^(k-1) (which is in sincosf_r_sincos=8) to N
-// sincosf_r          = -sincosf_Nfloat * sincosf_Pi_by_16_1 + x
-{ .mfi
-      add           sincosf_GR_n        = sincosf_GR_n, sincosf_r_sincos
-      fnma.s1 sincosf_r = sincosf_NFLOAT, sincosf_Pi_by_16_1, sincosf_NORM_f8
-      nop.i         999
-};;
-
-// Get M (least k+1 bits of N)
-{ .mmi
-      and           sincosf_GR_m        = 0x1f,sincosf_GR_n // Put mask 0x1F  -
-      nop.m         999                                     // - select k+1 bits
-      nop.i         999
-};;
-
-// Add 16*M to address of sin_cos_beta table
-{ .mfi
-      shladd        sincosf_AD_2        = sincosf_GR_32m, 4, sincosf_AD_1
-(p8)  fclass.m.unc  p10,p0              = f8,0x0b  // If sin denormal input -
-      nop.i         999
-};;
-
-// Load Sin and Cos table value using obtained index m  (sincosf_AD_2)
-{ .mfi
-      ldfd          sincosf_Sm          = [sincosf_AD_2],8 // Sin value S[m]
-(p9)  fclass.m.unc  p11,p0              = f8,0x0b  // If cos denormal input -
-      nop.i         999                            // - set denormal
-};;
-
-// sincosf_r          = sincosf_r -sincosf_Nfloat * sincosf_Pi_by_16_2
-{ .mfi
-      ldfd          sincosf_Cm          = [sincosf_AD_2] // Cos table value C[m]
-      fnma.s1  sincosf_r_exact = sincosf_NFLOAT, sincosf_Pi_by_16_2, sincosf_r
-      nop.i         999
-}
-// get rsq = r*r
-{ .mfi
-      nop.m         999
-      fma.s1        sincosf_rsq         = sincosf_r, sincosf_r,  f0 // r^2 = r*r
-      nop.i         999
-};;
-
-{ .mfi
-      nop.m         999
-      fmpy.s0       fp_tmp              = fp_tmp, fp_tmp // forces inexact flag
-      nop.i         999
-};;
-
-// Polynomials calculation
-// Q = Q2*r^2 + Q1
-// P = P2*r^2 + P1
-{ .mfi
-      nop.m         999
-      fma.s1        sincosf_Q           = sincosf_rsq, sincosf_Q2, sincosf_Q1
-      nop.i         999
-}
-{ .mfi
-      nop.m         999
-      fma.s1        sincosf_P           = sincosf_rsq, sincosf_P2, sincosf_P1
-      nop.i         999
-};;
-
-// get rcube and S[m]*r^2
-{ .mfi
-      nop.m         999
-      fmpy.s1       sincosf_srsq        = sincosf_Sm,sincosf_rsq // r^2*S[m]
-      nop.i         999
-}
-{ .mfi
-      nop.m         999
-      fmpy.s1       sincosf_rcub        = sincosf_r_exact, sincosf_rsq
-      nop.i         999
-};;
-
-// Get final P and Q
-// Q = Q*S[m]*r^2 + S[m]
-// P = P*r^3 + r
-{ .mfi
-      nop.m         999
-      fma.s1        sincosf_Q           = sincosf_srsq,sincosf_Q, sincosf_Sm
-      nop.i         999
-}
-{ .mfi
-      nop.m         999
-      fma.s1        sincosf_P           = sincosf_rcub,sincosf_P,sincosf_r_exact
-      nop.i         999
-};;
-
-// If sinf(denormal) - force underflow to be set
-.pred.rel "mutex",p10,p11
-{ .mfi
-      nop.m         999
-(p10) fmpy.s.s0     fp_tmp              = f8,f8 // forces underflow flag
-      nop.i         999                         // for denormal sine args
-}
-// If cosf(denormal) - force denormal to be set
-{ .mfi
-      nop.m         999
-(p11) fma.s.s0     fp_tmp              = f8, f1, f8 // forces denormal flag
-      nop.i         999                              // for denormal cosine args
-};;
-
-
-// Final calculation
-// result = C[m]*P + Q
-{ .mfb
-      nop.m         999
-      fma.s.s0      f8                  = sincosf_Cm, sincosf_P, sincosf_Q
-      br.ret.sptk   b0 // Exit for common path
-};;
-
-////////// x = 0/Inf/NaN path //////////////////
-_SINCOSF_SPECIAL_ARGS:
-.pred.rel "mutex",p8,p9
-// sinf(+/-0) = +/-0
-// sinf(Inf)  = NaN
-// sinf(NaN)  = NaN
-{ .mfi
-      nop.m         999
-(p8)  fma.s.s0      f8                  = f8, f0, f0 // sinf(+/-0,NaN,Inf)
-      nop.i         999
-}
-// cosf(+/-0) = 1.0
-// cosf(Inf)  = NaN
-// cosf(NaN)  = NaN
-{ .mfb
-      nop.m         999
-(p9)  fma.s.s0      f8                  = f8, f0, f1 // cosf(+/-0,NaN,Inf)
-      br.ret.sptk   b0 // Exit for x = 0/Inf/NaN path
-};;
-
-GLOBAL_IEEE754_END(cosf)
-libm_alias_float_other (__cos, cos)
-
-//////////// x >= 2^24 - large arguments routine call ////////////
-LOCAL_LIBM_ENTRY(__libm_callout_sincosf)
-_SINCOSF_LARGE_ARGS:
-.prologue
-{ .mfi
-      mov           sincosf_GR_all_ones = -1 // 0xffffffff
-      nop.f         999
-.save ar.pfs,GR_SAVE_PFS
-      mov           GR_SAVE_PFS         = ar.pfs
-}
-;;
-
-{ .mfi
-      mov           GR_SAVE_GP          = gp
-      nop.f         999
-.save b0, GR_SAVE_B0
-      mov           GR_SAVE_B0          = b0
-}
-.body
-
-{ .mbb
-      setf.sig      sincosf_save_tmp    = sincosf_GR_all_ones  // inexact set
-      nop.b         999
-(p8)  br.call.sptk.many b0              = __libm_sin_large# // sinf(large_X)
-};;
-
-{ .mbb
-      cmp.ne        p9,p0               = sincosf_r_sincos, r0 // set p9 if cos
-      nop.b         999
-(p9)  br.call.sptk.many b0              = __libm_cos_large# // cosf(large_X)
-};;
-
-{ .mfi
-      mov           gp                  = GR_SAVE_GP
-      fma.s.s0      f8                  = f8, f1, f0 // Round result to single
-      mov           b0                  = GR_SAVE_B0
-}
-{ .mfi // force inexact set
-      nop.m         999
-      fmpy.s0       sincosf_save_tmp    = sincosf_save_tmp, sincosf_save_tmp
-      nop.i         999
-};;
-
-{ .mib
-      nop.m         999
-      mov           ar.pfs              = GR_SAVE_PFS
-      br.ret.sptk   b0 // Exit for large arguments routine call
-};;
-LOCAL_LIBM_END(__libm_callout_sincosf)
-
-.type    __libm_sin_large#, @function
-.global  __libm_sin_large#
-.type    __libm_cos_large#, @function
-.global  __libm_cos_large#