diff options
Diffstat (limited to 'sysdeps/ia64/fpu/s_cosf.S')
-rw-r--r-- | sysdeps/ia64/fpu/s_cosf.S | 717 |
1 files changed, 0 insertions, 717 deletions
diff --git a/sysdeps/ia64/fpu/s_cosf.S b/sysdeps/ia64/fpu/s_cosf.S deleted file mode 100644 index f793e61fd3..0000000000 --- a/sysdeps/ia64/fpu/s_cosf.S +++ /dev/null @@ -1,717 +0,0 @@ -.file "sincosf.s" - - -// Copyright (c) 2000 - 2005, Intel Corporation -// All rights reserved. -// -// -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// -// * Redistributions in binary form must reproduce the above copyright -// notice, this list of conditions and the following disclaimer in the -// documentation and/or other materials provided with the distribution. -// -// * The name of Intel Corporation may not be used to endorse or promote -// products derived from this software without specific prior written -// permission. - -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS -// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, -// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, -// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR -// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY -// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING -// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -// -// Intel Corporation is the author of this code, and requests that all -// problem reports or change requests be submitted to it directly at -// http://www.intel.com/software/products/opensource/libraries/num.htm. -// -// History -//============================================================== -// 02/02/00 Initial version -// 04/02/00 Unwind support added. -// 06/16/00 Updated tables to enforce symmetry -// 08/31/00 Saved 2 cycles in main path, and 9 in other paths. -// 09/20/00 The updated tables regressed to an old version, so reinstated them -// 10/18/00 Changed one table entry to ensure symmetry -// 01/03/01 Improved speed, fixed flag settings for small arguments. -// 02/18/02 Large arguments processing routine excluded -// 05/20/02 Cleaned up namespace and sf0 syntax -// 06/03/02 Insure inexact flag set for large arg result -// 09/05/02 Single precision version is made using double precision one as base -// 02/10/03 Reordered header: .section, .global, .proc, .align -// 03/31/05 Reformatted delimiters between data tables -// -// API -//============================================================== -// float sinf( float x); -// float cosf( float x); -// -// Overview of operation -//============================================================== -// -// Step 1 -// ====== -// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4 -// divide x by pi/2^k. -// Multiply by 2^k/pi. -// nfloat = Round result to integer (round-to-nearest) -// -// r = x - nfloat * pi/2^k -// Do this as (x - nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k) - -// for increased accuracy. -// pi/2^k is stored as two numbers that when added make pi/2^k. -// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k) -// HIGH part is rounded to zero, LOW - to nearest -// -// x = (nfloat * pi/2^k) + r -// r is small enough that we can use a polynomial approximation -// and is referred to as the reduced argument. -// -// Step 3 -// ====== -// Take the unreduced part and remove the multiples of 2pi. -// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits -// -// nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1) -// N * 2^(k+1) -// nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k -// nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k -// nfloat * pi/2^k = N2pi + M * pi/2^k -// -// -// Sin(x) = Sin((nfloat * pi/2^k) + r) -// = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r) -// -// Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k) -// = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k) -// = Sin(Mpi/2^k) -// -// Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k) -// = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k) -// = Cos(Mpi/2^k) -// -// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r) -// -// -// Step 4 -// ====== -// 0 <= M < 2^(k+1) -// There are 2^(k+1) Sin entries in a table. -// There are 2^(k+1) Cos entries in a table. -// -// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup. -// -// -// Step 5 -// ====== -// Calculate Cos(r) and Sin(r) by polynomial approximation. -// -// Cos(r) = 1 + r^2 q1 + r^4 q2 = Series for Cos -// Sin(r) = r + r^3 p1 + r^5 p2 = Series for Sin -// -// and the coefficients q1, q2 and p1, p2 are stored in a table -// -// -// Calculate -// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r) -// -// as follows -// -// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k) -// rsq = r*r -// -// -// P = P1 + r^2*P2 -// Q = Q1 + r^2*Q2 -// -// rcub = r * rsq -// Sin(r) = r + rcub * P -// = r + r^3p1 + r^5p2 = Sin(r) -// -// The coefficients are not exactly these values, but almost. -// -// p1 = -1/6 = -1/3! -// p2 = 1/120 = 1/5! -// p3 = -1/5040 = -1/7! -// p4 = 1/362889 = 1/9! -// -// P = r + r^3 * P -// -// Answer = S[m] Cos(r) + C[m] P -// -// Cos(r) = 1 + rsq Q -// Cos(r) = 1 + r^2 Q -// Cos(r) = 1 + r^2 (q1 + r^2q2) -// Cos(r) = 1 + r^2q1 + r^4q2 -// -// S[m] Cos(r) = S[m](1 + rsq Q) -// S[m] Cos(r) = S[m] + S[m] rsq Q -// S[m] Cos(r) = S[m] + s_rsq Q -// Q = S[m] + s_rsq Q -// -// Then, -// -// Answer = Q + C[m] P - - -// Registers used -//============================================================== -// general input registers: -// r14 -> r19 -// r32 -> r45 - -// predicate registers used: -// p6 -> p14 - -// floating-point registers used -// f9 -> f15 -// f32 -> f61 - -// Assembly macros -//============================================================== -sincosf_NORM_f8 = f9 -sincosf_W = f10 -sincosf_int_Nfloat = f11 -sincosf_Nfloat = f12 - -sincosf_r = f13 -sincosf_rsq = f14 -sincosf_rcub = f15 -sincosf_save_tmp = f15 - -sincosf_Inv_Pi_by_16 = f32 -sincosf_Pi_by_16_1 = f33 -sincosf_Pi_by_16_2 = f34 - -sincosf_Inv_Pi_by_64 = f35 - -sincosf_Pi_by_16_3 = f36 - -sincosf_r_exact = f37 - -sincosf_Sm = f38 -sincosf_Cm = f39 - -sincosf_P1 = f40 -sincosf_Q1 = f41 -sincosf_P2 = f42 -sincosf_Q2 = f43 -sincosf_P3 = f44 -sincosf_Q3 = f45 -sincosf_P4 = f46 -sincosf_Q4 = f47 - -sincosf_P_temp1 = f48 -sincosf_P_temp2 = f49 - -sincosf_Q_temp1 = f50 -sincosf_Q_temp2 = f51 - -sincosf_P = f52 -sincosf_Q = f53 - -sincosf_srsq = f54 - -sincosf_SIG_INV_PI_BY_16_2TO61 = f55 -sincosf_RSHF_2TO61 = f56 -sincosf_RSHF = f57 -sincosf_2TOM61 = f58 -sincosf_NFLOAT = f59 -sincosf_W_2TO61_RSH = f60 - -fp_tmp = f61 - -///////////////////////////////////////////////////////////// - -sincosf_AD_1 = r33 -sincosf_AD_2 = r34 -sincosf_exp_limit = r35 -sincosf_r_signexp = r36 -sincosf_AD_beta_table = r37 -sincosf_r_sincos = r38 - -sincosf_r_exp = r39 -sincosf_r_17_ones = r40 - -sincosf_GR_sig_inv_pi_by_16 = r14 -sincosf_GR_rshf_2to61 = r15 -sincosf_GR_rshf = r16 -sincosf_GR_exp_2tom61 = r17 -sincosf_GR_n = r18 -sincosf_GR_m = r19 -sincosf_GR_32m = r19 -sincosf_GR_all_ones = r19 - -gr_tmp = r41 -GR_SAVE_PFS = r41 -GR_SAVE_B0 = r42 -GR_SAVE_GP = r43 - -RODATA -.align 16 - -// Pi/16 parts -LOCAL_OBJECT_START(double_sincosf_pi) - data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part - data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part -LOCAL_OBJECT_END(double_sincosf_pi) - -// Coefficients for polynomials -LOCAL_OBJECT_START(double_sincosf_pq_k4) - data8 0x3F810FABB668E9A2 // P2 - data8 0x3FA552E3D6DE75C9 // Q2 - data8 0xBFC555554447BC7F // P1 - data8 0xBFDFFFFFC447610A // Q1 -LOCAL_OBJECT_END(double_sincosf_pq_k4) - -// Sincos table (S[m], C[m]) -LOCAL_OBJECT_START(double_sin_cos_beta_k4) - data8 0x0000000000000000 // sin ( 0 Pi / 16 ) - data8 0x3FF0000000000000 // cos ( 0 Pi / 16 ) -// - data8 0x3FC8F8B83C69A60B // sin ( 1 Pi / 16 ) - data8 0x3FEF6297CFF75CB0 // cos ( 1 Pi / 16 ) -// - data8 0x3FD87DE2A6AEA963 // sin ( 2 Pi / 16 ) - data8 0x3FED906BCF328D46 // cos ( 2 Pi / 16 ) -// - data8 0x3FE1C73B39AE68C8 // sin ( 3 Pi / 16 ) - data8 0x3FEA9B66290EA1A3 // cos ( 3 Pi / 16 ) -// - data8 0x3FE6A09E667F3BCD // sin ( 4 Pi / 16 ) - data8 0x3FE6A09E667F3BCD // cos ( 4 Pi / 16 ) -// - data8 0x3FEA9B66290EA1A3 // sin ( 5 Pi / 16 ) - data8 0x3FE1C73B39AE68C8 // cos ( 5 Pi / 16 ) -// - data8 0x3FED906BCF328D46 // sin ( 6 Pi / 16 ) - data8 0x3FD87DE2A6AEA963 // cos ( 6 Pi / 16 ) -// - data8 0x3FEF6297CFF75CB0 // sin ( 7 Pi / 16 ) - data8 0x3FC8F8B83C69A60B // cos ( 7 Pi / 16 ) -// - data8 0x3FF0000000000000 // sin ( 8 Pi / 16 ) - data8 0x0000000000000000 // cos ( 8 Pi / 16 ) -// - data8 0x3FEF6297CFF75CB0 // sin ( 9 Pi / 16 ) - data8 0xBFC8F8B83C69A60B // cos ( 9 Pi / 16 ) -// - data8 0x3FED906BCF328D46 // sin ( 10 Pi / 16 ) - data8 0xBFD87DE2A6AEA963 // cos ( 10 Pi / 16 ) -// - data8 0x3FEA9B66290EA1A3 // sin ( 11 Pi / 16 ) - data8 0xBFE1C73B39AE68C8 // cos ( 11 Pi / 16 ) -// - data8 0x3FE6A09E667F3BCD // sin ( 12 Pi / 16 ) - data8 0xBFE6A09E667F3BCD // cos ( 12 Pi / 16 ) -// - data8 0x3FE1C73B39AE68C8 // sin ( 13 Pi / 16 ) - data8 0xBFEA9B66290EA1A3 // cos ( 13 Pi / 16 ) -// - data8 0x3FD87DE2A6AEA963 // sin ( 14 Pi / 16 ) - data8 0xBFED906BCF328D46 // cos ( 14 Pi / 16 ) -// - data8 0x3FC8F8B83C69A60B // sin ( 15 Pi / 16 ) - data8 0xBFEF6297CFF75CB0 // cos ( 15 Pi / 16 ) -// - data8 0x0000000000000000 // sin ( 16 Pi / 16 ) - data8 0xBFF0000000000000 // cos ( 16 Pi / 16 ) -// - data8 0xBFC8F8B83C69A60B // sin ( 17 Pi / 16 ) - data8 0xBFEF6297CFF75CB0 // cos ( 17 Pi / 16 ) -// - data8 0xBFD87DE2A6AEA963 // sin ( 18 Pi / 16 ) - data8 0xBFED906BCF328D46 // cos ( 18 Pi / 16 ) -// - data8 0xBFE1C73B39AE68C8 // sin ( 19 Pi / 16 ) - data8 0xBFEA9B66290EA1A3 // cos ( 19 Pi / 16 ) -// - data8 0xBFE6A09E667F3BCD // sin ( 20 Pi / 16 ) - data8 0xBFE6A09E667F3BCD // cos ( 20 Pi / 16 ) -// - data8 0xBFEA9B66290EA1A3 // sin ( 21 Pi / 16 ) - data8 0xBFE1C73B39AE68C8 // cos ( 21 Pi / 16 ) -// - data8 0xBFED906BCF328D46 // sin ( 22 Pi / 16 ) - data8 0xBFD87DE2A6AEA963 // cos ( 22 Pi / 16 ) -// - data8 0xBFEF6297CFF75CB0 // sin ( 23 Pi / 16 ) - data8 0xBFC8F8B83C69A60B // cos ( 23 Pi / 16 ) -// - data8 0xBFF0000000000000 // sin ( 24 Pi / 16 ) - data8 0x0000000000000000 // cos ( 24 Pi / 16 ) -// - data8 0xBFEF6297CFF75CB0 // sin ( 25 Pi / 16 ) - data8 0x3FC8F8B83C69A60B // cos ( 25 Pi / 16 ) -// - data8 0xBFED906BCF328D46 // sin ( 26 Pi / 16 ) - data8 0x3FD87DE2A6AEA963 // cos ( 26 Pi / 16 ) -// - data8 0xBFEA9B66290EA1A3 // sin ( 27 Pi / 16 ) - data8 0x3FE1C73B39AE68C8 // cos ( 27 Pi / 16 ) -// - data8 0xBFE6A09E667F3BCD // sin ( 28 Pi / 16 ) - data8 0x3FE6A09E667F3BCD // cos ( 28 Pi / 16 ) -// - data8 0xBFE1C73B39AE68C8 // sin ( 29 Pi / 16 ) - data8 0x3FEA9B66290EA1A3 // cos ( 29 Pi / 16 ) -// - data8 0xBFD87DE2A6AEA963 // sin ( 30 Pi / 16 ) - data8 0x3FED906BCF328D46 // cos ( 30 Pi / 16 ) -// - data8 0xBFC8F8B83C69A60B // sin ( 31 Pi / 16 ) - data8 0x3FEF6297CFF75CB0 // cos ( 31 Pi / 16 ) -// - data8 0x0000000000000000 // sin ( 32 Pi / 16 ) - data8 0x3FF0000000000000 // cos ( 32 Pi / 16 ) -LOCAL_OBJECT_END(double_sin_cos_beta_k4) - -.section .text - -//////////////////////////////////////////////////////// -// There are two entry points: sin and cos -// If from sin, p8 is true -// If from cos, p9 is true - -GLOBAL_IEEE754_ENTRY(sinf) - -{ .mlx - alloc r32 = ar.pfs,1,13,0,0 - movl sincosf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A //signd of 16/pi -} -{ .mlx - addl sincosf_AD_1 = @ltoff(double_sincosf_pi), gp - movl sincosf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2) -};; - -{ .mfi - ld8 sincosf_AD_1 = [sincosf_AD_1] - fnorm.s1 sincosf_NORM_f8 = f8 // Normalize argument - cmp.eq p8,p9 = r0, r0 // set p8 (clear p9) for sin -} -{ .mib - mov sincosf_GR_exp_2tom61 = 0xffff-61 // exponent of scale 2^-61 - mov sincosf_r_sincos = 0x0 // 0 for sin - br.cond.sptk _SINCOSF_COMMON // go to common part -};; - -GLOBAL_IEEE754_END(sinf) -libm_alias_float_other (__sin, sin) - -GLOBAL_IEEE754_ENTRY(cosf) - -{ .mlx - alloc r32 = ar.pfs,1,13,0,0 - movl sincosf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A //signd of 16/pi -} -{ .mlx - addl sincosf_AD_1 = @ltoff(double_sincosf_pi), gp - movl sincosf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2) -};; - -{ .mfi - ld8 sincosf_AD_1 = [sincosf_AD_1] - fnorm.s1 sincosf_NORM_f8 = f8 // Normalize argument - cmp.eq p9,p8 = r0, r0 // set p9 (clear p8) for cos -} -{ .mib - mov sincosf_GR_exp_2tom61 = 0xffff-61 // exponent of scale 2^-61 - mov sincosf_r_sincos = 0x8 // 8 for cos - nop.b 999 -};; - -//////////////////////////////////////////////////////// -// All entry points end up here. -// If from sin, sincosf_r_sincos is 0 and p8 is true -// If from cos, sincosf_r_sincos is 8 = 2^(k-1) and p9 is true -// We add sincosf_r_sincos to N - -///////////// Common sin and cos part ////////////////// -_SINCOSF_COMMON: - -// Form two constants we need -// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand -// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand -// fcmp used to set denormal, and invalid on snans -{ .mfi - setf.sig sincosf_SIG_INV_PI_BY_16_2TO61 = sincosf_GR_sig_inv_pi_by_16 - fclass.m p6,p0 = f8, 0xe7 // if x=0,inf,nan - mov sincosf_exp_limit = 0x10017 -} -{ .mlx - setf.d sincosf_RSHF_2TO61 = sincosf_GR_rshf_2to61 - movl sincosf_GR_rshf = 0x43e8000000000000 // 1.1000 2^63 -};; // Right shift - -// Form another constant -// 2^-61 for scaling Nfloat -// 0x10017 is register_bias + 24. -// So if f8 >= 2^24, go to large argument routines -{ .mmi - getf.exp sincosf_r_signexp = f8 - setf.exp sincosf_2TOM61 = sincosf_GR_exp_2tom61 - addl gr_tmp = -1,r0 // For "inexect" constant create -};; - -// Load the two pieces of pi/16 -// Form another constant -// 1.1000...000 * 2^63, the right shift constant -{ .mmb - ldfe sincosf_Pi_by_16_1 = [sincosf_AD_1],16 - setf.d sincosf_RSHF = sincosf_GR_rshf -(p6) br.cond.spnt _SINCOSF_SPECIAL_ARGS -};; - -// Getting argument's exp for "large arguments" filtering -{ .mmi - ldfe sincosf_Pi_by_16_2 = [sincosf_AD_1],16 - setf.sig fp_tmp = gr_tmp // constant for inexact set - nop.i 999 -};; - -// Polynomial coefficients (Q2, Q1, P2, P1) loading -{ .mmi - ldfpd sincosf_P2,sincosf_Q2 = [sincosf_AD_1],16 - nop.m 999 - nop.i 999 -};; - -// Select exponent (17 lsb) -{ .mmi - ldfpd sincosf_P1,sincosf_Q1 = [sincosf_AD_1],16 - nop.m 999 - dep.z sincosf_r_exp = sincosf_r_signexp, 0, 17 -};; - -// p10 is true if we must call routines to handle larger arguments -// p10 is true if f8 exp is >= 0x10017 (2^24) -{ .mfb - cmp.ge p10,p0 = sincosf_r_exp,sincosf_exp_limit - nop.f 999 -(p10) br.cond.spnt _SINCOSF_LARGE_ARGS // Go to "large args" routine -};; - -// sincosf_W = x * sincosf_Inv_Pi_by_16 -// Multiply x by scaled 16/pi and add large const to shift integer part of W to -// rightmost bits of significand -{ .mfi - nop.m 999 - fma.s1 sincosf_W_2TO61_RSH = sincosf_NORM_f8, sincosf_SIG_INV_PI_BY_16_2TO61, sincosf_RSHF_2TO61 - nop.i 999 -};; - -// sincosf_NFLOAT = Round_Int_Nearest(sincosf_W) -// This is done by scaling back by 2^-61 and subtracting the shift constant -{ .mfi - nop.m 999 - fms.s1 sincosf_NFLOAT = sincosf_W_2TO61_RSH,sincosf_2TOM61,sincosf_RSHF - nop.i 999 -};; - -// get N = (int)sincosf_int_Nfloat -{ .mfi - getf.sig sincosf_GR_n = sincosf_W_2TO61_RSH // integer N value - nop.f 999 - nop.i 999 -};; - -// Add 2^(k-1) (which is in sincosf_r_sincos=8) to N -// sincosf_r = -sincosf_Nfloat * sincosf_Pi_by_16_1 + x -{ .mfi - add sincosf_GR_n = sincosf_GR_n, sincosf_r_sincos - fnma.s1 sincosf_r = sincosf_NFLOAT, sincosf_Pi_by_16_1, sincosf_NORM_f8 - nop.i 999 -};; - -// Get M (least k+1 bits of N) -{ .mmi - and sincosf_GR_m = 0x1f,sincosf_GR_n // Put mask 0x1F - - nop.m 999 // - select k+1 bits - nop.i 999 -};; - -// Add 16*M to address of sin_cos_beta table -{ .mfi - shladd sincosf_AD_2 = sincosf_GR_32m, 4, sincosf_AD_1 -(p8) fclass.m.unc p10,p0 = f8,0x0b // If sin denormal input - - nop.i 999 -};; - -// Load Sin and Cos table value using obtained index m (sincosf_AD_2) -{ .mfi - ldfd sincosf_Sm = [sincosf_AD_2],8 // Sin value S[m] -(p9) fclass.m.unc p11,p0 = f8,0x0b // If cos denormal input - - nop.i 999 // - set denormal -};; - -// sincosf_r = sincosf_r -sincosf_Nfloat * sincosf_Pi_by_16_2 -{ .mfi - ldfd sincosf_Cm = [sincosf_AD_2] // Cos table value C[m] - fnma.s1 sincosf_r_exact = sincosf_NFLOAT, sincosf_Pi_by_16_2, sincosf_r - nop.i 999 -} -// get rsq = r*r -{ .mfi - nop.m 999 - fma.s1 sincosf_rsq = sincosf_r, sincosf_r, f0 // r^2 = r*r - nop.i 999 -};; - -{ .mfi - nop.m 999 - fmpy.s0 fp_tmp = fp_tmp, fp_tmp // forces inexact flag - nop.i 999 -};; - -// Polynomials calculation -// Q = Q2*r^2 + Q1 -// P = P2*r^2 + P1 -{ .mfi - nop.m 999 - fma.s1 sincosf_Q = sincosf_rsq, sincosf_Q2, sincosf_Q1 - nop.i 999 -} -{ .mfi - nop.m 999 - fma.s1 sincosf_P = sincosf_rsq, sincosf_P2, sincosf_P1 - nop.i 999 -};; - -// get rcube and S[m]*r^2 -{ .mfi - nop.m 999 - fmpy.s1 sincosf_srsq = sincosf_Sm,sincosf_rsq // r^2*S[m] - nop.i 999 -} -{ .mfi - nop.m 999 - fmpy.s1 sincosf_rcub = sincosf_r_exact, sincosf_rsq - nop.i 999 -};; - -// Get final P and Q -// Q = Q*S[m]*r^2 + S[m] -// P = P*r^3 + r -{ .mfi - nop.m 999 - fma.s1 sincosf_Q = sincosf_srsq,sincosf_Q, sincosf_Sm - nop.i 999 -} -{ .mfi - nop.m 999 - fma.s1 sincosf_P = sincosf_rcub,sincosf_P,sincosf_r_exact - nop.i 999 -};; - -// If sinf(denormal) - force underflow to be set -.pred.rel "mutex",p10,p11 -{ .mfi - nop.m 999 -(p10) fmpy.s.s0 fp_tmp = f8,f8 // forces underflow flag - nop.i 999 // for denormal sine args -} -// If cosf(denormal) - force denormal to be set -{ .mfi - nop.m 999 -(p11) fma.s.s0 fp_tmp = f8, f1, f8 // forces denormal flag - nop.i 999 // for denormal cosine args -};; - - -// Final calculation -// result = C[m]*P + Q -{ .mfb - nop.m 999 - fma.s.s0 f8 = sincosf_Cm, sincosf_P, sincosf_Q - br.ret.sptk b0 // Exit for common path -};; - -////////// x = 0/Inf/NaN path ////////////////// -_SINCOSF_SPECIAL_ARGS: -.pred.rel "mutex",p8,p9 -// sinf(+/-0) = +/-0 -// sinf(Inf) = NaN -// sinf(NaN) = NaN -{ .mfi - nop.m 999 -(p8) fma.s.s0 f8 = f8, f0, f0 // sinf(+/-0,NaN,Inf) - nop.i 999 -} -// cosf(+/-0) = 1.0 -// cosf(Inf) = NaN -// cosf(NaN) = NaN -{ .mfb - nop.m 999 -(p9) fma.s.s0 f8 = f8, f0, f1 // cosf(+/-0,NaN,Inf) - br.ret.sptk b0 // Exit for x = 0/Inf/NaN path -};; - -GLOBAL_IEEE754_END(cosf) -libm_alias_float_other (__cos, cos) - -//////////// x >= 2^24 - large arguments routine call //////////// -LOCAL_LIBM_ENTRY(__libm_callout_sincosf) -_SINCOSF_LARGE_ARGS: -.prologue -{ .mfi - mov sincosf_GR_all_ones = -1 // 0xffffffff - nop.f 999 -.save ar.pfs,GR_SAVE_PFS - mov GR_SAVE_PFS = ar.pfs -} -;; - -{ .mfi - mov GR_SAVE_GP = gp - nop.f 999 -.save b0, GR_SAVE_B0 - mov GR_SAVE_B0 = b0 -} -.body - -{ .mbb - setf.sig sincosf_save_tmp = sincosf_GR_all_ones // inexact set - nop.b 999 -(p8) br.call.sptk.many b0 = __libm_sin_large# // sinf(large_X) -};; - -{ .mbb - cmp.ne p9,p0 = sincosf_r_sincos, r0 // set p9 if cos - nop.b 999 -(p9) br.call.sptk.many b0 = __libm_cos_large# // cosf(large_X) -};; - -{ .mfi - mov gp = GR_SAVE_GP - fma.s.s0 f8 = f8, f1, f0 // Round result to single - mov b0 = GR_SAVE_B0 -} -{ .mfi // force inexact set - nop.m 999 - fmpy.s0 sincosf_save_tmp = sincosf_save_tmp, sincosf_save_tmp - nop.i 999 -};; - -{ .mib - nop.m 999 - mov ar.pfs = GR_SAVE_PFS - br.ret.sptk b0 // Exit for large arguments routine call -};; -LOCAL_LIBM_END(__libm_callout_sincosf) - -.type __libm_sin_large#, @function -.global __libm_sin_large# -.type __libm_cos_large#, @function -.global __libm_cos_large# |