summary refs log tree commit diff
path: root/ports/sysdeps/ia64/fpu/s_atanl.S
diff options
context:
space:
mode:
Diffstat (limited to 'ports/sysdeps/ia64/fpu/s_atanl.S')
-rw-r--r--ports/sysdeps/ia64/fpu/s_atanl.S2007
1 files changed, 2007 insertions, 0 deletions
diff --git a/ports/sysdeps/ia64/fpu/s_atanl.S b/ports/sysdeps/ia64/fpu/s_atanl.S
new file mode 100644
index 0000000000..fea68abfde
--- /dev/null
+++ b/ports/sysdeps/ia64/fpu/s_atanl.S
@@ -0,0 +1,2007 @@
+.file "atanl.s"
+
+
+// Copyright (c) 2000 - 2005, Intel Corporation
+// All rights reserved.
+//
+// Contributed 2000 by the Intel Numerics Group, Intel Corporation
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//
+// * Redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote
+// products derived from this software without specific prior written
+// permission.
+
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
+// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
+// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Intel Corporation is the author of this code, and requests that all
+// problem reports or change requests be submitted to it directly at
+// http://www.intel.com/software/products/opensource/libraries/num.htm.
+//
+//
+//*********************************************************************
+//
+// History
+// 02/02/00 (hand-optimized)
+// 04/04/00 Unwind support added
+// 08/15/00 Bundle added after call to __libm_error_support to properly
+//          set [the previously overwritten] GR_Parameter_RESULT.
+// 03/13/01 Fixed flags when denormal raised on intermediate result
+// 01/08/02 Improved speed.
+// 02/06/02 Corrected .section statement
+// 05/20/02 Cleaned up namespace and sf0 syntax
+// 02/10/03 Reordered header: .section, .global, .proc, .align;
+//          used data8 for long double table values
+// 03/31/05 Reformatted delimiters between data tables
+//
+//*********************************************************************
+//
+// Function:   atanl(x) = inverse tangent(x), for double extended x values
+// Function:   atan2l(y,x) = atan(y/x), for double extended y, x values
+//
+// API
+//
+//  long double atanl  (long double x)
+//  long double atan2l (long double y, long double x)
+//
+//*********************************************************************
+//
+// Resources Used:
+//
+//    Floating-Point Registers: f8 (Input and Return Value)
+//                              f9 (Input for atan2l)
+//                              f10-f15, f32-f83
+//
+//    General Purpose Registers:
+//      r32-r51
+//      r49-r52 (Arguments to error support for 0,0 case)
+//
+//    Predicate Registers:      p6-p15
+//
+//*********************************************************************
+//
+// IEEE Special Conditions:
+//
+//    Denormal fault raised on denormal inputs
+//    Underflow exceptions may occur
+//    Special error handling for the y=0 and x=0 case
+//    Inexact raised when appropriate by algorithm
+//
+//    atanl(SNaN) = QNaN
+//    atanl(QNaN) = QNaN
+//    atanl(+/-0) = +/- 0
+//    atanl(+/-Inf) = +/-pi/2
+//
+//    atan2l(Any NaN for x or y) = QNaN
+//    atan2l(+/-0,x) = +/-0 for x > 0
+//    atan2l(+/-0,x) = +/-pi for x < 0
+//    atan2l(+/-0,+0) = +/-0
+//    atan2l(+/-0,-0) = +/-pi
+//    atan2l(y,+/-0) = pi/2 y > 0
+//    atan2l(y,+/-0) = -pi/2 y < 0
+//    atan2l(+/-y, Inf) = +/-0 for finite y > 0
+//    atan2l(+/-Inf, x) = +/-pi/2 for finite x
+//    atan2l(+/-y, -Inf) = +/-pi for finite  y > 0
+//    atan2l(+/-Inf, Inf) = +/-pi/4
+//    atan2l(+/-Inf, -Inf) = +/-3pi/4
+//
+//*********************************************************************
+//
+// Mathematical Description
+// ---------------------------
+//
+// The function ATANL( Arg_Y, Arg_X ) returns the "argument"
+// or the "phase" of the complex number
+//
+//           Arg_X + i Arg_Y
+//
+// or equivalently, the angle in radians from the positive
+// x-axis to the line joining the origin and the point
+// (Arg_X,Arg_Y)
+//
+//
+//        (Arg_X, Arg_Y) x
+//                        \
+//                \
+//                 \
+//                  \
+//                   \ angle between is ATANL(Arg_Y,Arg_X)
+
+
+
+
+//                    \
+//                     ------------------> X-axis
+
+//                   Origin
+//
+// Moreover, this angle is reported in the range [-pi,pi] thus
+//
+//      -pi <= ATANL( Arg_Y, Arg_X ) <= pi.
+//
+// From the geometry, it is easy to define ATANL when one of
+// Arg_X or Arg_Y is +-0 or +-inf:
+//
+//
+//      \ Y |
+//     X \  |  +0  | -0  |  +inf |  -inf  |  finite non-zero
+//        \ |      |     |       |        |
+//    ______________________________________________________
+//          |            |       |        |
+//     +-0  |   Invalid/ |  pi/2 | -pi/2  |  sign(Y)*pi/2
+//          |    qNaN    |       |        |
+//  --------------------------------------------------------
+//          |      |     |       |        |
+//     +inf |  +0  | -0  |  pi/4 | -pi/4  |  sign(Y)*0
+//  --------------------------------------------------------
+//          |      |     |       |        |
+//     -inf |  +pi | -pi | 3pi/4 | -3pi/4 |  sign(Y)*pi
+//  --------------------------------------------------------
+//   finite |    X>0?    |  pi/2 | -pi/2  |  normal case
+//  non-zero| sign(Y)*0: |       |        |
+//       | sign(Y)*pi |       |        |
+//
+//
+// One must take note that ATANL is NOT the arctangent of the
+// value Arg_Y/Arg_X; but rather ATANL and arctan are related
+// in a slightly more complicated way as follows:
+//
+// Let U := max(|Arg_X|, |Arg_Y|);  V := min(|Arg_X|, |Arg_Y|);
+// sign_X be the sign bit of Arg_X, i.e., sign_X is 0 or 1;
+// s_X    be the sign     of Arg_X, i.e., s_X = (-1)^sign_X;
+//
+// sign_Y be the sign bit of Arg_Y, i.e., sign_Y is 0 or 1;
+// s_Y    be the sign     of Arg_Y, i.e., s_Y = (-1)^sign_Y;
+//
+// swap   be 0  if |Arg_X| >= |Arg_Y|  and 1 otherwise.
+//
+// Then, ATANL(Arg_Y, Arg_X) =
+//
+//       /    arctan(V/U)     \      sign_X = 0 & swap = 0
+//       | pi/2 - arctan(V/U) |      sign_X = 0 & swap = 1
+// s_Y * |                    |
+//       |  pi  - arctan(V/U) |      sign_X = 1 & swap = 0
+//       \ pi/2 + arctan(V/U) /      sign_X = 1 & swap = 1
+//
+//
+// This relationship also suggest that the algorithm's major
+// task is to calculate arctan(V/U) for 0 < V <= U; and the
+// final Result is given by
+//
+//      s_Y * { (P_hi + P_lo) + sigma * arctan(V/U) }
+//
+// where
+//
+//   (P_hi,P_lo) represents M(sign_X,swap)*(pi/2) accurately
+//
+//   M(sign_X,swap) = 0  for sign_X = 0 and swap = 0
+//              1  for swap   = 1
+//              2  for sign_X = 1 and swap = 0
+//
+// and
+//
+//   sigma = { (sign_X  XOR  swap) :  -1.0 : 1.0 }
+//
+//      =  (-1) ^ ( sign_X XOR swap )
+//
+// Both (P_hi,P_lo) and sigma can be stored in a table and fetched
+// using (sign_X,swap) as an index. (P_hi, P_lo) can be stored as a
+// double-precision, and single-precision pair; and sigma can
+// obviously be just a single-precision number.
+//
+// In the algorithm we propose, arctan(V/U) is calculated to high accuracy
+// as A_hi + A_lo. Consequently, the Result ATANL( Arg_Y, Arg_X ) is
+// given by
+//
+//    s_Y*P_hi + s_Y*sigma*A_hi + s_Y*(sigma*A_lo + P_lo)
+//
+// We now discuss the calculation of arctan(V/U) for 0 < V <= U.
+//
+// For (V/U) < 2^(-3), we use a simple polynomial of the form
+//
+//      z + z^3*(P_1 + z^2*(P_2 + z^2*(P_3 + ... + P_8)))
+//
+// where z = V/U.
+//
+// For the sake of accuracy, the first term "z" must approximate V/U to
+// extra precision. For z^3 and higher power, a working precision
+// approximation to V/U suffices. Thus, we obtain:
+//
+//      z_hi + z_lo = V/U  to extra precision and
+//      z           = V/U  to working precision
+//
+// The value arctan(V/U) is delivered as two pieces (A_hi, A_lo)
+//
+//      (A_hi,A_lo) = (z_hi, z^3*(P_1 + ... + P_8) + z_lo).
+//
+//
+// For 2^(-3) <= (V/U) <= 1, we use a table-driven approach.
+// Consider
+//
+//      (V/U) = 2^k * 1.b_1 b_2 .... b_63 b_64 b_65 ....
+//
+// Define
+//
+//       z_hi = 2^k * 1.b_1 b_2 b_3 b_4 1
+//
+// then
+//                                            /                \
+//                                            |  (V/U) - z_hi  |
+
+//      arctan(V/U) = arctan(z_hi) + acrtan| -------------- |
+//                                            | 1 + (V/U)*z_hi |
+//                                            \                /
+//
+//                                            /                \
+//                                            |   V - z_hi*U   |
+
+//                  = arctan(z_hi) + acrtan| -------------- |
+//                                            |   U + V*z_hi   |
+//                                            \                /
+//
+//                  = arctan(z_hi) + acrtan( V' / U' )
+//
+//
+// where
+//
+//      V' = V - U*z_hi;   U' = U + V*z_hi.
+//
+// Let
+//
+//      w_hi + w_lo  = V'/U' to extra precision and
+//           w       = V'/U' to working precision
+//
+// then we can approximate arctan(V'/U') by
+//
+//      arctan(V'/U') = w_hi + w_lo
+//                     + w^3*(Q_1 + w^2*(Q_2 + w^2*(Q_3 + w^2*Q_4)))
+//
+//                       = w_hi + w_lo + poly
+//
+// Finally, arctan(z_hi) is calculated beforehand and stored in a table
+// as Tbl_hi, Tbl_lo. Thus,
+//
+//      (A_hi, A_lo) = (Tbl_hi, w_hi+(poly+(w_lo+Tbl_lo)))
+//
+// This completes the mathematical description.
+//
+//
+// Algorithm
+// -------------
+//
+// Step 0. Check for unsupported format.
+//
+//    If
+//       ( expo(Arg_X) not zero AND msb(Arg_X) = 0 ) OR
+//       ( expo(Arg_Y) not zero AND msb(Arg_Y) = 0 )
+//
+//    then one of the arguments is unsupported. Generate an
+//    invalid and return qNaN.
+//
+// Step 1. Initialize
+//
+//    Normalize Arg_X and Arg_Y and set the following
+//
+//    sign_X :=  sign_bit(Arg_X)
+//    s_Y    := (sign_bit(Arg_Y)==0? 1.0 : -1.0)
+//    swap   := (|Arg_X| >= |Arg_Y|?   0 :  1  )
+//    U      := max( |Arg_X|, |Arg_Y| )
+//    V      := min( |Arg_X|, |Arg_Y| )
+//
+//    execute: frcpa E, pred, V, U
+//    If pred is 0, go to Step 5 for special cases handling.
+//
+// Step 2. Decide on branch.
+//
+//    Q := E * V
+//    If Q < 2^(-3) go to Step 4 for simple polynomial case.
+//
+// Step 3. Table-driven algorithm.
+//
+//    Q is represented as
+//
+//      2^(-k) * 1.b_1 b_2 b_3 ... b_63; k = 0,-1,-2,-3
+//
+// and that if k = 0, b_1 = b_2 = b_3 = b_4 = 0.
+//
+// Define
+//
+//      z_hi := 2^(-k) * 1.b_1 b_2 b_3 b_4 1
+//
+// (note that there are 49 possible values of z_hi).
+//
+//      ...We now calculate V' and U'. While V' is representable
+//      ...as a 64-bit number because of cancellation, U' is
+//      ...not in general a 64-bit number. Obtaining U' accurately
+//      ...requires two working precision numbers
+//
+//      U_prime_hi := U + V * z_hi            ...WP approx. to U'
+//      U_prime_lo := ( U - U_prime_hi ) + V*z_hi ...observe order
+//      V_prime    := V - U * z_hi             ...this is exact
+//
+//         C_hi := frcpa (1.0, U_prime_hi)  ...C_hi approx 1/U'_hi
+//
+//      loop 3 times
+//         C_hi := C_hi + C_hi*(1.0 - C_hi*U_prime_hi)
+//
+//      ...at this point C_hi is (1/U_prime_hi) to roughly 64 bits
+//
+//      w_hi := V_prime * C_hi     ...w_hi is V_prime/U_prime to
+//                     ...roughly working precision
+//
+//         ...note that we want w_hi + w_lo to approximate
+//      ...V_prime/(U_prime_hi + U_prime_lo) to extra precision
+//         ...but for now, w_hi is good enough for the polynomial
+//      ...calculation.
+//
+//         wsq  := w_hi*w_hi
+//      poly := w_hi*wsq*(Q_1 + wsq*(Q_2 + wsq*(Q_3 + wsq*Q_4)))
+//
+//      Fetch
+//      (Tbl_hi, Tbl_lo) = atan(z_hi) indexed by (k,b_1,b_2,b_3,b_4)
+//      ...Tbl_hi is a double-precision number
+//      ...Tbl_lo is a single-precision number
+//
+//         (P_hi, P_lo) := M(sign_X,swap)*(Pi_by_2_hi, Pi_by_2_lo)
+//      ...as discussed previous. Again; the implementation can
+//      ...chose to fetch P_hi and P_lo from a table indexed by
+//      ...(sign_X, swap).
+//      ...P_hi is a double-precision number;
+//      ...P_lo is a single-precision number.
+//
+//      ...calculate w_lo so that w_hi + w_lo is V'/U' accurately
+//         w_lo := ((V_prime - w_hi*U_prime_hi) -
+//              w_hi*U_prime_lo) * C_hi     ...observe order
+//
+//
+//      ...Ready to deliver arctan(V'/U') as A_hi, A_lo
+//      A_hi := Tbl_hi
+//      A_lo := w_hi + (poly + (Tbl_lo + w_lo)) ...observe order
+//
+//      ...Deliver final Result
+//      ...s_Y*P_hi + s_Y*sigma*A_hi + s_Y*(sigma*A_lo + P_lo)
+//
+//      sigma := ( (sign_X XOR swap) ? -1.0 : 1.0 )
+//      ...sigma can be obtained by a table lookup using
+//      ...(sign_X,swap) as index and stored as single precision
+//         ...sigma should be calculated earlier
+//
+//      P_hi := s_Y*P_hi
+//      A_hi := s_Y*A_hi
+//
+//      Res_hi := P_hi + sigma*A_hi     ...this is exact because
+//                          ...both P_hi and Tbl_hi
+//                          ...are double-precision
+//                          ...and |Tbl_hi| > 2^(-4)
+//                          ...P_hi is either 0 or
+//                          ...between (1,4)
+//
+//      Res_lo := sigma*A_lo + P_lo
+//
+//      Return Res_hi + s_Y*Res_lo in user-defined rounding control
+//
+// Step 4. Simple polynomial case.
+//
+//    ...E and Q are inherited from Step 2.
+//
+//    A_hi := Q     ...Q is inherited from Step 2 Q approx V/U
+//
+//    loop 3 times
+//       E := E + E2(1.0 - E*U1
+//    ...at this point E approximates 1/U to roughly working precision
+//
+//    z := V * E     ...z approximates V/U to roughly working precision
+//    zsq := z * z
+//    z4 := zsq * zsq; z8 := z4 * z4
+//
+//    poly1 := P_4 + zsq*(P_5 + zsq*(P_6 + zsq*(P_7 + zsq*P_8)))
+//    poly2 := zsq*(P_1 + zsq*(P_2 + zsq*P_3))
+//
+//    poly  := poly1 + z8*poly2
+//
+//    z_lo := (V - A_hi*U)*E
+//
+//    A_lo := z*poly + z_lo
+//    ...A_hi, A_lo approximate arctan(V/U) accurately
+//
+//    (P_hi, P_lo) := M(sign_X,swap)*(Pi_by_2_hi, Pi_by_2_lo)
+//    ...one can store the M(sign_X,swap) as single precision
+//    ...values
+//
+//    ...Deliver final Result
+//    ...s_Y*P_hi + s_Y*sigma*A_hi + s_Y*(sigma*A_lo + P_lo)
+//
+//    sigma := ( (sign_X XOR swap) ? -1.0 : 1.0 )
+//    ...sigma can be obtained by a table lookup using
+//    ...(sign_X,swap) as index and stored as single precision
+//    ...sigma should be calculated earlier
+//
+//    P_hi := s_Y*P_hi
+//    A_hi := s_Y*A_hi
+//
+//    Res_hi := P_hi + sigma*A_hi          ...need to compute
+//                          ...P_hi + sigma*A_hi
+//                          ...exactly
+//
+//    tmp    := (P_hi - Res_hi) + sigma*A_hi
+//
+//    Res_lo := s_Y*(sigma*A_lo + P_lo) + tmp
+//
+//    Return Res_hi + Res_lo in user-defined rounding control
+//
+// Step 5. Special Cases
+//
+//    These are detected early in the function by fclass instructions.
+//
+//    We are in one of those special cases when X or Y is 0,+-inf or NaN
+//
+//    If one of X and Y is NaN, return X+Y (which will generate
+//    invalid in case one is a signaling NaN). Otherwise,
+//    return the Result as described in the table
+//
+//
+//
+//      \ Y |
+//     X \  |  +0  | -0  |  +inf |  -inf  |  finite non-zero
+//        \ |      |     |       |        |
+//    ______________________________________________________
+//          |            |       |        |
+//     +-0  |   Invalid/ |  pi/2 | -pi/2  |  sign(Y)*pi/2
+//          |    qNaN    |       |        |
+//  --------------------------------------------------------
+//          |      |     |       |        |
+//     +inf |  +0  | -0  |  pi/4 | -pi/4  |  sign(Y)*0
+//  --------------------------------------------------------
+//          |      |     |       |        |
+//     -inf |  +pi | -pi | 3pi/4 | -3pi/4 |  sign(Y)*pi
+//  --------------------------------------------------------
+//   finite |    X>0?    |  pi/2 | -pi/2  |
+//  non-zero| sign(Y)*0: |       |        |      N/A
+//       | sign(Y)*pi |       |        |
+//
+//
+
+ArgY_orig   =   f8
+Result      =   f8
+FR_RESULT   =   f8
+ArgX_orig   =   f9
+ArgX        =   f10
+FR_X        =   f10
+ArgY        =   f11
+FR_Y        =   f11
+s_Y         =   f12
+U           =   f13
+V           =   f14
+E           =   f15
+Q           =   f32
+z_hi        =   f33
+U_prime_hi  =   f34
+U_prime_lo  =   f35
+V_prime     =   f36
+C_hi        =   f37
+w_hi        =   f38
+w_lo        =   f39
+wsq         =   f40
+poly        =   f41
+Tbl_hi      =   f42
+Tbl_lo      =   f43
+P_hi        =   f44
+P_lo        =   f45
+A_hi        =   f46
+A_lo        =   f47
+sigma       =   f48
+Res_hi      =   f49
+Res_lo      =   f50
+Z           =   f52
+zsq         =   f53
+z4          =   f54
+z8          =   f54
+poly1       =   f55
+poly2       =   f56
+z_lo        =   f57
+tmp         =   f58
+P_1         =   f59
+Q_1         =   f60
+P_2         =   f61
+Q_2         =   f62
+P_3         =   f63
+Q_3         =   f64
+P_4         =   f65
+Q_4         =   f66
+P_5         =   f67
+P_6         =   f68
+P_7         =   f69
+P_8         =   f70
+U_hold      =   f71
+TWO_TO_NEG3 =   f72
+C_hi_hold   =   f73
+E_hold      =   f74
+M           =   f75
+ArgX_abs    =   f76
+ArgY_abs    =   f77
+Result_lo   =   f78
+A_temp      =   f79
+FR_temp     =   f80
+Xsq         =   f81
+Ysq         =   f82
+tmp_small   =   f83
+
+GR_SAVE_PFS   = r33
+GR_SAVE_B0    = r34
+GR_SAVE_GP    = r35
+sign_X        = r36
+sign_Y        = r37
+swap          = r38
+table_ptr1    = r39
+table_ptr2    = r40
+k             = r41
+lookup        = r42
+exp_ArgX      = r43
+exp_ArgY      = r44
+exponent_Q    = r45
+significand_Q = r46
+special       = r47
+sp_exp_Q      = r48
+sp_exp_4sig_Q = r49
+table_base    = r50
+int_temp      = r51
+
+GR_Parameter_X      = r49
+GR_Parameter_Y      = r50
+GR_Parameter_RESULT = r51
+GR_Parameter_TAG    = r52
+GR_temp             = r52
+
+RODATA
+.align 16
+
+LOCAL_OBJECT_START(Constants_atan)
+//       double pi/2
+data8 0x3FF921FB54442D18
+//       single lo_pi/2, two**(-3)
+data4 0x248D3132, 0x3E000000
+data8 0xAAAAAAAAAAAAAAA3, 0xBFFD // P_1
+data8 0xCCCCCCCCCCCC54B2, 0x3FFC // P_2
+data8 0x9249249247E4D0C2, 0xBFFC // P_3
+data8 0xE38E38E058870889, 0x3FFB // P_4
+data8 0xBA2E895B290149F8, 0xBFFB // P_5
+data8 0x9D88E6D4250F733D, 0x3FFB // P_6
+data8 0x884E51FFFB8745A0, 0xBFFB // P_7
+data8 0xE1C7412B394396BD, 0x3FFA // P_8
+data8 0xAAAAAAAAAAAAA52F, 0xBFFD // Q_1
+data8 0xCCCCCCCCC75B60D3, 0x3FFC // Q_2
+data8 0x924923AD011F1940, 0xBFFC // Q_3
+data8 0xE36F716D2A5F89BD, 0x3FFB // Q_4
+//
+//    Entries Tbl_hi  (double precision)
+//    B = 1+Index/16+1/32  Index = 0
+//    Entries Tbl_lo (single precision)
+//    B = 1+Index/16+1/32  Index = 0
+//
+data8 0x3FE9A000A935BD8E
+data4 0x23ACA08F, 0x00000000
+//
+//    Entries Tbl_hi  (double precision) Index = 0,1,...,15
+//    B = 2^(-1)*(1+Index/16+1/32)
+//    Entries Tbl_lo (single precision)
+//    Index = 0,1,...,15  B = 2^(-1)*(1+Index/16+1/32)
+//
+data8 0x3FDE77EB7F175A34
+data4 0x238729EE, 0x00000000
+data8 0x3FE0039C73C1A40B
+data4 0x249334DB, 0x00000000
+data8 0x3FE0C6145B5B43DA
+data4 0x22CBA7D1, 0x00000000
+data8 0x3FE1835A88BE7C13
+data4 0x246310E7, 0x00000000
+data8 0x3FE23B71E2CC9E6A
+data4 0x236210E5, 0x00000000
+data8 0x3FE2EE628406CBCA
+data4 0x2462EAF5, 0x00000000
+data8 0x3FE39C391CD41719
+data4 0x24B73EF3, 0x00000000
+data8 0x3FE445065B795B55
+data4 0x24C11260, 0x00000000
+data8 0x3FE4E8DE5BB6EC04
+data4 0x242519EE, 0x00000000
+data8 0x3FE587D81F732FBA
+data4 0x24D4346C, 0x00000000
+data8 0x3FE6220D115D7B8D
+data4 0x24ED487B, 0x00000000
+data8 0x3FE6B798920B3D98
+data4 0x2495FF1E, 0x00000000
+data8 0x3FE748978FBA8E0F
+data4 0x223D9531, 0x00000000
+data8 0x3FE7D528289FA093
+data4 0x242B0411, 0x00000000
+data8 0x3FE85D69576CC2C5
+data4 0x2335B374, 0x00000000
+data8 0x3FE8E17AA99CC05D
+data4 0x24C27CFB, 0x00000000
+//
+//    Entries Tbl_hi  (double precision) Index = 0,1,...,15
+//    B = 2^(-2)*(1+Index/16+1/32)
+//    Entries Tbl_lo (single precision)
+//    Index = 0,1,...,15  B = 2^(-2)*(1+Index/16+1/32)
+//
+data8 0x3FD025FA510665B5
+data4 0x24263482, 0x00000000
+data8 0x3FD1151A362431C9
+data4 0x242C8DC9, 0x00000000
+data8 0x3FD2025567E47C95
+data4 0x245CF9BA, 0x00000000
+data8 0x3FD2ED987A823CFE
+data4 0x235C892C, 0x00000000
+data8 0x3FD3D6D129271134
+data4 0x2389BE52, 0x00000000
+data8 0x3FD4BDEE586890E6
+data4 0x24436471, 0x00000000
+data8 0x3FD5A2E0175E0F4E
+data4 0x2389DBD4, 0x00000000
+data8 0x3FD685979F5FA6FD
+data4 0x2476D43F, 0x00000000
+data8 0x3FD7660752817501
+data4 0x24711774, 0x00000000
+data8 0x3FD84422B8DF95D7
+data4 0x23EBB501, 0x00000000
+data8 0x3FD91FDE7CD0C662
+data4 0x23883A0C, 0x00000000
+data8 0x3FD9F93066168001
+data4 0x240DF63F, 0x00000000
+data8 0x3FDAD00F5422058B
+data4 0x23FE261A, 0x00000000
+data8 0x3FDBA473378624A5
+data4 0x23A8CD0E, 0x00000000
+data8 0x3FDC76550AAD71F8
+data4 0x2422D1D0, 0x00000000
+data8 0x3FDD45AEC9EC862B
+data4 0x2344A109, 0x00000000
+//
+//    Entries Tbl_hi  (double precision) Index = 0,1,...,15
+//    B = 2^(-3)*(1+Index/16+1/32)
+//    Entries Tbl_lo (single precision)
+//    Index = 0,1,...,15  B = 2^(-3)*(1+Index/16+1/32)
+//
+data8 0x3FC068D584212B3D
+data4 0x239874B6, 0x00000000
+data8 0x3FC1646541060850
+data4 0x2335E774, 0x00000000
+data8 0x3FC25F6E171A535C
+data4 0x233E36BE, 0x00000000
+data8 0x3FC359E8EDEB99A3
+data4 0x239680A3, 0x00000000
+data8 0x3FC453CEC6092A9E
+data4 0x230FB29E, 0x00000000
+data8 0x3FC54D18BA11570A
+data4 0x230C1418, 0x00000000
+data8 0x3FC645BFFFB3AA73
+data4 0x23F0564A, 0x00000000
+data8 0x3FC73DBDE8A7D201
+data4 0x23D4A5E1, 0x00000000
+data8 0x3FC8350BE398EBC7
+data4 0x23D4ADDA, 0x00000000
+data8 0x3FC92BA37D050271
+data4 0x23BCB085, 0x00000000
+data8 0x3FCA217E601081A5
+data4 0x23BC841D, 0x00000000
+data8 0x3FCB1696574D780B
+data4 0x23CF4A8E, 0x00000000
+data8 0x3FCC0AE54D768466
+data4 0x23BECC90, 0x00000000
+data8 0x3FCCFE654E1D5395
+data4 0x2323DCD2, 0x00000000
+data8 0x3FCDF110864C9D9D
+data4 0x23F53F3A, 0x00000000
+data8 0x3FCEE2E1451D980C
+data4 0x23CCB11F, 0x00000000
+//
+data8 0x400921FB54442D18, 0x3CA1A62633145C07 // PI two doubles
+data8 0x3FF921FB54442D18, 0x3C91A62633145C07 // PI_by_2 two dbles
+data8 0x3FE921FB54442D18, 0x3C81A62633145C07 // PI_by_4 two dbles
+data8 0x4002D97C7F3321D2, 0x3C9A79394C9E8A0A // 3PI_by_4 two dbles
+LOCAL_OBJECT_END(Constants_atan)
+
+
+.section .text
+GLOBAL_IEEE754_ENTRY(atanl)
+
+// Use common code with atan2l after setting x=1.0
+{ .mfi
+      alloc r32 = ar.pfs, 0, 17, 4, 0
+      fma.s1 Ysq = ArgY_orig, ArgY_orig, f0          // Form y*y
+      nop.i 999
+}
+{ .mfi
+      addl table_ptr1 = @ltoff(Constants_atan#), gp  // Address of table pointer
+      fma.s1 Xsq = f1, f1, f0                        // Form x*x
+      nop.i 999
+}
+;;
+
+{ .mfi
+      ld8 table_ptr1 = [table_ptr1]                  // Get table pointer
+      fnorm.s1 ArgY = ArgY_orig
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fnorm.s1 ArgX = f1
+      nop.i 999
+}
+;;
+
+{ .mfi
+      getf.exp sign_X = f1               // Get signexp of x
+      fmerge.s ArgX_abs = f0, f1         // Form |x|
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fnorm.s1 ArgX_orig = f1
+      nop.i 999
+}
+;;
+
+{ .mfi
+      getf.exp sign_Y = ArgY_orig        // Get signexp of y
+      fmerge.s ArgY_abs = f0, ArgY_orig  // Form |y|
+      mov table_base = table_ptr1        // Save base pointer to tables
+}
+;;
+
+{ .mfi
+      ldfd P_hi = [table_ptr1],8         // Load double precision hi part of pi
+      fclass.m p8,p0 = ArgY_orig, 0x1e7  // Test y natval, nan, inf, zero
+      nop.i 999
+}
+;;
+
+{ .mfi
+      ldfps P_lo, TWO_TO_NEG3 = [table_ptr1], 8 // Load P_lo and constant 2^-3
+      nop.f 999
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fma.s1 M = f1, f1, f0              // Set M = 1.0
+      nop.i 999
+}
+;;
+
+//
+//     Check for everything - if false, then must be pseudo-zero
+//     or pseudo-nan (IA unsupporteds).
+//
+{ .mfb
+      nop.m 999
+      fclass.m p0,p12 = f1, 0x1FF        // Test x unsupported
+(p8)  br.cond.spnt ATANL_Y_SPECIAL       // Branch if y natval, nan, inf, zero
+}
+;;
+
+//     U = max(ArgX_abs,ArgY_abs)
+//     V = min(ArgX_abs,ArgY_abs)
+{ .mfi
+      nop.m 999
+      fcmp.ge.s1 p6,p7 = Xsq, Ysq        // Test for |x| >= |y| using squares
+      nop.i 999
+}
+{ .mfb
+      nop.m 999
+      fma.s1 V = ArgX_abs, f1, f0        // Set V assuming |x| < |y|
+      br.cond.sptk ATANL_COMMON          // Branch to common code
+}
+;;
+
+GLOBAL_IEEE754_END(atanl)
+
+GLOBAL_IEEE754_ENTRY(atan2l)
+
+{ .mfi
+      alloc r32 = ar.pfs, 0, 17, 4, 0
+      fma.s1 Ysq = ArgY_orig, ArgY_orig, f0          // Form y*y
+      nop.i 999
+}
+{ .mfi
+      addl table_ptr1 = @ltoff(Constants_atan#), gp  // Address of table pointer
+      fma.s1 Xsq = ArgX_orig, ArgX_orig, f0          // Form x*x
+      nop.i 999
+}
+;;
+
+{ .mfi
+      ld8 table_ptr1 = [table_ptr1]                  // Get table pointer
+      fnorm.s1 ArgY = ArgY_orig
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fnorm.s1 ArgX = ArgX_orig
+      nop.i 999
+}
+;;
+
+{ .mfi
+      getf.exp sign_X = ArgX_orig        // Get signexp of x
+      fmerge.s ArgX_abs = f0, ArgX_orig  // Form |x|
+      nop.i 999
+}
+;;
+
+{ .mfi
+      getf.exp sign_Y = ArgY_orig        // Get signexp of y
+      fmerge.s ArgY_abs = f0, ArgY_orig  // Form |y|
+      mov table_base = table_ptr1        // Save base pointer to tables
+}
+;;
+
+{ .mfi
+      ldfd P_hi = [table_ptr1],8         // Load double precision hi part of pi
+      fclass.m p8,p0 = ArgY_orig, 0x1e7  // Test y natval, nan, inf, zero
+      nop.i 999
+}
+;;
+
+{ .mfi
+      ldfps P_lo, TWO_TO_NEG3 = [table_ptr1], 8 // Load P_lo and constant 2^-3
+      fclass.m p9,p0 = ArgX_orig, 0x1e7  // Test x natval, nan, inf, zero
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fma.s1 M = f1, f1, f0              // Set M = 1.0
+      nop.i 999
+}
+;;
+
+//
+//     Check for everything - if false, then must be pseudo-zero
+//     or pseudo-nan (IA unsupporteds).
+//
+{ .mfb
+      nop.m 999
+      fclass.m p0,p12 = ArgX_orig, 0x1FF // Test x unsupported
+(p8)  br.cond.spnt ATANL_Y_SPECIAL       // Branch if y natval, nan, inf, zero
+}
+;;
+
+//     U = max(ArgX_abs,ArgY_abs)
+//     V = min(ArgX_abs,ArgY_abs)
+{ .mfi
+      nop.m 999
+      fcmp.ge.s1 p6,p7 = Xsq, Ysq        // Test for |x| >= |y| using squares
+      nop.i 999
+}
+{ .mfb
+      nop.m 999
+      fma.s1 V = ArgX_abs, f1, f0        // Set V assuming |x| < |y|
+(p9)  br.cond.spnt ATANL_X_SPECIAL       // Branch if x natval, nan, inf, zero
+}
+;;
+
+// Now common code for atanl and atan2l
+ATANL_COMMON:
+{ .mfi
+      nop.m 999
+      fclass.m p0,p13 = ArgY_orig, 0x1FF // Test y unsupported
+      shr sign_X = sign_X, 17            // Get sign bit of x
+}
+{ .mfi
+      nop.m 999
+      fma.s1 U = ArgY_abs, f1, f0        // Set U assuming |x| < |y|
+      adds table_ptr1 = 176, table_ptr1  // Point to Q4
+}
+;;
+
+{ .mfi
+(p6)  add swap = r0, r0                  // Set swap=0 if |x| >= |y|
+(p6)  frcpa.s1 E, p0 = ArgY_abs, ArgX_abs // Compute E if |x| >= |y|
+      shr sign_Y = sign_Y, 17            // Get sign bit of y
+}
+{ .mfb
+      nop.m 999
+(p6)  fma.s1 V = ArgY_abs, f1, f0        // Set V if |x| >= |y|
+(p12) br.cond.spnt ATANL_UNSUPPORTED     // Branch if x unsupported
+}
+;;
+
+// Set p8 if y >=0
+// Set p9 if y < 0
+// Set p10 if |x| >= |y| and x >=0
+// Set p11 if |x| >= |y| and x < 0
+{ .mfi
+      cmp.eq p8, p9 = 0, sign_Y          // Test for y >= 0
+(p7)  frcpa.s1 E, p0 = ArgX_abs, ArgY_abs // Compute E if |x| < |y|
+(p7)  add swap = 1, r0                   // Set swap=1 if |x| < |y|
+}
+{ .mfb
+(p6)  cmp.eq.unc p10, p11 = 0, sign_X    // If |x| >= |y|, test for x >= 0
+(p6)  fma.s1 U = ArgX_abs, f1, f0        // Set U if |x| >= |y|
+(p13) br.cond.spnt ATANL_UNSUPPORTED     // Branch if y unsupported
+}
+;;
+
+//
+//     if p8, s_Y = 1.0
+//     if p9, s_Y = -1.0
+//
+.pred.rel "mutex",p8,p9
+{ .mfi
+      nop.m 999
+(p8)  fadd.s1 s_Y = f0, f1               // If y >= 0 set s_Y = 1.0
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+(p9)  fsub.s1 s_Y = f0, f1               // If y < 0 set s_Y = -1.0
+      nop.i 999
+}
+;;
+
+.pred.rel "mutex",p10,p11
+{ .mfi
+      nop.m 999
+(p10) fsub.s1 M = M, f1                  // If |x| >= |y| and x >=0, set M=0
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+(p11) fadd.s1 M = M, f1                  // If |x| >= |y| and x < 0, set M=2.0
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fcmp.eq.s0 p0, p9 = ArgX_orig, ArgY_orig // Dummy to set denormal flag
+      nop.i 999
+}
+// *************************************************
+// ********************* STEP2 *********************
+// *************************************************
+//
+//     Q = E * V
+//
+{ .mfi
+      nop.m 999
+      fmpy.s1 Q = E, V
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fnma.s1 E_hold = E, U, f1           // E_hold = 1.0 - E*U (1) if POLY path
+      nop.i 999
+}
+;;
+
+// Create a single precision representation of the signexp of Q with the
+// 4 most significant bits of the significand followed by a 1 and then 18 0's
+{ .mfi
+      nop.m 999
+      fmpy.s1 P_hi = M, P_hi
+      dep.z special = 0x1, 18, 1           // Form 0x0000000000040000
+}
+{ .mfi
+      nop.m 999
+      fmpy.s1 P_lo = M, P_lo
+      add table_ptr2 = 32, table_ptr1
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fma.s1 A_temp = Q, f1, f0            // Set A_temp if POLY path
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fma.s1 E = E, E_hold, E              // E = E + E*E_hold (1) if POLY path
+      nop.i 999
+}
+;;
+
+//
+//     Is Q < 2**(-3)?
+//     swap = xor(swap,sign_X)
+//
+{ .mfi
+      nop.m 999
+      fcmp.lt.s1 p9, p0 = Q, TWO_TO_NEG3    // Test Q < 2^-3
+      xor swap = sign_X, swap
+}
+;;
+
+//     P_hi = s_Y * P_hi
+{ .mmf
+      getf.exp exponent_Q =  Q              // Get signexp of Q
+      cmp.eq.unc p7, p6 = 0x00000, swap
+      fmpy.s1 P_hi = s_Y, P_hi
+}
+;;
+
+//
+//     if (PR_1) sigma = -1.0
+//     if (PR_2) sigma =  1.0
+//
+{ .mfi
+      getf.sig significand_Q = Q            // Get significand of Q
+(p6)  fsub.s1 sigma = f0, f1
+      nop.i 999
+}
+{ .mfb
+(p9)  add table_ptr1 = 128, table_base      // Point to P8 if POLY path
+(p7)  fadd.s1 sigma = f0, f1
+(p9)  br.cond.spnt ATANL_POLY               // Branch to POLY if 0 < Q < 2^-3
+}
+;;
+
+//
+// *************************************************
+// ******************** STEP3 **********************
+// *************************************************
+//
+//     lookup = b_1 b_2 b_3 B_4
+//
+{ .mmi
+      nop.m 999
+      nop.m 999
+      andcm k = 0x0003, exponent_Q  // k=0,1,2,3 for exp_Q=0,-1,-2,-3
+}
+;;
+
+//
+//  Generate sign_exp_Q b_1 b_2 b_3 b_4 1 0 0 0 ... 0  in single precision
+//  representation.  Note sign of Q is always 0.
+//
+{ .mfi
+      cmp.eq p8, p9 = 0x0000, k             // Test k=0
+      nop.f 999
+      extr.u lookup = significand_Q, 59, 4  // Extract b_1 b_2 b_3 b_4 for index
+}
+{ .mfi
+      sub sp_exp_Q = 0x7f, k                // Form single prec biased exp of Q
+      nop.f 999
+      sub k = k, r0, 1                      // Decrement k
+}
+;;
+
+//     Form pointer to B index table
+{ .mfi
+      ldfe Q_4 = [table_ptr1], -16          // Load Q_4
+      nop.f 999
+(p9)  shl k = k, 8                          // k = 0, 256, or 512
+}
+{ .mfi
+(p9)  shladd table_ptr2 = lookup, 4, table_ptr2
+      nop.f 999
+      shladd sp_exp_4sig_Q = sp_exp_Q, 4, lookup // Shift and add in 4 high bits
+}
+;;
+
+{ .mmi
+(p8)  add table_ptr2 = -16, table_ptr2      // Pointer if original k was 0
+(p9)  add table_ptr2 = k, table_ptr2        // Pointer if k was 1, 2, 3
+      dep special = sp_exp_4sig_Q, special, 19, 13 // Form z_hi as single prec
+}
+;;
+
+//     z_hi = s exp 1.b_1 b_2 b_3 b_4 1 0 0 0 ... 0
+{ .mmi
+      ldfd Tbl_hi = [table_ptr2], 8         // Load Tbl_hi from index table
+;;
+      setf.s z_hi = special                 // Form z_hi
+      nop.i 999
+}
+{ .mmi
+      ldfs Tbl_lo = [table_ptr2], 8         // Load Tbl_lo from index table
+;;
+      ldfe Q_3 = [table_ptr1], -16          // Load Q_3
+      nop.i 999
+}
+;;
+
+{ .mmi
+      ldfe Q_2 = [table_ptr1], -16          // Load Q_2
+      nop.m 999
+      nop.i 999
+}
+;;
+
+{ .mmf
+      ldfe Q_1 = [table_ptr1], -16          // Load Q_1
+      nop.m 999
+      nop.f 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fma.s1 U_prime_hi = V, z_hi, U        // U_prime_hi = U + V * z_hi
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fnma.s1 V_prime = U, z_hi, V          // V_prime =  V - U * z_hi
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      mov A_hi = Tbl_hi                     // Start with A_hi = Tbl_hi
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fsub.s1 U_hold = U, U_prime_hi        // U_hold = U - U_prime_hi
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      frcpa.s1 C_hi, p0 = f1, U_prime_hi    // C_hi = frcpa(1,U_prime_hi)
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fmpy.s1 A_hi = s_Y, A_hi              // A_hi = s_Y * A_hi
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fma.s1 U_prime_lo = z_hi, V, U_hold   // U_prime_lo =  U_hold + V * z_hi
+      nop.i 999
+}
+;;
+
+//     C_hi_hold = 1 - C_hi * U_prime_hi (1)
+{ .mfi
+      nop.m 999
+      fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fma.s1 Res_hi = sigma, A_hi, P_hi   // Res_hi = P_hi + sigma * A_hi
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fma.s1 C_hi = C_hi_hold, C_hi, C_hi // C_hi = C_hi + C_hi * C_hi_hold (1)
+      nop.i 999
+}
+;;
+
+//     C_hi_hold = 1 - C_hi * U_prime_hi (2)
+{ .mfi
+      nop.m 999
+      fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fma.s1 C_hi = C_hi_hold, C_hi, C_hi // C_hi = C_hi + C_hi * C_hi_hold (2)
+      nop.i 999
+}
+;;
+
+//     C_hi_hold = 1 - C_hi * U_prime_hi (3)
+{ .mfi
+      nop.m 999
+      fnma.s1 C_hi_hold = C_hi, U_prime_hi, f1
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fma.s1 C_hi = C_hi_hold, C_hi, C_hi // C_hi = C_hi + C_hi * C_hi_hold (3)
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fmpy.s1 w_hi = V_prime, C_hi           // w_hi = V_prime * C_hi
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fmpy.s1 wsq = w_hi, w_hi               // wsq = w_hi * w_hi
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fnma.s1 w_lo = w_hi, U_prime_hi, V_prime // w_lo = V_prime-w_hi*U_prime_hi
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fma.s1 poly =  wsq, Q_4, Q_3           // poly = Q_3 + wsq * Q_4
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fnma.s1 w_lo = w_hi, U_prime_lo, w_lo  // w_lo = w_lo - w_hi * U_prime_lo
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fma.s1 poly = wsq, poly, Q_2           // poly = Q_2 + wsq * poly
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fmpy.s1 w_lo = C_hi, w_lo              // w_lo =  = w_lo * C_hi
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fma.s1 poly = wsq, poly, Q_1           // poly = Q_1 + wsq * poly
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fadd.s1 A_lo = Tbl_lo, w_lo            // A_lo = Tbl_lo + w_lo
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fmpy.s0 Q_1 =  Q_1, Q_1                // Dummy operation to raise inexact
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fmpy.s1 poly = wsq, poly               // poly = wsq * poly
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fmpy.s1 poly = w_hi, poly              // poly = w_hi * poly
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fadd.s1 A_lo = A_lo, poly              // A_lo = A_lo + poly
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fadd.s1 A_lo = A_lo, w_hi              // A_lo = A_lo + w_hi
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fma.s1 Res_lo = sigma, A_lo, P_lo      // Res_lo = P_lo + sigma * A_lo
+      nop.i 999
+}
+;;
+
+//
+//     Result  =  Res_hi + Res_lo * s_Y  (User Supplied Rounding Mode)
+//
+{ .mfb
+      nop.m 999
+      fma.s0 Result = Res_lo, s_Y, Res_hi
+      br.ret.sptk   b0                        // Exit table path 2^-3 <= V/U < 1
+}
+;;
+
+
+ATANL_POLY:
+// Here if 0 < V/U < 2^-3
+//
+// ***********************************************
+// ******************** STEP4 ********************
+// ***********************************************
+
+//
+//     Following:
+//     Iterate 3 times E = E + E*(1.0 - E*U)
+//     Also load P_8, P_7, P_6, P_5, P_4
+//
+{ .mfi
+      ldfe P_8 = [table_ptr1], -16            // Load P_8
+      fnma.s1 z_lo = A_temp, U, V             // z_lo = V - A_temp * U
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fnma.s1 E_hold = E, U, f1               // E_hold = 1.0 - E*U (2)
+      nop.i 999
+}
+;;
+
+{ .mmi
+      ldfe P_7 = [table_ptr1], -16            // Load P_7
+;;
+      ldfe P_6 = [table_ptr1], -16            // Load P_6
+      nop.i 999
+}
+;;
+
+{ .mfi
+      ldfe P_5 = [table_ptr1], -16            // Load P_5
+      fma.s1 E = E, E_hold, E                 // E = E + E_hold*E (2)
+      nop.i 999
+}
+;;
+
+{ .mmi
+      ldfe P_4 = [table_ptr1], -16            // Load P_4
+;;
+      ldfe P_3 = [table_ptr1], -16            // Load P_3
+      nop.i 999
+}
+;;
+
+{ .mfi
+      ldfe P_2 = [table_ptr1], -16            // Load P_2
+      fnma.s1 E_hold = E, U, f1               // E_hold = 1.0 - E*U (3)
+      nop.i 999
+}
+{ .mlx
+      nop.m 999
+      movl         int_temp = 0x24005         // Signexp for small neg number
+}
+;;
+
+{ .mmf
+      ldfe P_1 = [table_ptr1], -16            // Load P_1
+      setf.exp     tmp_small = int_temp       // Form small neg number
+      fma.s1 E = E, E_hold, E                 // E = E + E_hold*E (3)
+}
+;;
+
+//
+//
+// At this point E approximates 1/U to roughly working precision
+// Z = V*E approximates V/U
+//
+{ .mfi
+      nop.m 999
+      fmpy.s1 Z = V, E                         // Z = V * E
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fmpy.s1 z_lo = z_lo, E                   // z_lo = z_lo * E
+      nop.i 999
+}
+;;
+
+//
+//     Now what we want to do is
+//     poly1 = P_4 + zsq*(P_5 + zsq*(P_6 + zsq*(P_7 + zsq*P_8)))
+//     poly2 = zsq*(P_1 + zsq*(P_2 + zsq*P_3))
+//
+//
+//     Fixup added to force inexact later -
+//     A_hi = A_temp + z_lo
+//     z_lo = (A_temp - A_hi) + z_lo
+//
+{ .mfi
+      nop.m 999
+      fmpy.s1 zsq = Z, Z                        // zsq = Z * Z
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fadd.s1 A_hi = A_temp, z_lo               // A_hi = A_temp + z_lo
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fma.s1 poly1 = zsq, P_8, P_7              // poly1 = P_7 + zsq * P_8
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fma.s1 poly2 = zsq, P_3, P_2              // poly2 = P_2 + zsq * P_3
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fmpy.s1 z4 = zsq, zsq                     // z4 = zsq * zsq
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fsub.s1 A_temp = A_temp, A_hi             // A_temp = A_temp - A_hi
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fmerge.s     tmp = A_hi, A_hi             // Copy tmp = A_hi
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fma.s1 poly1 = zsq, poly1, P_6            // poly1 = P_6 + zsq * poly1
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fma.s1 poly2 = zsq, poly2, P_1            // poly2 = P_2 + zsq * poly2
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fmpy.s1 z8 = z4, z4                       // z8 = z4 * z4
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fadd.s1 z_lo = A_temp, z_lo               // z_lo = (A_temp - A_hi) + z_lo
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fma.s1 poly1 = zsq, poly1, P_5            // poly1 = P_5 + zsq * poly1
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fmpy.s1 poly2 = poly2, zsq                // poly2 = zsq * poly2
+      nop.i 999
+}
+;;
+
+//     Create small GR double in case need to raise underflow
+{ .mfi
+      nop.m 999
+      fma.s1 poly1 = zsq, poly1, P_4            // poly1 = P_4 + zsq * poly1
+      dep GR_temp = -1,r0,0,53
+}
+;;
+
+//     Create small double in case need to raise underflow
+{ .mfi
+      setf.d FR_temp = GR_temp
+      fma.s1 poly = z8, poly1, poly2            // poly = poly2 + z8 * poly1
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fma.s1 A_lo = Z, poly, z_lo               // A_lo = z_lo + Z * poly
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fadd.s1      A_hi = tmp, A_lo             // A_hi = tmp + A_lo
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fsub.s1      tmp = tmp, A_hi              // tmp = tmp - A_hi
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fmpy.s1 A_hi = s_Y, A_hi                  // A_hi = s_Y * A_hi
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fadd.s1      A_lo = tmp, A_lo             // A_lo = tmp + A_lo
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fma.s1 Res_hi = sigma, A_hi, P_hi         // Res_hi = P_hi + sigma * A_hi
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fsub.s1 tmp =  P_hi, Res_hi               // tmp = P_hi - Res_hi
+      nop.i 999
+}
+;;
+
+//
+//     Test if A_lo is zero
+//
+{ .mfi
+      nop.m 999
+      fclass.m p6,p0 = A_lo, 0x007              // Test A_lo = 0
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+(p6)  mov          A_lo = tmp_small             // If A_lo zero, make very small
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fma.s1 tmp = A_hi, sigma, tmp             // tmp = sigma * A_hi  + tmp
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+      fma.s1 sigma =  A_lo, sigma, P_lo         // sigma = A_lo * sigma  + P_lo
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fma.s1 Res_lo = s_Y, sigma, tmp           // Res_lo = s_Y * sigma + tmp
+      nop.i 999
+}
+;;
+
+//
+//     Test if Res_lo is denormal
+//
+{ .mfi
+      nop.m 999
+      fclass.m p14, p15 = Res_lo, 0x0b
+      nop.i 999
+}
+;;
+
+//
+//     Compute Result = Res_lo + Res_hi.  Use s3 if Res_lo is denormal.
+//
+{ .mfi
+      nop.m 999
+(p14) fadd.s3 Result = Res_lo, Res_hi     // Result for Res_lo denormal
+      nop.i 999
+}
+{ .mfi
+      nop.m 999
+(p15) fadd.s0 Result = Res_lo, Res_hi     // Result for Res_lo normal
+      nop.i 999
+}
+;;
+
+//
+//     If Res_lo is denormal test if Result equals zero
+//
+{ .mfi
+      nop.m 999
+(p14) fclass.m.unc p14, p0 = Result, 0x07
+      nop.i 999
+}
+;;
+
+//
+//     If Res_lo is denormal and Result equals zero, raise inexact, underflow
+//     by squaring small double
+//
+{ .mfb
+      nop.m 999
+(p14) fmpy.d.s0 FR_temp = FR_temp, FR_temp
+      br.ret.sptk   b0                     // Exit POLY path, 0 < Q < 2^-3
+}
+;;
+
+
+ATANL_UNSUPPORTED:
+{ .mfb
+      nop.m 999
+      fmpy.s0 Result = ArgX,ArgY
+      br.ret.sptk   b0
+}
+;;
+
+// Here if y natval, nan, inf, zero
+ATANL_Y_SPECIAL:
+// Here if x natval, nan, inf, zero
+ATANL_X_SPECIAL:
+{ .mfi
+      nop.m 999
+      fclass.m p13,p12 = ArgY_orig, 0x0c3  // Test y nan
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fclass.m p15,p14 = ArgY_orig, 0x103  // Test y natval
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+(p12) fclass.m p13,p0 = ArgX_orig, 0x0c3  // Test x nan
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+(p14) fclass.m p15,p0 = ArgX_orig, 0x103  // Test x natval
+      nop.i 999
+}
+;;
+
+{ .mfb
+      nop.m 999
+(p13) fmpy.s0 Result = ArgX_orig, ArgY_orig // Result nan if x or y nan
+(p13) br.ret.spnt b0                      // Exit if x or y nan
+}
+;;
+
+{ .mfb
+      nop.m 999
+(p15) fmpy.s0 Result = ArgX_orig, ArgY_orig // Result natval if x or y natval
+(p15) br.ret.spnt b0                      // Exit if x or y natval
+}
+;;
+
+
+// Here if x or y inf or zero
+ATANL_SPECIAL_HANDLING:
+{ .mfi
+      nop.m 999
+      fclass.m p6, p7 = ArgY_orig, 0x007        // Test y zero
+      mov special = 992                         // Offset to table
+}
+;;
+
+{ .mfb
+      add table_ptr1 = table_base, special      // Point to 3pi/4
+      fcmp.eq.s0 p0, p9 = ArgX_orig, ArgY_orig  // Dummy to set denormal flag
+(p7)  br.cond.spnt ATANL_ArgY_Not_ZERO          // Branch if y not zero
+}
+;;
+
+// Here if y zero
+{ .mmf
+      ldfd  Result = [table_ptr1], 8            // Get pi high
+      nop.m 999
+      fclass.m p14, p0 = ArgX, 0x035            // Test for x>=+0
+}
+;;
+
+{ .mmf
+      nop.m 999
+      ldfd  Result_lo = [table_ptr1], -8        // Get pi lo
+      fclass.m p15, p0 = ArgX, 0x036            // Test for x<=-0
+}
+;;
+
+//
+//     Return sign_Y * 0 when  ArgX > +0
+//
+{ .mfi
+      nop.m 999
+(p14) fmerge.s Result = ArgY, f0               // If x>=+0, y=0, hi sgn(y)*0
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fclass.m p13, p0 = ArgX, 0x007           // Test for x=0
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+(p14) fmerge.s Result_lo = ArgY, f0            // If x>=+0, y=0, lo sgn(y)*0
+      nop.i 999
+}
+;;
+
+{ .mfi
+(p13) mov GR_Parameter_TAG = 36                // Error tag for x=0, y=0
+      nop.f 999
+      nop.i 999
+}
+;;
+
+//
+//     Return sign_Y * pi when  ArgX < -0
+//
+{ .mfi
+      nop.m 999
+(p15) fmerge.s Result = ArgY, Result           // If x<0, y=0, hi=sgn(y)*pi
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+(p15) fmerge.s Result_lo = ArgY, Result_lo     // If x<0, y=0, lo=sgn(y)*pi
+      nop.i 999
+}
+;;
+
+//
+//     Call error support function for atan(0,0)
+//
+{ .mfb
+      nop.m 999
+      fadd.s0 Result = Result, Result_lo
+(p13) br.cond.spnt __libm_error_region         // Branch if atan(0,0)
+}
+;;
+
+{ .mib
+      nop.m 999
+      nop.i 999
+      br.ret.sptk   b0                         // Exit for y=0, x not 0
+}
+;;
+
+// Here if y not zero
+ATANL_ArgY_Not_ZERO:
+{ .mfi
+      nop.m 999
+      fclass.m p0, p10 = ArgY, 0x023           // Test y inf
+      nop.i 999
+}
+;;
+
+{ .mfb
+      nop.m 999
+      fclass.m p6, p0 = ArgX, 0x017            // Test for 0 <= |x| < inf
+(p10) br.cond.spnt  ATANL_ArgY_Not_INF         // Branch if 0 < |y| < inf
+}
+;;
+
+// Here if y=inf
+//
+//     Return +PI/2 when ArgY = +Inf and ArgX = +/-0 or normal
+//     Return -PI/2 when ArgY = -Inf and ArgX = +/-0 or normal
+//     Return +PI/4 when ArgY = +Inf and ArgX = +Inf
+//     Return -PI/4 when ArgY = -Inf and ArgX = +Inf
+//     Return +3PI/4 when ArgY = +Inf and ArgX = -Inf
+//     Return -3PI/4 when ArgY = -Inf and ArgX = -Inf
+//
+{ .mfi
+      nop.m 999
+      fclass.m p7, p0 = ArgX, 0x021            // Test for x=+inf
+      nop.i 999
+}
+;;
+
+{ .mfi
+(p6)  add table_ptr1 =  16, table_ptr1         // Point to pi/2, if x finite
+      fclass.m p8, p0 = ArgX, 0x022            // Test for x=-inf
+      nop.i 999
+}
+;;
+
+{ .mmi
+(p7)  add table_ptr1 =  32, table_ptr1         // Point to pi/4 if x=+inf
+;;
+(p8)  add table_ptr1 =  48, table_ptr1         // Point to 3pi/4 if x=-inf
+
+      nop.i 999
+}
+;;
+
+{ .mmi
+      ldfd Result = [table_ptr1], 8            // Load pi/2, pi/4, or 3pi/4 hi
+;;
+      ldfd Result_lo = [table_ptr1], -8        // Load pi/2, pi/4, or 3pi/4 lo
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fmerge.s Result = ArgY, Result           // Merge sgn(y) in hi
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fmerge.s Result_lo = ArgY, Result_lo     // Merge sgn(y) in lo
+      nop.i 999
+}
+;;
+
+{ .mfb
+      nop.m 999
+      fadd.s0 Result = Result, Result_lo       // Compute complete result
+      br.ret.sptk   b0                         // Exit for y=inf
+}
+;;
+
+// Here if y not INF, and x=0 or INF
+ATANL_ArgY_Not_INF:
+//
+//     Return +PI/2 when ArgY NOT Inf, ArgY > 0 and ArgX = +/-0
+//     Return -PI/2 when ArgY NOT Inf, ArgY < 0 and ArgX = +/-0
+//     Return +0    when ArgY NOT Inf, ArgY > 0 and ArgX = +Inf
+//     Return -0    when ArgY NOT Inf, ArgY > 0 and ArgX = +Inf
+//     Return +PI   when ArgY NOT Inf, ArgY > 0 and ArgX = -Inf
+//     Return -PI   when ArgY NOT Inf, ArgY > 0 and ArgX = -Inf
+//
+{ .mfi
+      nop.m 999
+      fclass.m p7, p9 = ArgX, 0x021            // Test for x=+inf
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+      fclass.m p6, p0 = ArgX, 0x007            // Test for x=0
+      nop.i 999
+}
+;;
+
+{ .mfi
+(p6)  add table_ptr1 = 16, table_ptr1          // Point to pi/2
+      fclass.m p8, p0 = ArgX, 0x022            // Test for x=-inf
+      nop.i 999
+}
+;;
+
+.pred.rel "mutex",p7,p9
+{ .mfi
+(p9)  ldfd Result = [table_ptr1], 8           // Load pi or pi/2 hi
+(p7)  fmerge.s Result = ArgY, f0              // If y not inf, x=+inf, sgn(y)*0
+      nop.i 999
+}
+;;
+
+{ .mfi
+(p9)  ldfd Result_lo = [table_ptr1], -8       // Load pi or pi/2 lo
+(p7)  fnorm.s0 Result = Result                // If y not inf, x=+inf normalize
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+(p9)  fmerge.s Result = ArgY, Result          // Merge sgn(y) in hi
+      nop.i 999
+}
+;;
+
+{ .mfi
+      nop.m 999
+(p9)  fmerge.s Result_lo = ArgY, Result_lo    // Merge sgn(y) in lo
+      nop.i 999
+}
+;;
+
+{ .mfb
+      nop.m 999
+(p9)  fadd.s0 Result = Result, Result_lo      // Compute complete result
+      br.ret.spnt   b0                        // Exit for y not inf, x=0,inf
+}
+;;
+
+GLOBAL_IEEE754_END(atan2l)
+
+LOCAL_LIBM_ENTRY(__libm_error_region)
+.prologue
+{ .mfi
+        add   GR_Parameter_Y=-32,sp             // Parameter 2 value
+        nop.f 0
+.save   ar.pfs,GR_SAVE_PFS
+        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
+}
+{ .mfi
+.fframe 64
+        add sp=-64,sp                           // Create new stack
+        nop.f 0
+        mov GR_SAVE_GP=gp                       // Save gp
+};;
+{ .mmi
+        stfe [GR_Parameter_Y] = FR_Y,16         // Save Parameter 2 on stack
+        add GR_Parameter_X = 16,sp              // Parameter 1 address
+.save   b0, GR_SAVE_B0
+        mov GR_SAVE_B0=b0                       // Save b0
+};;
+.body
+{ .mib
+        stfe [GR_Parameter_X] = FR_X            // Store Parameter 1 on stack
+        add   GR_Parameter_RESULT = 0,GR_Parameter_Y
+        nop.b 0                                 // Parameter 3 address
+}
+{ .mib
+        stfe [GR_Parameter_Y] = FR_RESULT      // Store Parameter 3 on stack
+        add   GR_Parameter_Y = -16,GR_Parameter_Y
+        br.call.sptk b0=__libm_error_support#  // Call error handling function
+};;
+{ .mmi
+        nop.m 0
+        nop.m 0
+        add   GR_Parameter_RESULT = 48,sp
+};;
+{ .mmi
+        ldfe  f8 = [GR_Parameter_RESULT]       // Get return result off stack
+.restore sp
+        add   sp = 64,sp                       // Restore stack pointer
+        mov   b0 = GR_SAVE_B0                  // Restore return address
+};;
+{ .mib
+        mov   gp = GR_SAVE_GP                  // Restore gp
+        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
+        br.ret.sptk     b0                     // Return
+};;
+
+LOCAL_LIBM_END(__libm_error_region#)
+.type   __libm_error_support#,@function
+.global __libm_error_support#