about summary refs log tree commit diff
path: root/sysdeps/x86_64/fpu/multiarch/svml_s_asinhf8_core_avx2.S
diff options
context:
space:
mode:
authorSunil K Pandey <skpgkp2@gmail.com>2021-12-29 10:07:02 -0800
committerSunil K Pandey <skpgkp2@gmail.com>2021-12-29 11:38:56 -0800
commite682d0157854955e4b5fc91731d24a854e810eee (patch)
treec629c92e3b6a072e18629ccd814c810e75ae1f50 /sysdeps/x86_64/fpu/multiarch/svml_s_asinhf8_core_avx2.S
parentc0f36fc3032047cc2f50be5b705d6d445a9ad21b (diff)
downloadglibc-e682d0157854955e4b5fc91731d24a854e810eee.tar.gz
glibc-e682d0157854955e4b5fc91731d24a854e810eee.tar.xz
glibc-e682d0157854955e4b5fc91731d24a854e810eee.zip
x86-64: Add vector asinh/asinhf implementation to libmvec
Implement vectorized asinh/asinhf containing SSE, AVX, AVX2 and
AVX512 versions for libmvec as per vector ABI.  It also contains
accuracy and ABI tests for vector asinh/asinhf with regenerated ulps.

Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
Diffstat (limited to 'sysdeps/x86_64/fpu/multiarch/svml_s_asinhf8_core_avx2.S')
-rw-r--r--sysdeps/x86_64/fpu/multiarch/svml_s_asinhf8_core_avx2.S457
1 files changed, 457 insertions, 0 deletions
diff --git a/sysdeps/x86_64/fpu/multiarch/svml_s_asinhf8_core_avx2.S b/sysdeps/x86_64/fpu/multiarch/svml_s_asinhf8_core_avx2.S
new file mode 100644
index 0000000000..a966f53773
--- /dev/null
+++ b/sysdeps/x86_64/fpu/multiarch/svml_s_asinhf8_core_avx2.S
@@ -0,0 +1,457 @@
+/* Function asinhf vectorized with AVX2.
+   Copyright (C) 2021 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, see
+   https://www.gnu.org/licenses/.  */
+
+/*
+ * ALGORITHM DESCRIPTION:
+ *
+ *   Compute asinh(x) as log(x + sqrt(x*x + 1))
+ *
+ *   Special cases:
+ *
+ *   asinh(NaN) = quiet NaN, and raise invalid exception
+ *   asinh(INF) = that INF
+ *   asinh(0)   = that 0
+ *
+ */
+
+/* Offsets for data table __svml_sasinh_data_internal
+ */
+#define SgnMask                       	0
+#define sOne                          	32
+#define sPoly                         	64
+#define iBrkValue                     	320
+#define iOffExpoMask                  	352
+#define sBigThreshold                 	384
+#define sC2                           	416
+#define sC3                           	448
+#define sHalf                         	480
+#define sLargestFinite                	512
+#define sLittleThreshold              	544
+#define sSign                         	576
+#define sThirtyOne                    	608
+#define sTopMask8                     	640
+#define XScale                        	672
+#define sLn2                          	704
+
+#include <sysdep.h>
+
+        .text
+	.section .text.avx2,"ax",@progbits
+ENTRY(_ZGVdN8v_asinhf_avx2)
+        pushq     %rbp
+        cfi_def_cfa_offset(16)
+        movq      %rsp, %rbp
+        cfi_def_cfa(6, 16)
+        cfi_offset(6, -16)
+        andq      $-32, %rsp
+        subq      $96, %rsp
+        vmovaps   %ymm0, %ymm9
+
+/* Load the constant 1 and a sign mask */
+        vmovups   sOne+__svml_sasinh_data_internal(%rip), %ymm8
+
+/* No need to split X when FMA is available in hardware. */
+        vmulps    %ymm9, %ymm9, %ymm5
+        vmovups   sTopMask8+__svml_sasinh_data_internal(%rip), %ymm1
+
+/*
+ * Finally, express Y + W = X^2 + 1 accurately where Y has <= 8 bits.
+ * If |X| <= 1 then |XHi| <= 1 and so |X2Hi| <= 1, so we can treat 1
+ * as the dominant component in the compensated summation. Otherwise,
+ * if |X| >= 1, then since X2Hi only has 22 significant bits, the basic
+ * addition will be exact anyway until we get to |X| >= 2^24. But by
+ * that time the log function is well-conditioned enough that the
+ * rounding error doesn't matter. Hence we can treat 1 as dominant even
+ * if it literally isn't.
+ */
+        vaddps    %ymm5, %ymm8, %ymm13
+        vandps    %ymm1, %ymm13, %ymm2
+        vmovaps   %ymm9, %ymm4
+        vsubps    %ymm13, %ymm8, %ymm11
+        vsubps    %ymm2, %ymm13, %ymm15
+
+/*
+ * Compute R = 1/sqrt(Y + W) * (1 + d)
+ * Force R to <= 8 significant bits.
+ * This means that R * Y and R^2 * Y are exactly representable.
+ */
+        vrsqrtps  %ymm2, %ymm0
+        vfmsub213ps %ymm5, %ymm9, %ymm4
+        vaddps    %ymm11, %ymm5, %ymm12
+
+/*
+ * Get the absolute value of the input, since we will exploit antisymmetry
+ * and mostly assume X >= 0 in the core computation
+ */
+        vandps    SgnMask+__svml_sasinh_data_internal(%rip), %ymm9, %ymm6
+
+/*
+ * Check whether the input is finite, by checking |X| <= MaxFloat
+ * Otherwise set the rangemask so that the callout will get used.
+ * Note that this will also use the callout for NaNs since not(NaN <= MaxFloat)
+ */
+        vcmpnle_uqps sLargestFinite+__svml_sasinh_data_internal(%rip), %ymm6, %ymm10
+        vaddps    %ymm12, %ymm4, %ymm14
+
+/*
+ * Unfortunately, we can still be in trouble if |X| <= 2^-5, since
+ * the absolute error 2^-(7+24)-ish in sqrt(1 + X^2) gets scaled up
+ * by 1/X and comes close to our threshold. Hence if |X| <= 2^-4,
+ * perform an alternative computation
+ * sqrt(1 + X^2) - 1 = X^2/2 - X^4/8 + X^6/16
+ * X2 = X^2
+ */
+        vaddps    %ymm4, %ymm5, %ymm4
+
+/*
+ * The following computation can go wrong for very large X, basically
+ * because X^2 overflows. But for large X we have
+ * asinh(X) / log(2 X) - 1 =~= 1/(4 * X^2), so for X >= 2^30
+ * we can just later stick X back into the log and tweak up the exponent.
+ * Actually we scale X by 2^-30 and tweak the exponent up by 31,
+ * to stay in the safe range for the later log computation.
+ * Compute a flag now telling us when do do this.
+ */
+        vcmplt_oqps sBigThreshold+__svml_sasinh_data_internal(%rip), %ymm6, %ymm7
+        vaddps    %ymm15, %ymm14, %ymm3
+
+/*
+ * Now       1 / (1 + d)
+ * = 1 / (1 + (sqrt(1 - e) - 1))
+ * = 1 / sqrt(1 - e)
+ * = 1 + 1/2 * e + 3/8 * e^2 + 5/16 * e^3 + 35/128 * e^4 + ...
+ * So compute the first three nonconstant terms of that, so that
+ * we have a relative correction (1 + Corr) to apply to S etc.
+ * C1 = 1/2
+ * C2 = 3/8
+ * C3 = 5/16
+ */
+        vmovups   sC3+__svml_sasinh_data_internal(%rip), %ymm12
+        vmovmskps %ymm10, %edx
+        vandps    %ymm1, %ymm0, %ymm10
+
+/*
+ * Compute S = (Y/sqrt(Y + W)) * (1 + d)
+ * and T = (W/sqrt(Y + W)) * (1 + d)
+ * so that S + T = sqrt(Y + W) * (1 + d)
+ * S is exact, and the rounding error in T is OK.
+ */
+        vmulps    %ymm10, %ymm2, %ymm15
+        vmulps    %ymm3, %ymm10, %ymm14
+        vmovups   sHalf+__svml_sasinh_data_internal(%rip), %ymm3
+        vsubps    %ymm8, %ymm15, %ymm0
+
+/*
+ * Obtain sqrt(1 + X^2) - 1 in two pieces
+ * sqrt(1 + X^2) - 1
+ * = sqrt(Y + W) - 1
+ * = (S + T) * (1 + Corr) - 1
+ * = [S - 1] + [T + (S + T) * Corr]
+ * We need a compensated summation for the last part. We treat S - 1
+ * as the larger part; it certainly is until about X < 2^-4, and in that
+ * case, the error is affordable since X dominates over sqrt(1 + X^2) - 1
+ * Final sum is dTmp5 (hi) + dTmp7 (lo)
+ */
+        vaddps    %ymm14, %ymm15, %ymm13
+
+/*
+ * Compute e = -(2 * d + d^2)
+ * The first FMR is exact, and the rounding error in the other is acceptable
+ * since d and e are ~ 2^-8
+ */
+        vmovaps   %ymm8, %ymm11
+        vfnmadd231ps %ymm15, %ymm10, %ymm11
+        vfnmadd231ps %ymm14, %ymm10, %ymm11
+        vfmadd213ps sC2+__svml_sasinh_data_internal(%rip), %ymm11, %ymm12
+        vfmadd213ps %ymm3, %ymm11, %ymm12
+        vmulps    %ymm12, %ymm11, %ymm1
+
+/* Now multiplex the two possible computations */
+        vcmple_oqps sLittleThreshold+__svml_sasinh_data_internal(%rip), %ymm6, %ymm11
+        vfmadd213ps %ymm14, %ymm13, %ymm1
+        vaddps    %ymm0, %ymm1, %ymm2
+        vsubps    %ymm2, %ymm0, %ymm10
+
+/* sX2over2 = X^2/2 */
+        vmulps    %ymm4, %ymm3, %ymm0
+        vaddps    %ymm10, %ymm1, %ymm1
+
+/* sX4over4 = X^4/4 */
+        vmulps    %ymm0, %ymm0, %ymm5
+
+/* sX46 = -X^4/4 + X^6/8 */
+        vfmsub231ps %ymm0, %ymm5, %ymm5
+
+/* sX46over2 = -X^4/8 + x^6/16 */
+        vmulps    %ymm5, %ymm3, %ymm3
+        vaddps    %ymm3, %ymm0, %ymm5
+        vblendvps %ymm11, %ymm5, %ymm2, %ymm2
+        vsubps    %ymm5, %ymm0, %ymm4
+
+/*
+ * Now do another compensated sum to add |X| + [sqrt(1 + X^2) - 1].
+ * It's always safe to assume |X| is larger.
+ * This is the final 2-part argument to the log1p function
+ */
+        vaddps    %ymm2, %ymm6, %ymm14
+
+/*
+ * Now resume the main code.
+ * reduction: compute r,n
+ */
+        vmovups   iBrkValue+__svml_sasinh_data_internal(%rip), %ymm5
+        vaddps    %ymm4, %ymm3, %ymm10
+
+/*
+ * Now we feed into the log1p code, using H in place of _VARG1 and
+ * also adding L into Xl.
+ * compute 1+x as high, low parts
+ */
+        vmaxps    %ymm14, %ymm8, %ymm15
+        vminps    %ymm14, %ymm8, %ymm0
+        vblendvps %ymm11, %ymm10, %ymm1, %ymm12
+        vsubps    %ymm14, %ymm6, %ymm1
+        vaddps    %ymm0, %ymm15, %ymm3
+
+/* Now multiplex to the case X = 2^-30 * input, Xl = sL = 0 in the "big" case. */
+        vmulps    XScale+__svml_sasinh_data_internal(%rip), %ymm6, %ymm6
+        vaddps    %ymm1, %ymm2, %ymm13
+        vsubps    %ymm3, %ymm15, %ymm15
+        vaddps    %ymm13, %ymm12, %ymm1
+        vaddps    %ymm15, %ymm0, %ymm2
+        vblendvps %ymm7, %ymm3, %ymm6, %ymm0
+        vaddps    %ymm2, %ymm1, %ymm4
+        vpsubd    %ymm5, %ymm0, %ymm1
+        vpsrad    $23, %ymm1, %ymm6
+        vpand     iOffExpoMask+__svml_sasinh_data_internal(%rip), %ymm1, %ymm2
+        vmovups   sPoly+224+__svml_sasinh_data_internal(%rip), %ymm1
+        vpslld    $23, %ymm6, %ymm10
+        vpaddd    %ymm5, %ymm2, %ymm13
+        vcvtdq2ps %ymm6, %ymm0
+        vpsubd    %ymm10, %ymm8, %ymm12
+
+/* polynomial evaluation */
+        vsubps    %ymm8, %ymm13, %ymm8
+
+/* Add 31 to the exponent in the "large" case to get log(2 * input) */
+        vaddps    sThirtyOne+__svml_sasinh_data_internal(%rip), %ymm0, %ymm3
+        vandps    %ymm7, %ymm4, %ymm11
+        vmulps    %ymm12, %ymm11, %ymm14
+        vblendvps %ymm7, %ymm0, %ymm3, %ymm0
+        vaddps    %ymm8, %ymm14, %ymm2
+        vfmadd213ps sPoly+192+__svml_sasinh_data_internal(%rip), %ymm2, %ymm1
+        vfmadd213ps sPoly+160+__svml_sasinh_data_internal(%rip), %ymm2, %ymm1
+        vfmadd213ps sPoly+128+__svml_sasinh_data_internal(%rip), %ymm2, %ymm1
+        vfmadd213ps sPoly+96+__svml_sasinh_data_internal(%rip), %ymm2, %ymm1
+        vfmadd213ps sPoly+64+__svml_sasinh_data_internal(%rip), %ymm2, %ymm1
+        vfmadd213ps sPoly+32+__svml_sasinh_data_internal(%rip), %ymm2, %ymm1
+        vfmadd213ps sPoly+__svml_sasinh_data_internal(%rip), %ymm2, %ymm1
+        vmulps    %ymm1, %ymm2, %ymm4
+        vfmadd213ps %ymm2, %ymm2, %ymm4
+
+/* final reconstruction */
+        vfmadd132ps sLn2+__svml_sasinh_data_internal(%rip), %ymm4, %ymm0
+
+/* Finally, reincorporate the original sign. */
+        vandps    sSign+__svml_sasinh_data_internal(%rip), %ymm9, %ymm7
+        vxorps    %ymm0, %ymm7, %ymm0
+        testl     %edx, %edx
+
+/* Go to special inputs processing branch */
+        jne       L(SPECIAL_VALUES_BRANCH)
+                                # LOE rbx r12 r13 r14 r15 edx ymm0 ymm9
+
+/* Restore registers
+ * and exit the function
+ */
+
+L(EXIT):
+        movq      %rbp, %rsp
+        popq      %rbp
+        cfi_def_cfa(7, 8)
+        cfi_restore(6)
+        ret
+        cfi_def_cfa(6, 16)
+        cfi_offset(6, -16)
+
+/* Branch to process
+ * special inputs
+ */
+
+L(SPECIAL_VALUES_BRANCH):
+        vmovups   %ymm9, 32(%rsp)
+        vmovups   %ymm0, 64(%rsp)
+                                # LOE rbx r12 r13 r14 r15 edx ymm0
+
+        xorl      %eax, %eax
+                                # LOE rbx r12 r13 r14 r15 eax edx
+
+        vzeroupper
+        movq      %r12, 16(%rsp)
+        /*  DW_CFA_expression: r12 (r12) (DW_OP_lit8; DW_OP_minus; DW_OP_const4s: -32; DW_OP_and; DW_OP_const4s: -80; DW_OP_plus)  */
+        .cfi_escape 0x10, 0x0c, 0x0e, 0x38, 0x1c, 0x0d, 0xe0, 0xff, 0xff, 0xff, 0x1a, 0x0d, 0xb0, 0xff, 0xff, 0xff, 0x22
+        movl      %eax, %r12d
+        movq      %r13, 8(%rsp)
+        /*  DW_CFA_expression: r13 (r13) (DW_OP_lit8; DW_OP_minus; DW_OP_const4s: -32; DW_OP_and; DW_OP_const4s: -88; DW_OP_plus)  */
+        .cfi_escape 0x10, 0x0d, 0x0e, 0x38, 0x1c, 0x0d, 0xe0, 0xff, 0xff, 0xff, 0x1a, 0x0d, 0xa8, 0xff, 0xff, 0xff, 0x22
+        movl      %edx, %r13d
+        movq      %r14, (%rsp)
+        /*  DW_CFA_expression: r14 (r14) (DW_OP_lit8; DW_OP_minus; DW_OP_const4s: -32; DW_OP_and; DW_OP_const4s: -96; DW_OP_plus)  */
+        .cfi_escape 0x10, 0x0e, 0x0e, 0x38, 0x1c, 0x0d, 0xe0, 0xff, 0xff, 0xff, 0x1a, 0x0d, 0xa0, 0xff, 0xff, 0xff, 0x22
+                                # LOE rbx r15 r12d r13d
+
+/* Range mask
+ * bits check
+ */
+
+L(RANGEMASK_CHECK):
+        btl       %r12d, %r13d
+
+/* Call scalar math function */
+        jc        L(SCALAR_MATH_CALL)
+                                # LOE rbx r15 r12d r13d
+
+/* Special inputs
+ * processing loop
+ */
+
+L(SPECIAL_VALUES_LOOP):
+        incl      %r12d
+        cmpl      $8, %r12d
+
+/* Check bits in range mask */
+        jl        L(RANGEMASK_CHECK)
+                                # LOE rbx r15 r12d r13d
+
+        movq      16(%rsp), %r12
+        cfi_restore(12)
+        movq      8(%rsp), %r13
+        cfi_restore(13)
+        movq      (%rsp), %r14
+        cfi_restore(14)
+        vmovups   64(%rsp), %ymm0
+
+/* Go to exit */
+        jmp       L(EXIT)
+        /*  DW_CFA_expression: r12 (r12) (DW_OP_lit8; DW_OP_minus; DW_OP_const4s: -32; DW_OP_and; DW_OP_const4s: -80; DW_OP_plus)  */
+        .cfi_escape 0x10, 0x0c, 0x0e, 0x38, 0x1c, 0x0d, 0xe0, 0xff, 0xff, 0xff, 0x1a, 0x0d, 0xb0, 0xff, 0xff, 0xff, 0x22
+        /*  DW_CFA_expression: r13 (r13) (DW_OP_lit8; DW_OP_minus; DW_OP_const4s: -32; DW_OP_and; DW_OP_const4s: -88; DW_OP_plus)  */
+        .cfi_escape 0x10, 0x0d, 0x0e, 0x38, 0x1c, 0x0d, 0xe0, 0xff, 0xff, 0xff, 0x1a, 0x0d, 0xa8, 0xff, 0xff, 0xff, 0x22
+        /*  DW_CFA_expression: r14 (r14) (DW_OP_lit8; DW_OP_minus; DW_OP_const4s: -32; DW_OP_and; DW_OP_const4s: -96; DW_OP_plus)  */
+        .cfi_escape 0x10, 0x0e, 0x0e, 0x38, 0x1c, 0x0d, 0xe0, 0xff, 0xff, 0xff, 0x1a, 0x0d, 0xa0, 0xff, 0xff, 0xff, 0x22
+                                # LOE rbx r12 r13 r14 r15 ymm0
+
+/* Scalar math fucntion call
+ * to process special input
+ */
+
+L(SCALAR_MATH_CALL):
+        movl      %r12d, %r14d
+        movss     32(%rsp,%r14,4), %xmm0
+        call      asinhf@PLT
+                                # LOE rbx r14 r15 r12d r13d xmm0
+
+        movss     %xmm0, 64(%rsp,%r14,4)
+
+/* Process special inputs in loop */
+        jmp       L(SPECIAL_VALUES_LOOP)
+                                # LOE rbx r15 r12d r13d
+END(_ZGVdN8v_asinhf_avx2)
+
+        .section .rodata, "a"
+        .align 32
+
+#ifdef __svml_sasinh_data_internal_typedef
+typedef unsigned int VUINT32;
+typedef struct {
+        __declspec(align(32)) VUINT32 SgnMask[8][1];
+        __declspec(align(32)) VUINT32 sOne[8][1];
+        __declspec(align(32)) VUINT32 sPoly[8][8][1];
+        __declspec(align(32)) VUINT32 iBrkValue[8][1];
+        __declspec(align(32)) VUINT32 iOffExpoMask[8][1];
+        __declspec(align(32)) VUINT32 sBigThreshold[8][1];
+        __declspec(align(32)) VUINT32 sC2[8][1];
+        __declspec(align(32)) VUINT32 sC3[8][1];
+        __declspec(align(32)) VUINT32 sHalf[8][1];
+        __declspec(align(32)) VUINT32 sLargestFinite[8][1];
+        __declspec(align(32)) VUINT32 sLittleThreshold[8][1];
+        __declspec(align(32)) VUINT32 sSign[8][1];
+        __declspec(align(32)) VUINT32 sThirtyOne[8][1];
+        __declspec(align(32)) VUINT32 sTopMask8[8][1];
+        __declspec(align(32)) VUINT32 XScale[8][1];
+        __declspec(align(32)) VUINT32 sLn2[8][1];
+} __svml_sasinh_data_internal;
+#endif
+__svml_sasinh_data_internal:
+        /*== SgnMask ==*/
+        .long 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff
+        /*== sOne = SP 1.0 ==*/
+        .align 32
+        .long 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000
+        /*== sPoly[] = SP polynomial ==*/
+        .align 32
+        .long 0xbf000000, 0xbf000000, 0xbf000000, 0xbf000000, 0xbf000000, 0xbf000000, 0xbf000000, 0xbf000000 /* -5.0000000000000000000000000e-01 P0 */
+        .long 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94 /*  3.3333265781402587890625000e-01 P1 */
+        .long 0xbe80058e, 0xbe80058e, 0xbe80058e, 0xbe80058e, 0xbe80058e, 0xbe80058e, 0xbe80058e, 0xbe80058e /* -2.5004237890243530273437500e-01 P2 */
+        .long 0x3e4ce190, 0x3e4ce190, 0x3e4ce190, 0x3e4ce190, 0x3e4ce190, 0x3e4ce190, 0x3e4ce190, 0x3e4ce190 /*  2.0007920265197753906250000e-01 P3 */
+        .long 0xbe28ad37, 0xbe28ad37, 0xbe28ad37, 0xbe28ad37, 0xbe28ad37, 0xbe28ad37, 0xbe28ad37, 0xbe28ad37 /* -1.6472326219081878662109375e-01 P4 */
+        .long 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12 /*  1.4042308926582336425781250e-01 P5 */
+        .long 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3 /* -1.5122179687023162841796875e-01 P6 */
+        .long 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed /*  1.3820238411426544189453125e-01 P7 */
+        /*== iBrkValue = SP 2/3 ==*/
+        .align 32
+        .long 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab
+        /*== iOffExpoMask = SP significand mask ==*/
+        .align 32
+        .long 0x007fffff, 0x007fffff, 0x007fffff, 0x007fffff, 0x007fffff, 0x007fffff, 0x007fffff, 0x007fffff
+        /*== sBigThreshold ==*/
+        .align 32
+        .long 0x4E800000, 0x4E800000, 0x4E800000, 0x4E800000, 0x4E800000, 0x4E800000, 0x4E800000, 0x4E800000
+        /*== sC2 ==*/
+        .align 32
+        .long 0x3EC00000, 0x3EC00000, 0x3EC00000, 0x3EC00000, 0x3EC00000, 0x3EC00000, 0x3EC00000, 0x3EC00000
+        /*== sC3 ==*/
+        .align 32
+        .long 0x3EA00000, 0x3EA00000, 0x3EA00000, 0x3EA00000, 0x3EA00000, 0x3EA00000, 0x3EA00000, 0x3EA00000
+        /*== sHalf ==*/
+        .align 32
+        .long 0x3F000000, 0x3F000000, 0x3F000000, 0x3F000000, 0x3F000000, 0x3F000000, 0x3F000000, 0x3F000000
+        /*== sLargestFinite ==*/
+        .align 32
+        .long 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF
+        /*== sLittleThreshold ==*/
+        .align 32
+        .long 0x3D800000, 0x3D800000, 0x3D800000, 0x3D800000, 0x3D800000, 0x3D800000, 0x3D800000, 0x3D800000
+        /*== sSign ==*/
+        .align 32
+        .long 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000
+        /*== sThirtyOne ==*/
+        .align 32
+        .long 0x41F80000, 0x41F80000, 0x41F80000, 0x41F80000, 0x41F80000, 0x41F80000, 0x41F80000, 0x41F80000
+        /*== sTopMask8 ==*/
+        .align 32
+        .long 0xFFFF0000, 0xFFFF0000, 0xFFFF0000, 0xFFFF0000, 0xFFFF0000, 0xFFFF0000, 0xFFFF0000, 0xFFFF0000
+        /*== XScale ==*/
+        .align 32
+        .long 0x30800000, 0x30800000, 0x30800000, 0x30800000, 0x30800000, 0x30800000, 0x30800000, 0x30800000
+        /*== sLn2 = SP ln(2) ==*/
+        .align 32
+        .long 0x3f317218, 0x3f317218, 0x3f317218, 0x3f317218, 0x3f317218, 0x3f317218, 0x3f317218, 0x3f317218
+        .align 32
+        .type	__svml_sasinh_data_internal,@object
+        .size	__svml_sasinh_data_internal,.-__svml_sasinh_data_internal