diff options
author | Luis Machado <luis@gargoyle.(none)> | 2010-07-13 16:39:26 -0300 |
---|---|---|
committer | Luis Machado <luis@gargoyle.(none)> | 2010-07-13 16:39:26 -0300 |
commit | 0eacdbad318c940ee4d45ed87155e73e990fe2bb (patch) | |
tree | b999a88e4dff1face179697c1d4fc1c2ac34bfbf /sysdeps/powerpc/powerpc32/power7/memcmp.S | |
parent | 052b16c76579af4519983e47c8d1d1f05d9a81a8 (diff) | |
download | glibc-0eacdbad318c940ee4d45ed87155e73e990fe2bb.tar.gz glibc-0eacdbad318c940ee4d45ed87155e73e990fe2bb.tar.xz glibc-0eacdbad318c940ee4d45ed87155e73e990fe2bb.zip |
powerpc: POWER7 optimizations ibm/2.8/master
Add optimizations for classification functions (32-bit and 64-bit) and string functions (32-bit and 64-bit). powerpc: Re-work the Implies structure This patch tries to organize the implies files for ppc, since there are a number of processors and most of them are compatible with each other (backwards compatible). Having in mind that we start the search for processor-specific files in the sysdeps/unix/sysv/linux tree (sysdeps/unix/sysv/linux/powerpc/powerpc[32|64]/[processor]/fpu to be exact), we would like to grab any linux-specific code from that tree prior to going through the other tree (sysdeps/powerpc/...). For that, i removed the Implies files that were originally inside the fpu directories and placed then in the non-fpu directories (still inside the unix/sysv/linux tree). If no processor-specific/linux-specific files could be found, we "imply" the other tree's (sysdeps/powerpc/...) fpu directory for that specific processor AND also the non-fpu directory for that same tree. If, again, no processor-specific code is found, we read another Implies file that will point to the most compatible processor that we should grab code from, and so on, until we reach the power4 processor. So, in summary, the Implies files will live inside these directories now: * sysdeps/unix/sysv/linux/powerpc/powerpc[32|64]/[processor] * sysdeps/powerpc/powerpc[32|64]/[processor] Practical example of the order we will use to pick power6-specific code with the new structure. sysdeps/unix/sysv/linux/powerpc/powerpc[32|64]/power6/fpu -> sysdeps/unix/sysv/linux/powerpc/powerpc[32|64]/power6 -> sysdeps/powerpc/powerpc[32|64]/power6/fpu -> sysdeps/powerpc/powerpc[32|64]/power6 -> sysdeps/powerpc/powerpc[32|64]/power5+/fpu -> sysdeps/powerpc/powerpc[32|64]/power5+ -> sysdeps/powerpc/powerpc[32|64]/power5/fpu -> sysdeps/powerpc/powerpc[32|64]/power5 -> sysdeps/powerpc/powerpc[32|64]/power4/fpu -> sysdeps/powerpc/powerpc[32|64]/power4 (from here, it'll go to the generic path as usual)
Diffstat (limited to 'sysdeps/powerpc/powerpc32/power7/memcmp.S')
-rw-r--r-- | sysdeps/powerpc/powerpc32/power7/memcmp.S | 988 |
1 files changed, 988 insertions, 0 deletions
diff --git a/sysdeps/powerpc/powerpc32/power7/memcmp.S b/sysdeps/powerpc/powerpc32/power7/memcmp.S new file mode 100644 index 0000000000..d529b492fc --- /dev/null +++ b/sysdeps/powerpc/powerpc32/power7/memcmp.S @@ -0,0 +1,988 @@ +/* Optimized memcmp implementation for POWER7/PowerPC32. + Copyright (C) 2010 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, write to the Free + Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA + 02110-1301 USA. */ + +#include <sysdep.h> +#include <bp-sym.h> +#include <bp-asm.h> + +/* int [r3] memcmp (const char *s1 [r3], + const char *s2 [r4], + size_t size [r5]) */ + + .machine power7 +EALIGN (BP_SYM(memcmp),4,0) + CALL_MCOUNT + +#define rTMP r0 +#define rRTN r3 +#define rSTR1 r3 /* first string arg */ +#define rSTR2 r4 /* second string arg */ +#define rN r5 /* max string length */ +#define rWORD1 r6 /* current word in s1 */ +#define rWORD2 r7 /* current word in s2 */ +#define rWORD3 r8 /* next word in s1 */ +#define rWORD4 r9 /* next word in s2 */ +#define rWORD5 r10 /* next word in s1 */ +#define rWORD6 r11 /* next word in s2 */ +#define rBITDIF r12 /* bits that differ in s1 & s2 words */ +#define rWORD7 r30 /* next word in s1 */ +#define rWORD8 r31 /* next word in s2 */ + + xor rTMP,rSTR2,rSTR1 + cmplwi cr6,rN,0 + cmplwi cr1,rN,12 + clrlwi. rTMP,rTMP,30 + clrlwi rBITDIF,rSTR1,30 + cmplwi cr5,rBITDIF,0 + beq- cr6,L(zeroLength) + dcbt 0,rSTR1 + dcbt 0,rSTR2 + + /* If less than 8 bytes or not aligned, use the unaligned + byte loop. */ + + blt cr1,L(bytealigned) + stwu 1,-64(1) + cfi_adjust_cfa_offset(64) + stw r31,48(1) + cfi_offset(31,(48-64)) + stw r30,44(1) + cfi_offset(30,(44-64)) + bne L(unaligned) +/* At this point we know both strings have the same alignment and the + compare length is at least 8 bytes. rBITDIF contains the low order + 2 bits of rSTR1 and cr5 contains the result of the logical compare + of rBITDIF to 0. If rBITDIF == 0 then we are already word + aligned and can perform the word aligned loop. + + Otherwise we know the two strings have the same alignment (but not + yet word aligned). So we force the string addresses to the next lower + word boundary and special case this first word using shift left to + eliminate bits preceeding the first byte. Since we want to join the + normal (word aligned) compare loop, starting at the second word, + we need to adjust the length (rN) and special case the loop + versioning for the first word. This insures that the loop count is + correct and the first word (shifted) is in the expected register pair. */ + .align 4 +L(samealignment): + clrrwi rSTR1,rSTR1,2 + clrrwi rSTR2,rSTR2,2 + beq cr5,L(Waligned) + add rN,rN,rBITDIF + slwi r11,rBITDIF,3 + srwi rTMP,rN,4 /* Divide by 16 */ + andi. rBITDIF,rN,12 /* Get the word remainder */ + lwz rWORD1,0(rSTR1) + lwz rWORD2,0(rSTR2) + cmplwi cr1,rBITDIF,8 + cmplwi cr7,rN,16 + clrlwi rN,rN,30 + beq L(dPs4) + mtctr rTMP + bgt cr1,L(dPs3) + beq cr1,L(dPs2) + +/* Remainder is 4 */ + .align 3 +L(dsP1): + slw rWORD5,rWORD1,r11 + slw rWORD6,rWORD2,r11 + cmplw cr5,rWORD5,rWORD6 + blt cr7,L(dP1x) +/* Do something useful in this cycle since we have to branch anyway. */ + lwz rWORD1,4(rSTR1) + lwz rWORD2,4(rSTR2) + cmplw cr0,rWORD1,rWORD2 + b L(dP1e) +/* Remainder is 8 */ + .align 4 +L(dPs2): + slw rWORD5,rWORD1,r11 + slw rWORD6,rWORD2,r11 + cmplw cr6,rWORD5,rWORD6 + blt cr7,L(dP2x) +/* Do something useful in this cycle since we have to branch anyway. */ + lwz rWORD7,4(rSTR1) + lwz rWORD8,4(rSTR2) + cmplw cr5,rWORD7,rWORD8 + b L(dP2e) +/* Remainder is 12 */ + .align 4 +L(dPs3): + slw rWORD3,rWORD1,r11 + slw rWORD4,rWORD2,r11 + cmplw cr1,rWORD3,rWORD4 + b L(dP3e) +/* Count is a multiple of 16, remainder is 0 */ + .align 4 +L(dPs4): + mtctr rTMP + slw rWORD1,rWORD1,r11 + slw rWORD2,rWORD2,r11 + cmplw cr0,rWORD1,rWORD2 + b L(dP4e) + +/* At this point we know both strings are word aligned and the + compare length is at least 8 bytes. */ + .align 4 +L(Waligned): + andi. rBITDIF,rN,12 /* Get the word remainder */ + srwi rTMP,rN,4 /* Divide by 16 */ + cmplwi cr1,rBITDIF,8 + cmplwi cr7,rN,16 + clrlwi rN,rN,30 + beq L(dP4) + bgt cr1,L(dP3) + beq cr1,L(dP2) + +/* Remainder is 4 */ + .align 4 +L(dP1): + mtctr rTMP +/* Normally we'd use rWORD7/rWORD8 here, but since we might exit early + (8-15 byte compare), we want to use only volatile registers. This + means we can avoid restoring non-volatile registers since we did not + change any on the early exit path. The key here is the non-early + exit path only cares about the condition code (cr5), not about which + register pair was used. */ + lwz rWORD5,0(rSTR1) + lwz rWORD6,0(rSTR2) + cmplw cr5,rWORD5,rWORD6 + blt cr7,L(dP1x) + lwz rWORD1,4(rSTR1) + lwz rWORD2,4(rSTR2) + cmplw cr0,rWORD1,rWORD2 +L(dP1e): + lwz rWORD3,8(rSTR1) + lwz rWORD4,8(rSTR2) + cmplw cr1,rWORD3,rWORD4 + lwz rWORD5,12(rSTR1) + lwz rWORD6,12(rSTR2) + cmplw cr6,rWORD5,rWORD6 + bne cr5,L(dLcr5) + bne cr0,L(dLcr0) + + lwzu rWORD7,16(rSTR1) + lwzu rWORD8,16(rSTR2) + bne cr1,L(dLcr1) + cmplw cr5,rWORD7,rWORD8 + bdnz L(dLoop) + bne cr6,L(dLcr6) + lwz r30,44(1) + lwz r31,48(1) + .align 3 +L(dP1x): + slwi. r12,rN,3 + bne cr5,L(dLcr5) + subfic rN,r12,32 /* Shift count is 32 - (rN * 8). */ + lwz 1,0(1) + bne L(d00) + li rRTN,0 + blr + +/* Remainder is 8 */ + .align 4 +L(dP2): + mtctr rTMP + lwz rWORD5,0(rSTR1) + lwz rWORD6,0(rSTR2) + cmplw cr6,rWORD5,rWORD6 + blt cr7,L(dP2x) + lwz rWORD7,4(rSTR1) + lwz rWORD8,4(rSTR2) + cmplw cr5,rWORD7,rWORD8 +L(dP2e): + lwz rWORD1,8(rSTR1) + lwz rWORD2,8(rSTR2) + cmplw cr0,rWORD1,rWORD2 + lwz rWORD3,12(rSTR1) + lwz rWORD4,12(rSTR2) + cmplw cr1,rWORD3,rWORD4 + addi rSTR1,rSTR1,4 + addi rSTR2,rSTR2,4 + bne cr6,L(dLcr6) + bne cr5,L(dLcr5) + b L(dLoop2) +/* Again we are on a early exit path (16-23 byte compare), we want to + only use volatile registers and avoid restoring non-volatile + registers. */ + .align 4 +L(dP2x): + lwz rWORD3,4(rSTR1) + lwz rWORD4,4(rSTR2) + cmplw cr5,rWORD3,rWORD4 + slwi. r12,rN,3 + bne cr6,L(dLcr6) + addi rSTR1,rSTR1,4 + addi rSTR2,rSTR2,4 + bne cr5,L(dLcr5) + subfic rN,r12,32 /* Shift count is 32 - (rN * 8). */ + lwz 1,0(1) + bne L(d00) + li rRTN,0 + blr + +/* Remainder is 12 */ + .align 4 +L(dP3): + mtctr rTMP + lwz rWORD3,0(rSTR1) + lwz rWORD4,0(rSTR2) + cmplw cr1,rWORD3,rWORD4 +L(dP3e): + lwz rWORD5,4(rSTR1) + lwz rWORD6,4(rSTR2) + cmplw cr6,rWORD5,rWORD6 + blt cr7,L(dP3x) + lwz rWORD7,8(rSTR1) + lwz rWORD8,8(rSTR2) + cmplw cr5,rWORD7,rWORD8 + lwz rWORD1,12(rSTR1) + lwz rWORD2,12(rSTR2) + cmplw cr0,rWORD1,rWORD2 + addi rSTR1,rSTR1,8 + addi rSTR2,rSTR2,8 + bne cr1,L(dLcr1) + bne cr6,L(dLcr6) + b L(dLoop1) +/* Again we are on a early exit path (24-31 byte compare), we want to + only use volatile registers and avoid restoring non-volatile + registers. */ + .align 4 +L(dP3x): + lwz rWORD1,8(rSTR1) + lwz rWORD2,8(rSTR2) + cmplw cr5,rWORD1,rWORD2 + slwi. r12,rN,3 + bne cr1,L(dLcr1) + addi rSTR1,rSTR1,8 + addi rSTR2,rSTR2,8 + bne cr6,L(dLcr6) + subfic rN,r12,32 /* Shift count is 32 - (rN * 8). */ + bne cr5,L(dLcr5) + lwz 1,0(1) + bne L(d00) + li rRTN,0 + blr + +/* Count is a multiple of 16, remainder is 0 */ + .align 4 +L(dP4): + mtctr rTMP + lwz rWORD1,0(rSTR1) + lwz rWORD2,0(rSTR2) + cmplw cr0,rWORD1,rWORD2 +L(dP4e): + lwz rWORD3,4(rSTR1) + lwz rWORD4,4(rSTR2) + cmplw cr1,rWORD3,rWORD4 + lwz rWORD5,8(rSTR1) + lwz rWORD6,8(rSTR2) + cmplw cr6,rWORD5,rWORD6 + lwzu rWORD7,12(rSTR1) + lwzu rWORD8,12(rSTR2) + cmplw cr5,rWORD7,rWORD8 + bne cr0,L(dLcr0) + bne cr1,L(dLcr1) + bdz- L(d24) /* Adjust CTR as we start with +4 */ +/* This is the primary loop */ + .align 4 +L(dLoop): + lwz rWORD1,4(rSTR1) + lwz rWORD2,4(rSTR2) + cmplw cr1,rWORD3,rWORD4 + bne cr6,L(dLcr6) +L(dLoop1): + lwz rWORD3,8(rSTR1) + lwz rWORD4,8(rSTR2) + cmplw cr6,rWORD5,rWORD6 + bne cr5,L(dLcr5) +L(dLoop2): + lwz rWORD5,12(rSTR1) + lwz rWORD6,12(rSTR2) + cmplw cr5,rWORD7,rWORD8 + bne cr0,L(dLcr0) +L(dLoop3): + lwzu rWORD7,16(rSTR1) + lwzu rWORD8,16(rSTR2) + bne cr1,L(dLcr1) + cmplw cr0,rWORD1,rWORD2 + bdnz L(dLoop) + +L(dL4): + cmplw cr1,rWORD3,rWORD4 + bne cr6,L(dLcr6) + cmplw cr6,rWORD5,rWORD6 + bne cr5,L(dLcr5) + cmplw cr5,rWORD7,rWORD8 +L(d44): + bne cr0,L(dLcr0) +L(d34): + bne cr1,L(dLcr1) +L(d24): + bne cr6,L(dLcr6) +L(d14): + slwi. r12,rN,3 + bne cr5,L(dLcr5) +L(d04): + lwz r30,44(1) + lwz r31,48(1) + lwz 1,0(1) + subfic rN,r12,32 /* Shift count is 32 - (rN * 8). */ + beq L(zeroLength) +/* At this point we have a remainder of 1 to 3 bytes to compare. Since + we are aligned it is safe to load the whole word, and use + shift right to eliminate bits beyond the compare length. */ +L(d00): + lwz rWORD1,4(rSTR1) + lwz rWORD2,4(rSTR2) + srw rWORD1,rWORD1,rN + srw rWORD2,rWORD2,rN + cmplw rWORD1,rWORD2 + li rRTN,0 + beqlr + li rRTN,1 + bgtlr + li rRTN,-1 + blr + + .align 4 +L(dLcr0): + lwz r30,44(1) + lwz r31,48(1) + li rRTN,1 + lwz 1,0(1) + bgtlr cr0 + li rRTN,-1 + blr + .align 4 +L(dLcr1): + lwz r30,44(1) + lwz r31,48(1) + li rRTN,1 + lwz 1,0(1) + bgtlr cr1 + li rRTN,-1 + blr + .align 4 +L(dLcr6): + lwz r30,44(1) + lwz r31,48(1) + li rRTN,1 + lwz 1,0(1) + bgtlr cr6 + li rRTN,-1 + blr + .align 4 +L(dLcr5): + lwz r30,44(1) + lwz r31,48(1) +L(dLcr5x): + li rRTN,1 + lwz 1,0(1) + bgtlr cr5 + li rRTN,-1 + blr + + .align 4 +L(bytealigned): + cfi_adjust_cfa_offset(-64) + mtctr rN + +/* We need to prime this loop. This loop is swing modulo scheduled + to avoid pipe delays. The dependent instruction latencies (load to + compare to conditional branch) is 2 to 3 cycles. In this loop each + dispatch group ends in a branch and takes 1 cycle. Effectively + the first iteration of the loop only serves to load operands and + branches based on compares are delayed until the next loop. + + So we must precondition some registers and condition codes so that + we don't exit the loop early on the first iteration. */ + lbz rWORD1,0(rSTR1) + lbz rWORD2,0(rSTR2) + bdz L(b11) + cmplw cr0,rWORD1,rWORD2 + lbz rWORD3,1(rSTR1) + lbz rWORD4,1(rSTR2) + bdz L(b12) + cmplw cr1,rWORD3,rWORD4 + lbzu rWORD5,2(rSTR1) + lbzu rWORD6,2(rSTR2) + bdz L(b13) + .align 4 +L(bLoop): + lbzu rWORD1,1(rSTR1) + lbzu rWORD2,1(rSTR2) + bne cr0,L(bLcr0) + + cmplw cr6,rWORD5,rWORD6 + bdz L(b3i) + + lbzu rWORD3,1(rSTR1) + lbzu rWORD4,1(rSTR2) + bne cr1,L(bLcr1) + + cmplw cr0,rWORD1,rWORD2 + bdz L(b2i) + + lbzu rWORD5,1(rSTR1) + lbzu rWORD6,1(rSTR2) + bne cr6,L(bLcr6) + + cmplw cr1,rWORD3,rWORD4 + bdnz L(bLoop) + +/* We speculatively loading bytes before we have tested the previous + bytes. But we must avoid overrunning the length (in the ctr) to + prevent these speculative loads from causing a segfault. In this + case the loop will exit early (before the all pending bytes are + tested. In this case we must complete the pending operations + before returning. */ +L(b1i): + bne cr0,L(bLcr0) + bne cr1,L(bLcr1) + b L(bx56) + .align 4 +L(b2i): + bne cr6,L(bLcr6) + bne cr0,L(bLcr0) + b L(bx34) + .align 4 +L(b3i): + bne cr1,L(bLcr1) + bne cr6,L(bLcr6) + b L(bx12) + .align 4 +L(bLcr0): + li rRTN,1 + bgtlr cr0 + li rRTN,-1 + blr +L(bLcr1): + li rRTN,1 + bgtlr cr1 + li rRTN,-1 + blr +L(bLcr6): + li rRTN,1 + bgtlr cr6 + li rRTN,-1 + blr + +L(b13): + bne cr0,L(bx12) + bne cr1,L(bx34) +L(bx56): + sub rRTN,rWORD5,rWORD6 + blr + nop +L(b12): + bne cr0,L(bx12) +L(bx34): + sub rRTN,rWORD3,rWORD4 + blr + +L(b11): +L(bx12): + sub rRTN,rWORD1,rWORD2 + blr + + .align 4 +L(zeroLengthReturn): + +L(zeroLength): + li rRTN,0 + blr + + cfi_adjust_cfa_offset(64) + .align 4 +/* At this point we know the strings have different alignment and the + compare length is at least 8 bytes. rBITDIF contains the low order + 2 bits of rSTR1 and cr5 contains the result of the logical compare + of rBITDIF to 0. If rBITDIF == 0 then rStr1 is word aligned and can + perform the Wunaligned loop. + + Otherwise we know that rSTR1 is not aready word aligned yet. + So we can force the string addresses to the next lower word + boundary and special case this first word using shift left to + eliminate bits preceeding the first byte. Since we want to join the + normal (Wualigned) compare loop, starting at the second word, + we need to adjust the length (rN) and special case the loop + versioning for the first W. This insures that the loop count is + correct and the first W (shifted) is in the expected resister pair. */ +#define rSHL r29 /* Unaligned shift left count. */ +#define rSHR r28 /* Unaligned shift right count. */ +#define rB r27 /* Left rotation temp for rWORD2. */ +#define rD r26 /* Left rotation temp for rWORD4. */ +#define rF r25 /* Left rotation temp for rWORD6. */ +#define rH r24 /* Left rotation temp for rWORD8. */ +#define rA r0 /* Right rotation temp for rWORD2. */ +#define rC r12 /* Right rotation temp for rWORD4. */ +#define rE r0 /* Right rotation temp for rWORD6. */ +#define rG r12 /* Right rotation temp for rWORD8. */ +L(unaligned): + stw r29,40(r1) + cfi_offset(r29,(40-64)) + clrlwi rSHL,rSTR2,30 + stw r28,36(r1) + cfi_offset(r28,(36-64)) + beq cr5,L(Wunaligned) + stw r27,32(r1) + cfi_offset(r27,(32-64)) +/* Adjust the logical start of rSTR2 to compensate for the extra bits + in the 1st rSTR1 W. */ + sub r27,rSTR2,rBITDIF +/* But do not attempt to address the W before that W that contains + the actual start of rSTR2. */ + clrrwi rSTR2,rSTR2,2 + stw r26,28(r1) + cfi_offset(r26,(28-64)) +/* Compute the left/right shift counts for the unalign rSTR2, + compensating for the logical (W aligned) start of rSTR1. */ + clrlwi rSHL,r27,30 + clrrwi rSTR1,rSTR1,2 + stw r25,24(r1) + cfi_offset(r25,(24-64)) + slwi rSHL,rSHL,3 + cmplw cr5,r27,rSTR2 + add rN,rN,rBITDIF + slwi r11,rBITDIF,3 + stw r24,20(r1) + cfi_offset(r24,(20-64)) + subfic rSHR,rSHL,32 + srwi rTMP,rN,4 /* Divide by 16 */ + andi. rBITDIF,rN,12 /* Get the W remainder */ +/* We normally need to load 2 Ws to start the unaligned rSTR2, but in + this special case those bits may be discarded anyway. Also we + must avoid loading a W where none of the bits are part of rSTR2 as + this may cross a page boundary and cause a page fault. */ + li rWORD8,0 + blt cr5,L(dus0) + lwz rWORD8,0(rSTR2) + la rSTR2,4(rSTR2) + slw rWORD8,rWORD8,rSHL + +L(dus0): + lwz rWORD1,0(rSTR1) + lwz rWORD2,0(rSTR2) + cmplwi cr1,rBITDIF,8 + cmplwi cr7,rN,16 + srw rG,rWORD2,rSHR + clrlwi rN,rN,30 + beq L(duPs4) + mtctr rTMP + or rWORD8,rG,rWORD8 + bgt cr1,L(duPs3) + beq cr1,L(duPs2) + +/* Remainder is 4 */ + .align 4 +L(dusP1): + slw rB,rWORD2,rSHL + slw rWORD7,rWORD1,r11 + slw rWORD8,rWORD8,r11 + bge cr7,L(duP1e) +/* At this point we exit early with the first word compare + complete and remainder of 0 to 3 bytes. See L(du14) for details on + how we handle the remaining bytes. */ + cmplw cr5,rWORD7,rWORD8 + slwi. rN,rN,3 + bne cr5,L(duLcr5) + cmplw cr7,rN,rSHR + beq L(duZeroReturn) + li rA,0 + ble cr7,L(dutrim) + lwz rWORD2,4(rSTR2) + srw rA,rWORD2,rSHR + b L(dutrim) +/* Remainder is 8 */ + .align 4 +L(duPs2): + slw rH,rWORD2,rSHL + slw rWORD5,rWORD1,r11 + slw rWORD6,rWORD8,r11 + b L(duP2e) +/* Remainder is 12 */ + .align 4 +L(duPs3): + slw rF,rWORD2,rSHL + slw rWORD3,rWORD1,r11 + slw rWORD4,rWORD8,r11 + b L(duP3e) +/* Count is a multiple of 16, remainder is 0 */ + .align 4 +L(duPs4): + mtctr rTMP + or rWORD8,rG,rWORD8 + slw rD,rWORD2,rSHL + slw rWORD1,rWORD1,r11 + slw rWORD2,rWORD8,r11 + b L(duP4e) + +/* At this point we know rSTR1 is word aligned and the + compare length is at least 8 bytes. */ + .align 4 +L(Wunaligned): + stw r27,32(r1) + cfi_offset(r27,(32-64)) + clrrwi rSTR2,rSTR2,2 + stw r26,28(r1) + cfi_offset(r26,(28-64)) + srwi rTMP,rN,4 /* Divide by 16 */ + stw r25,24(r1) + cfi_offset(r25,(24-64)) + andi. rBITDIF,rN,12 /* Get the W remainder */ + stw r24,20(r1) + cfi_offset(r24,(24-64)) + slwi rSHL,rSHL,3 + lwz rWORD6,0(rSTR2) + lwzu rWORD8,4(rSTR2) + cmplwi cr1,rBITDIF,8 + cmplwi cr7,rN,16 + clrlwi rN,rN,30 + subfic rSHR,rSHL,32 + slw rH,rWORD6,rSHL + beq L(duP4) + mtctr rTMP + bgt cr1,L(duP3) + beq cr1,L(duP2) + +/* Remainder is 4 */ + .align 4 +L(duP1): + srw rG,rWORD8,rSHR + lwz rWORD7,0(rSTR1) + slw rB,rWORD8,rSHL + or rWORD8,rG,rH + blt cr7,L(duP1x) +L(duP1e): + lwz rWORD1,4(rSTR1) + lwz rWORD2,4(rSTR2) + cmplw cr5,rWORD7,rWORD8 + srw rA,rWORD2,rSHR + slw rD,rWORD2,rSHL + or rWORD2,rA,rB + lwz rWORD3,8(rSTR1) + lwz rWORD4,8(rSTR2) + cmplw cr0,rWORD1,rWORD2 + srw rC,rWORD4,rSHR + slw rF,rWORD4,rSHL + bne cr5,L(duLcr5) + or rWORD4,rC,rD + lwz rWORD5,12(rSTR1) + lwz rWORD6,12(rSTR2) + cmplw cr1,rWORD3,rWORD4 + srw rE,rWORD6,rSHR + slw rH,rWORD6,rSHL + bne cr0,L(duLcr0) + or rWORD6,rE,rF + cmplw cr6,rWORD5,rWORD6 + b L(duLoop3) + .align 4 +/* At this point we exit early with the first word compare + complete and remainder of 0 to 3 bytes. See L(du14) for details on + how we handle the remaining bytes. */ +L(duP1x): + cmplw cr5,rWORD7,rWORD8 + slwi. rN,rN,3 + bne cr5,L(duLcr5) + cmplw cr7,rN,rSHR + beq L(duZeroReturn) + li rA,0 + ble cr7,L(dutrim) + ld rWORD2,8(rSTR2) + srw rA,rWORD2,rSHR + b L(dutrim) +/* Remainder is 8 */ + .align 4 +L(duP2): + srw rE,rWORD8,rSHR + lwz rWORD5,0(rSTR1) + or rWORD6,rE,rH + slw rH,rWORD8,rSHL +L(duP2e): + lwz rWORD7,4(rSTR1) + lwz rWORD8,4(rSTR2) + cmplw cr6,rWORD5,rWORD6 + srw rG,rWORD8,rSHR + slw rB,rWORD8,rSHL + or rWORD8,rG,rH + blt cr7,L(duP2x) + lwz rWORD1,8(rSTR1) + lwz rWORD2,8(rSTR2) + cmplw cr5,rWORD7,rWORD8 + bne cr6,L(duLcr6) + srw rA,rWORD2,rSHR + slw rD,rWORD2,rSHL + or rWORD2,rA,rB + lwz rWORD3,12(rSTR1) + lwz rWORD4,12(rSTR2) + cmplw cr0,rWORD1,rWORD2 + bne cr5,L(duLcr5) + srw rC,rWORD4,rSHR + slw rF,rWORD4,rSHL + or rWORD4,rC,rD + addi rSTR1,rSTR1,4 + addi rSTR2,rSTR2,4 + cmplw cr1,rWORD3,rWORD4 + b L(duLoop2) + .align 4 +L(duP2x): + cmplw cr5,rWORD7,rWORD8 + addi rSTR1,rSTR1,4 + addi rSTR2,rSTR2,4 + bne cr6,L(duLcr6) + slwi. rN,rN,3 + bne cr5,L(duLcr5) + cmplw cr7,rN,rSHR + beq L(duZeroReturn) + li rA,0 + ble cr7,L(dutrim) + lwz rWORD2,4(rSTR2) + srw rA,rWORD2,rSHR + b L(dutrim) + +/* Remainder is 12 */ + .align 4 +L(duP3): + srw rC,rWORD8,rSHR + lwz rWORD3,0(rSTR1) + slw rF,rWORD8,rSHL + or rWORD4,rC,rH +L(duP3e): + lwz rWORD5,4(rSTR1) + lwz rWORD6,4(rSTR2) + cmplw cr1,rWORD3,rWORD4 + srw rE,rWORD6,rSHR + slw rH,rWORD6,rSHL + or rWORD6,rE,rF + lwz rWORD7,8(rSTR1) + lwz rWORD8,8(rSTR2) + cmplw cr6,rWORD5,rWORD6 + bne cr1,L(duLcr1) + srw rG,rWORD8,rSHR + slw rB,rWORD8,rSHL + or rWORD8,rG,rH + blt cr7,L(duP3x) + lwz rWORD1,12(rSTR1) + lwz rWORD2,12(rSTR2) + cmplw cr5,rWORD7,rWORD8 + bne cr6,L(duLcr6) + srw rA,rWORD2,rSHR + slw rD,rWORD2,rSHL + or rWORD2,rA,rB + addi rSTR1,rSTR1,8 + addi rSTR2,rSTR2,8 + cmplw cr0,rWORD1,rWORD2 + b L(duLoop1) + .align 4 +L(duP3x): + addi rSTR1,rSTR1,8 + addi rSTR2,rSTR2,8 + bne cr1,L(duLcr1) + cmplw cr5,rWORD7,rWORD8 + bne cr6,L(duLcr6) + slwi. rN,rN,3 + bne cr5,L(duLcr5) + cmplw cr7,rN,rSHR + beq L(duZeroReturn) + li rA,0 + ble cr7,L(dutrim) + lwz rWORD2,4(rSTR2) + srw rA,rWORD2,rSHR + b L(dutrim) + +/* Count is a multiple of 16, remainder is 0 */ + .align 4 +L(duP4): + mtctr rTMP + srw rA,rWORD8,rSHR + lwz rWORD1,0(rSTR1) + slw rD,rWORD8,rSHL + or rWORD2,rA,rH +L(duP4e): + lwz rWORD3,4(rSTR1) + lwz rWORD4,4(rSTR2) + cmplw cr0,rWORD1,rWORD2 + srw rC,rWORD4,rSHR + slw rF,rWORD4,rSHL + or rWORD4,rC,rD + lwz rWORD5,8(rSTR1) + lwz rWORD6,8(rSTR2) + cmplw cr1,rWORD3,rWORD4 + bne cr0,L(duLcr0) + srw rE,rWORD6,rSHR + slw rH,rWORD6,rSHL + or rWORD6,rE,rF + lwzu rWORD7,12(rSTR1) + lwzu rWORD8,12(rSTR2) + cmplw cr6,rWORD5,rWORD6 + bne cr1,L(duLcr1) + srw rG,rWORD8,rSHR + slw rB,rWORD8,rSHL + or rWORD8,rG,rH + cmplw cr5,rWORD7,rWORD8 + bdz L(du24) /* Adjust CTR as we start with +4 */ +/* This is the primary loop */ + .align 4 +L(duLoop): + lwz rWORD1,4(rSTR1) + lwz rWORD2,4(rSTR2) + cmplw cr1,rWORD3,rWORD4 + bne cr6,L(duLcr6) + srw rA,rWORD2,rSHR + slw rD,rWORD2,rSHL + or rWORD2,rA,rB +L(duLoop1): + lwz rWORD3,8(rSTR1) + lwz rWORD4,8(rSTR2) + cmplw cr6,rWORD5,rWORD6 + bne cr5,L(duLcr5) + srw rC,rWORD4,rSHR + slw rF,rWORD4,rSHL + or rWORD4,rC,rD +L(duLoop2): + lwz rWORD5,12(rSTR1) + lwz rWORD6,12(rSTR2) + cmplw cr5,rWORD7,rWORD8 + bne cr0,L(duLcr0) + srw rE,rWORD6,rSHR + slw rH,rWORD6,rSHL + or rWORD6,rE,rF +L(duLoop3): + lwzu rWORD7,16(rSTR1) + lwzu rWORD8,16(rSTR2) + cmplw cr0,rWORD1,rWORD2 + bne cr1,L(duLcr1) + srw rG,rWORD8,rSHR + slw rB,rWORD8,rSHL + or rWORD8,rG,rH + bdnz L(duLoop) + +L(duL4): + bne cr1,L(duLcr1) + cmplw cr1,rWORD3,rWORD4 + bne cr6,L(duLcr6) + cmplw cr6,rWORD5,rWORD6 + bne cr5,L(duLcr5) + cmplw cr5,rWORD7,rWORD8 +L(du44): + bne cr0,L(duLcr0) +L(du34): + bne cr1,L(duLcr1) +L(du24): + bne cr6,L(duLcr6) +L(du14): + slwi. rN,rN,3 + bne cr5,L(duLcr5) +/* At this point we have a remainder of 1 to 3 bytes to compare. We use + shift right to eliminate bits beyond the compare length. + + However it may not be safe to load rWORD2 which may be beyond the + string length. So we compare the bit length of the remainder to + the right shift count (rSHR). If the bit count is less than or equal + we do not need to load rWORD2 (all significant bits are already in + rB). */ + cmplw cr7,rN,rSHR + beq L(duZeroReturn) + li rA,0 + ble cr7,L(dutrim) + lwz rWORD2,4(rSTR2) + srw rA,rWORD2,rSHR + .align 4 +L(dutrim): + lwz rWORD1,4(rSTR1) + lwz r31,48(1) + subfic rN,rN,32 /* Shift count is 32 - (rN * 8). */ + or rWORD2,rA,rB + lwz r30,44(1) + lwz r29,40(r1) + srw rWORD1,rWORD1,rN + srw rWORD2,rWORD2,rN + lwz r28,36(r1) + lwz r27,32(r1) + cmplw rWORD1,rWORD2 + li rRTN,0 + beq L(dureturn26) + li rRTN,1 + bgt L(dureturn26) + li rRTN,-1 + b L(dureturn26) + .align 4 +L(duLcr0): + lwz r31,48(1) + lwz r30,44(1) + li rRTN,1 + bgt cr0,L(dureturn29) + lwz r29,40(r1) + lwz r28,36(r1) + li rRTN,-1 + b L(dureturn27) + .align 4 +L(duLcr1): + lwz r31,48(1) + lwz r30,44(1) + li rRTN,1 + bgt cr1,L(dureturn29) + lwz r29,40(r1) + lwz r28,36(r1) + li rRTN,-1 + b L(dureturn27) + .align 4 +L(duLcr6): + lwz r31,48(1) + lwz r30,44(1) + li rRTN,1 + bgt cr6,L(dureturn29) + lwz r29,40(r1) + lwz r28,36(r1) + li rRTN,-1 + b L(dureturn27) + .align 4 +L(duLcr5): + lwz r31,48(1) + lwz r30,44(1) + li rRTN,1 + bgt cr5,L(dureturn29) + lwz r29,40(r1) + lwz r28,36(r1) + li rRTN,-1 + b L(dureturn27) + .align 3 +L(duZeroReturn): + li rRTN,0 + .align 4 +L(dureturn): + lwz r31,48(1) + lwz r30,44(1) +L(dureturn29): + lwz r29,40(r1) + lwz r28,36(r1) +L(dureturn27): + lwz r27,32(r1) +L(dureturn26): + lwz r26,28(r1) +L(dureturn25): + lwz r25,24(r1) + lwz r24,20(r1) + lwz 1,0(1) + blr +END (BP_SYM (memcmp)) +libc_hidden_builtin_def (memcmp) +weak_alias (memcmp,bcmp) |