diff options
author | Jakub Jelinek <jakub@redhat.com> | 2006-09-15 12:51:47 +0000 |
---|---|---|
committer | Jakub Jelinek <jakub@redhat.com> | 2006-09-15 12:51:47 +0000 |
commit | 5d456f7eba1c5083679973d53ef78b45b22818ca (patch) | |
tree | f4be894988fc80cdc48f3ff1a8d4a86d27decb9a /README.libm | |
parent | effe3e2d1a084fde8fae9b91febb28c97781f9e5 (diff) | |
download | glibc-5d456f7eba1c5083679973d53ef78b45b22818ca.tar.gz glibc-5d456f7eba1c5083679973d53ef78b45b22818ca.tar.xz glibc-5d456f7eba1c5083679973d53ef78b45b22818ca.zip |
Updated to fedora-glibc-20060915T0943
Diffstat (limited to 'README.libm')
-rw-r--r-- | README.libm | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/README.libm b/README.libm index 33ace8c065..f058cf846c 100644 --- a/README.libm +++ b/README.libm @@ -486,7 +486,7 @@ sqrt * Bit by bit method using integer arithmetic. (Slow, but portable) * 1. Normalization * Scale x to y in [1,4) with even powers of 2: - * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then + * find an integer k such that 1 <= (y=x*2^(-2k)) < 4, then * sqrt(x) = 2^k * sqrt(y) * 2. Bit by bit computation * Let q = sqrt(y) truncated to i bit after binary point (q = 1), |