From d60ebea1fac988fbe7fe9b9d059f37e46cbbd018 Mon Sep 17 00:00:00 2001 From: Christian Neukirchen Date: Sat, 16 Mar 2013 01:16:30 +0100 Subject: initial import --- Makefile | 9 + Makefile.musl | 5 + README.md | 46 +++ rdd.c | 56 +++ sosemanuk.c | 1283 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ sosemanuk.h | 176 ++++++++ 6 files changed, 1575 insertions(+) create mode 100644 Makefile create mode 100644 Makefile.musl create mode 100644 README.md create mode 100644 rdd.c create mode 100644 sosemanuk.c create mode 100644 sosemanuk.h diff --git a/Makefile b/Makefile new file mode 100644 index 0000000..43b5e2f --- /dev/null +++ b/Makefile @@ -0,0 +1,9 @@ +CFLAGS=-O3 -Wall +all: rdd + +rdd: sosemanuk.o rdd.o + +rdd.c: sosemanuk.h + +clean: + rm -f rdd rdd.o sosemanuk.o diff --git a/Makefile.musl b/Makefile.musl new file mode 100644 index 0000000..6304aee --- /dev/null +++ b/Makefile.musl @@ -0,0 +1,5 @@ +include Makefile + +CC=musl-gcc +CFLAGS+=-fno-asynchronous-unwind-tables -fno-stack-protector +LDFLAGS=-static -Wl,-z -Wl,noexecstack diff --git a/README.md b/README.md new file mode 100644 index 0000000..75c1c92 --- /dev/null +++ b/README.md @@ -0,0 +1,46 @@ +# rdd - random data dump + +rdd is a high-speed, cryptographically safe random data generator +using the reference implementation of the eSTREAM Profile 1 SOSEMANUK +stream cipher. + +It is designed to fill crypto devices with random data. + +This implementation passed dieharder 3.31.1 "-a" and +PractRand/RNG_test 0.90 (tested up to 512 GB). + +## Usage + + rdd [-i SOURCE] [-r REKEYMB] [-v] + -i SOURCE read key and IVs from SOURCE (/dev/urandom) + -r REKEYMB reload the IV every REKEYMB megabytes of output (4) + -v print a . to stderr on every rekey + +Random binary data is outputted to stdout. Better don't put a +terminal there. +rdd reads 32 bytes for the initial key and 16 bytes for every rekeying +from the random source. Setting REKEYMB to -1 never rekeys. + +## Copyright + +### rdd.c: + +To the extent possible under law, Christian Neukirchen has waived +all copyright and related or neighboring rights to this work. + +http://creativecommons.org/publicdomain/zero/1.0/ + +### sosemanuk.[ch]: + +This program includes code taken from +http://www.ecrypt.eu.org/stream/p3ciphers/sosemanuk/sosemanuk_p3source.zip +as of 13mar2013. An error message which can never occur in rdd usage +has been #ifdef'ed out. + +(c) 2005 X-CRYPT project. This software is provided 'as-is', without +any express or implied warranty. In no event will the authors be held +liable for any damages arising from the use of this software. + +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it +freely, subject to no restriction. diff --git a/rdd.c b/rdd.c new file mode 100644 index 0000000..321ad89 --- /dev/null +++ b/rdd.c @@ -0,0 +1,56 @@ +/* rdd - random data dump */ + +#include +#include +#include +#include + +#include "sosemanuk.h" + +#define fail(i,s) write(2, s, (sizeof s)-1), exit(i); + +int +main(int argc, char *argv[]) +{ + unsigned char key[32], iv[16], buf[120*512]; + sosemanuk_key_context kc; + sosemanuk_run_context rc; + + int fd, c, i, v=0, r=4; + char *src = "/dev/urandom"; + + while ((c = getopt(argc, argv, "i:r:v")) != -1) + switch(c) { + case 'i': src = optarg; break; + case 'r': r = atoi(optarg); break; + case 'v': v = 1; break; + default: + usage: + fail(1, "Usage: rdd [-i RANDOMSOURCE] [-r REKEYMB] [-v]\n"); + } + + if (argc > optind) + goto usage; + + if ((fd = open(src, O_RDONLY)) < 0) + fail(2, "failed to open random source\n"); + + if (read(fd, key, sizeof key) != sizeof key) + fail(3, "failed to read key from random source\n"); + sosemanuk_schedule(&kc, key, sizeof key); + + while (1) { + if (read(fd, iv, sizeof iv) != sizeof iv) + fail(3, "failed to read iv from random source\n"); + sosemanuk_init(&rc, &kc, iv, sizeof iv); + if (v) + write(2, ".", 1); + + for (i = 0; r<0 || i + */ + +#include +#include +#include +#ifdef SOSEMANUK_SPEED +#include +#endif + +#include "sosemanuk.h" + +/* ======================================================================== */ + +#ifdef SOSEMANUK_ECRYPT + +/* + * No local speed testing when using the ECRYPT mode. + */ +#undef SOSEMANUK_SPEED + +/* + * If we are using the ECRYPT API, then we rely on the ECRYPT portability + * macros and types. + */ + +#define unum32 u32 +#define T32(x) U32V(x) + +#define decode32le(data) U8TO32_LITTLE(data) +#define encode32le(dst, val) do { \ + u8 *encode_dst = (dst); \ + u32 encode_val = (val); \ + U32TO8_LITTLE(encode_dst, encode_val); \ + } while (0) + +#define ROTL(x, n) ROTL32(x, n) +#define INLINE + +#else + +/* + * 32-bit data decoding, little endian. + */ +static INLINE unum32 +decode32le(unsigned char *data) +{ +#ifdef __i386 + /* + * On i386, we prefer accessing data directly. Unaligned accesses + * imply only a one-cycle penalty; even with that penalty, this + * method is quite faster than the generic one. Note that i486 + * and later may be set in a mode where unaligned access trigger + * exceptions; but such a mode is not compatible with usual ABI + * (which require only 4-byte alignment for "double" and "long + * double", hence operating systems do not set that "alignment + * check" flag. + * + * If this optimized access proves to be a problem, replace the + * test above by "#if 0". + */ + return *(unum32 *)data; +#else + return (unum32)data[0] + | ((unum32)data[1] << 8) + | ((unum32)data[2] << 16) + | ((unum32)data[3] << 24); +#endif +} + +/* + * 32-bit data encoding, little-endian. + */ +static INLINE void +encode32le(unsigned char *dst, unum32 val) +{ +#ifdef __i386__ + /* + * Optimized version for i386. See comments in decode32le(). + */ + *(unum32 *)dst = val; +#else + dst[0] = val & 0xFF; + dst[1] = (val >> 8) & 0xFF; + dst[2] = (val >> 16) & 0xFF; + dst[3] = (val >> 24) & 0xFF; +#endif +} + +/* + * Left-rotation by n bits (0 < n < 32). + */ +#define ROTL(x, n) (T32(((x) << (n)) | T32((x) >> (32 - (n))))) + +#endif + +/* ======================================================================== */ + +/* + * Serpent S-boxes, implemented in bitslice mode. These circuits have + * been published by Dag Arne Osvik ("Speeding up Serpent", published in + * the 3rd AES Candidate Conference) and work on five 32-bit registers: + * the four inputs, and a fifth scratch register. There are meant to be + * quite fast on Pentium-class processors. These are not the fastest + * published, but they are "fast enough" and they are unencumbered as + * far as intellectual property is concerned (note: these are rewritten + * from the article itself, and hence are not covered by the GPL on + * Dag's code, which was not used here). + * + * The output bits are permuted. Here is the correspondance: + * S0: 1420 + * S1: 2031 + * S2: 2314 + * S3: 1234 + * S4: 1403 + * S5: 1302 + * S6: 0142 + * S7: 4310 + * (for instance, the output of S0 is in "r1, r4, r2, r0"). + */ + +#define S0(r0, r1, r2, r3, r4) do { \ + r3 ^= r0; r4 = r1; \ + r1 &= r3; r4 ^= r2; \ + r1 ^= r0; r0 |= r3; \ + r0 ^= r4; r4 ^= r3; \ + r3 ^= r2; r2 |= r1; \ + r2 ^= r4; r4 = ~r4; \ + r4 |= r1; r1 ^= r3; \ + r1 ^= r4; r3 |= r0; \ + r1 ^= r3; r4 ^= r3; \ + } while (0) + +#define S1(r0, r1, r2, r3, r4) do { \ + r0 = ~r0; r2 = ~r2; \ + r4 = r0; r0 &= r1; \ + r2 ^= r0; r0 |= r3; \ + r3 ^= r2; r1 ^= r0; \ + r0 ^= r4; r4 |= r1; \ + r1 ^= r3; r2 |= r0; \ + r2 &= r4; r0 ^= r1; \ + r1 &= r2; \ + r1 ^= r0; r0 &= r2; \ + r0 ^= r4; \ + } while (0) + +#define S2(r0, r1, r2, r3, r4) do { \ + r4 = r0; r0 &= r2; \ + r0 ^= r3; r2 ^= r1; \ + r2 ^= r0; r3 |= r4; \ + r3 ^= r1; r4 ^= r2; \ + r1 = r3; r3 |= r4; \ + r3 ^= r0; r0 &= r1; \ + r4 ^= r0; r1 ^= r3; \ + r1 ^= r4; r4 = ~r4; \ + } while (0) + +#define S3(r0, r1, r2, r3, r4) do { \ + r4 = r0; r0 |= r3; \ + r3 ^= r1; r1 &= r4; \ + r4 ^= r2; r2 ^= r3; \ + r3 &= r0; r4 |= r1; \ + r3 ^= r4; r0 ^= r1; \ + r4 &= r0; r1 ^= r3; \ + r4 ^= r2; r1 |= r0; \ + r1 ^= r2; r0 ^= r3; \ + r2 = r1; r1 |= r3; \ + r1 ^= r0; \ + } while (0) + +#define S4(r0, r1, r2, r3, r4) do { \ + r1 ^= r3; r3 = ~r3; \ + r2 ^= r3; r3 ^= r0; \ + r4 = r1; r1 &= r3; \ + r1 ^= r2; r4 ^= r3; \ + r0 ^= r4; r2 &= r4; \ + r2 ^= r0; r0 &= r1; \ + r3 ^= r0; r4 |= r1; \ + r4 ^= r0; r0 |= r3; \ + r0 ^= r2; r2 &= r3; \ + r0 = ~r0; r4 ^= r2; \ + } while (0) + +#define S5(r0, r1, r2, r3, r4) do { \ + r0 ^= r1; r1 ^= r3; \ + r3 = ~r3; r4 = r1; \ + r1 &= r0; r2 ^= r3; \ + r1 ^= r2; r2 |= r4; \ + r4 ^= r3; r3 &= r1; \ + r3 ^= r0; r4 ^= r1; \ + r4 ^= r2; r2 ^= r0; \ + r0 &= r3; r2 = ~r2; \ + r0 ^= r4; r4 |= r3; \ + r2 ^= r4; \ + } while (0) + +#define S6(r0, r1, r2, r3, r4) do { \ + r2 = ~r2; r4 = r3; \ + r3 &= r0; r0 ^= r4; \ + r3 ^= r2; r2 |= r4; \ + r1 ^= r3; r2 ^= r0; \ + r0 |= r1; r2 ^= r1; \ + r4 ^= r0; r0 |= r3; \ + r0 ^= r2; r4 ^= r3; \ + r4 ^= r0; r3 = ~r3; \ + r2 &= r4; \ + r2 ^= r3; \ + } while (0) + +#define S7(r0, r1, r2, r3, r4) do { \ + r4 = r1; r1 |= r2; \ + r1 ^= r3; r4 ^= r2; \ + r2 ^= r1; r3 |= r4; \ + r3 &= r0; r4 ^= r2; \ + r3 ^= r1; r1 |= r4; \ + r1 ^= r0; r0 |= r4; \ + r0 ^= r2; r1 ^= r4; \ + r2 ^= r1; r1 &= r0; \ + r1 ^= r4; r2 = ~r2; \ + r2 |= r0; \ + r4 ^= r2; \ + } while (0) + +/* + * The Serpent linear transform. + */ +#define SERPENT_LT(x0, x1, x2, x3) do { \ + x0 = ROTL(x0, 13); \ + x2 = ROTL(x2, 3); \ + x1 = x1 ^ x0 ^ x2; \ + x3 = x3 ^ x2 ^ T32(x0 << 3); \ + x1 = ROTL(x1, 1); \ + x3 = ROTL(x3, 7); \ + x0 = x0 ^ x1 ^ x3; \ + x2 = x2 ^ x3 ^ T32(x1 << 7); \ + x0 = ROTL(x0, 5); \ + x2 = ROTL(x2, 22); \ + } while (0) + +/* ======================================================================== */ + +#ifdef SOSEMANUK_ECRYPT +void +ECRYPT_init(void) +{ + return; +} +#endif + +#ifdef SOSEMANUK_ECRYPT +void +ECRYPT_keysetup(ECRYPT_ctx *kc, const u8 *key, u32 keysize, u32 ivsize) +#else +/* see sosemanuk.h */ +void +sosemanuk_schedule(sosemanuk_key_context *kc, + unsigned char *key, size_t key_len) +#endif +{ + /* + * This key schedule is actually a truncated Serpent key schedule. + * The key-derived words (w_i) are computed within the eight + * local variables w0 to w7, which are reused again and again. + */ + +#define SKS(S, o0, o1, o2, o3, d0, d1, d2, d3) do { \ + unum32 r0, r1, r2, r3, r4; \ + r0 = w ## o0; \ + r1 = w ## o1; \ + r2 = w ## o2; \ + r3 = w ## o3; \ + S(r0, r1, r2, r3, r4); \ + kc->sk[i ++] = r ## d0; \ + kc->sk[i ++] = r ## d1; \ + kc->sk[i ++] = r ## d2; \ + kc->sk[i ++] = r ## d3; \ + } while (0) + +#define SKS0 SKS(S0, 4, 5, 6, 7, 1, 4, 2, 0) +#define SKS1 SKS(S1, 0, 1, 2, 3, 2, 0, 3, 1) +#define SKS2 SKS(S2, 4, 5, 6, 7, 2, 3, 1, 4) +#define SKS3 SKS(S3, 0, 1, 2, 3, 1, 2, 3, 4) +#define SKS4 SKS(S4, 4, 5, 6, 7, 1, 4, 0, 3) +#define SKS5 SKS(S5, 0, 1, 2, 3, 1, 3, 0, 2) +#define SKS6 SKS(S6, 4, 5, 6, 7, 0, 1, 4, 2) +#define SKS7 SKS(S7, 0, 1, 2, 3, 4, 3, 1, 0) + +#define WUP(wi, wi5, wi3, wi1, cc) do { \ + unum32 tt = (wi) ^ (wi5) ^ (wi3) \ + ^ (wi1) ^ (0x9E3779B9 ^ (unum32)(cc)); \ + (wi) = ROTL(tt, 11); \ + } while (0) + +#define WUP0(cc) do { \ + WUP(w0, w3, w5, w7, cc); \ + WUP(w1, w4, w6, w0, cc + 1); \ + WUP(w2, w5, w7, w1, cc + 2); \ + WUP(w3, w6, w0, w2, cc + 3); \ + } while (0) + +#define WUP1(cc) do { \ + WUP(w4, w7, w1, w3, cc); \ + WUP(w5, w0, w2, w4, cc + 1); \ + WUP(w6, w1, w3, w5, cc + 2); \ + WUP(w7, w2, w4, w6, cc + 3); \ + } while (0) + + unsigned char wbuf[32]; + register unum32 w0, w1, w2, w3, w4, w5, w6, w7; + int i = 0; +#ifdef SOSEMANUK_ECRYPT + size_t key_len = keysize / 8; + + kc->ivlen = ivsize / 8; +#endif + + /* + * The key is copied into the wbuf[] buffer and padded to 256 bits + * as described in the Serpent specification. + */ +#ifdef WASTE_SPACE_ON_STDIO + if (key_len == 0 || key_len > 32) { + fprintf(stderr, "invalid key size: %lu\n", + (unsigned long)key_len); + exit(EXIT_FAILURE); + } +#endif + memcpy(wbuf, key, key_len); + if (key_len < 32) { + wbuf[key_len] = 0x01; + if (key_len < 31) + memset(wbuf + key_len + 1, 0, 31 - key_len); + } + +#ifdef SOSEMANUK_VECTOR + { + size_t u; + + printf("key = "); + for (u = 0; u < key_len; u ++) + printf("%02X", key[u]); + printf("\n"); + } +#endif + + w0 = decode32le(wbuf); + w1 = decode32le(wbuf + 4); + w2 = decode32le(wbuf + 8); + w3 = decode32le(wbuf + 12); + w4 = decode32le(wbuf + 16); + w5 = decode32le(wbuf + 20); + w6 = decode32le(wbuf + 24); + w7 = decode32le(wbuf + 28); + +#ifdef SOSEMANUK_VECTOR + printf(" -> %08lX %08lX %08lX %08lX %08lX %08lX %08lX %08lX\n", + (unsigned long)w7, (unsigned long)w6, + (unsigned long)w5, (unsigned long)w4, + (unsigned long)w3, (unsigned long)w2, + (unsigned long)w1, (unsigned long)w0); +#endif + + WUP0(0); SKS3; + WUP1(4); SKS2; + WUP0(8); SKS1; + WUP1(12); SKS0; + WUP0(16); SKS7; + WUP1(20); SKS6; + WUP0(24); SKS5; + WUP1(28); SKS4; + WUP0(32); SKS3; + WUP1(36); SKS2; + WUP0(40); SKS1; + WUP1(44); SKS0; + WUP0(48); SKS7; + WUP1(52); SKS6; + WUP0(56); SKS5; + WUP1(60); SKS4; + WUP0(64); SKS3; + WUP1(68); SKS2; + WUP0(72); SKS1; + WUP1(76); SKS0; + WUP0(80); SKS7; + WUP1(84); SKS6; + WUP0(88); SKS5; + WUP1(92); SKS4; + WUP0(96); SKS3; + +#ifdef SOSEMANUK_VECTOR + { + unsigned u; + + for (u = 0; u < 100; u += 4) { + printf("Serpent24 subkey %2u:" + " %08lX %08lX %08lX %08lX\n", u / 4, + (unsigned long)kc->sk[u + 3], + (unsigned long)kc->sk[u + 2], + (unsigned long)kc->sk[u + 1], + (unsigned long)kc->sk[u + 0]); + } + } +#endif + +#undef SKS +#undef SKS0 +#undef SKS1 +#undef SKS2 +#undef SKS3 +#undef SKS4 +#undef SKS5 +#undef SKS6 +#undef SKS7 +#undef WUP +#undef WUP0 +#undef WUP1 +} + +#ifdef SOSEMANUK_ECRYPT +void +ECRYPT_ivsetup(ECRYPT_ctx *ctx, const u8 *iv) +#else +/* see sosemanuk.h */ +void +sosemanuk_init(sosemanuk_run_context *rc, sosemanuk_key_context *kc, + unsigned char *iv, size_t iv_len) +#endif +{ + +#ifdef SOSEMANUK_ECRYPT +#define rc ctx +#define kc ctx +#define iv_len (ctx->ivlen) +#endif + + /* + * The Serpent key addition step. + */ +#define KA(zc, x0, x1, x2, x3) do { \ + x0 ^= kc->sk[(zc)]; \ + x1 ^= kc->sk[(zc) + 1]; \ + x2 ^= kc->sk[(zc) + 2]; \ + x3 ^= kc->sk[(zc) + 3]; \ + } while (0) + + /* + * One Serpent round. + * zc = current subkey counter + * S = S-box macro for this round + * i0 to i4 = input register numbers (the fifth is a scratch register) + * o0 to o3 = output register numbers + */ +#define FSS(zc, S, i0, i1, i2, i3, i4, o0, o1, o2, o3) do { \ + KA(zc, r ## i0, r ## i1, r ## i2, r ## i3); \ + S(r ## i0, r ## i1, r ## i2, r ## i3, r ## i4); \ + SERPENT_LT(r ## o0, r ## o1, r ## o2, r ## o3); \ + } while (0) + + /* + * Last Serpent round. Contrary to the "true" Serpent, we keep + * the linear transformation for that last round. + */ +#define FSF(zc, S, i0, i1, i2, i3, i4, o0, o1, o2, o3) do { \ + KA(zc, r ## i0, r ## i1, r ## i2, r ## i3); \ + S(r ## i0, r ## i1, r ## i2, r ## i3, r ## i4); \ + SERPENT_LT(r ## o0, r ## o1, r ## o2, r ## o3); \ + KA(zc + 4, r ## o0, r ## o1, r ## o2, r ## o3); \ + } while (0) + + register unum32 r0, r1, r2, r3, r4; + unsigned char ivtmp[16]; + + if (iv_len >= sizeof ivtmp) { + memcpy(ivtmp, iv, sizeof ivtmp); + } else { + if (iv_len > 0) + memcpy(ivtmp, iv, iv_len); + memset(ivtmp + iv_len, 0, (sizeof ivtmp) - iv_len); + } + +#ifdef SOSEMANUK_VECTOR + { + size_t u; + + printf("IV = "); + for (u = 0; u < 16; u ++) + printf("%02X", ivtmp[u]); + printf("\n"); + } +#endif + + /* + * Decode IV into four 32-bit words (little-endian). + */ + r0 = decode32le(ivtmp); + r1 = decode32le(ivtmp + 4); + r2 = decode32le(ivtmp + 8); + r3 = decode32le(ivtmp + 12); + +#ifdef SOSEMANUK_VECTOR + printf(" -> %08lX %08lX %08lX %08lX\n", + (unsigned long)r3, (unsigned long)r2, + (unsigned long)r1, (unsigned long)r0); +#endif + + /* + * Encrypt IV with Serpent24. Some values are extracted from the + * output of the twelfth, eighteenth and twenty-fourth rounds. + */ + FSS(0, S0, 0, 1, 2, 3, 4, 1, 4, 2, 0); + FSS(4, S1, 1, 4, 2, 0, 3, 2, 1, 0, 4); + FSS(8, S2, 2, 1, 0, 4, 3, 0, 4, 1, 3); + FSS(12, S3, 0, 4, 1, 3, 2, 4, 1, 3, 2); + FSS(16, S4, 4, 1, 3, 2, 0, 1, 0, 4, 2); + FSS(20, S5, 1, 0, 4, 2, 3, 0, 2, 1, 4); + FSS(24, S6, 0, 2, 1, 4, 3, 0, 2, 3, 1); + FSS(28, S7, 0, 2, 3, 1, 4, 4, 1, 2, 0); + FSS(32, S0, 4, 1, 2, 0, 3, 1, 3, 2, 4); + FSS(36, S1, 1, 3, 2, 4, 0, 2, 1, 4, 3); + FSS(40, S2, 2, 1, 4, 3, 0, 4, 3, 1, 0); + FSS(44, S3, 4, 3, 1, 0, 2, 3, 1, 0, 2); + rc->s09 = r3; + rc->s08 = r1; + rc->s07 = r0; + rc->s06 = r2; + + FSS(48, S4, 3, 1, 0, 2, 4, 1, 4, 3, 2); + FSS(52, S5, 1, 4, 3, 2, 0, 4, 2, 1, 3); + FSS(56, S6, 4, 2, 1, 3, 0, 4, 2, 0, 1); + FSS(60, S7, 4, 2, 0, 1, 3, 3, 1, 2, 4); + FSS(64, S0, 3, 1, 2, 4, 0, 1, 0, 2, 3); + FSS(68, S1, 1, 0, 2, 3, 4, 2, 1, 3, 0); + rc->r1 = r2; + rc->s04 = r1; + rc->r2 = r3; + rc->s05 = r0; + + FSS(72, S2, 2, 1, 3, 0, 4, 3, 0, 1, 4); + FSS(76, S3, 3, 0, 1, 4, 2, 0, 1, 4, 2); + FSS(80, S4, 0, 1, 4, 2, 3, 1, 3, 0, 2); + FSS(84, S5, 1, 3, 0, 2, 4, 3, 2, 1, 0); + FSS(88, S6, 3, 2, 1, 0, 4, 3, 2, 4, 1); + FSF(92, S7, 3, 2, 4, 1, 0, 0, 1, 2, 3); + rc->s03 = r0; + rc->s02 = r1; + rc->s01 = r2; + rc->s00 = r3; + +#ifdef SOSEMANUK_VECTOR + printf("Initial LFSR state:\n"); + printf(" s1 = %08lX\n", (unsigned long)rc->s00); + printf(" s2 = %08lX\n", (unsigned long)rc->s01); + printf(" s3 = %08lX\n", (unsigned long)rc->s02); + printf(" s4 = %08lX\n", (unsigned long)rc->s03); + printf(" s5 = %08lX\n", (unsigned long)rc->s04); + printf(" s6 = %08lX\n", (unsigned long)rc->s05); + printf(" s7 = %08lX\n", (unsigned long)rc->s06); + printf(" s8 = %08lX\n", (unsigned long)rc->s07); + printf(" s9 = %08lX\n", (unsigned long)rc->s08); + printf(" s10 = %08lX\n", (unsigned long)rc->s09); + printf("Initial FSM state: r1 = %08lX r2 = %08lX\n", + (unsigned long)rc->r1, (unsigned long)rc->r2); +#endif + +#ifndef SOSEMANUK_ECRYPT + rc->ptr = sizeof rc->buf; +#endif + +#undef KA +#undef FSS +#undef FSF + +#ifdef SOSEMANUK_ECRYPT +#undef rc +#undef kc +#undef iv_len +#endif +} + +/* + * Multiplication by alpha: alpha * x = T32(x << 8) ^ mul_a[x >> 24] + */ +static unum32 mul_a[] = { + 0x00000000, 0xE19FCF13, 0x6B973726, 0x8A08F835, + 0xD6876E4C, 0x3718A15F, 0xBD10596A, 0x5C8F9679, + 0x05A7DC98, 0xE438138B, 0x6E30EBBE, 0x8FAF24AD, + 0xD320B2D4, 0x32BF7DC7, 0xB8B785F2, 0x59284AE1, + 0x0AE71199, 0xEB78DE8A, 0x617026BF, 0x80EFE9AC, + 0xDC607FD5, 0x3DFFB0C6, 0xB7F748F3, 0x566887E0, + 0x0F40CD01, 0xEEDF0212, 0x64D7FA27, 0x85483534, + 0xD9C7A34D, 0x38586C5E, 0xB250946B, 0x53CF5B78, + 0x1467229B, 0xF5F8ED88, 0x7FF015BD, 0x9E6FDAAE, + 0xC2E04CD7, 0x237F83C4, 0xA9777BF1, 0x48E8B4E2, + 0x11C0FE03, 0xF05F3110, 0x7A57C925, 0x9BC80636, + 0xC747904F, 0x26D85F5C, 0xACD0A769, 0x4D4F687A, + 0x1E803302, 0xFF1FFC11, 0x75170424, 0x9488CB37, + 0xC8075D4E, 0x2998925D, 0xA3906A68, 0x420FA57B, + 0x1B27EF9A, 0xFAB82089, 0x70B0D8BC, 0x912F17AF, + 0xCDA081D6, 0x2C3F4EC5, 0xA637B6F0, 0x47A879E3, + 0x28CE449F, 0xC9518B8C, 0x435973B9, 0xA2C6BCAA, + 0xFE492AD3, 0x1FD6E5C0, 0x95DE1DF5, 0x7441D2E6, + 0x2D699807, 0xCCF65714, 0x46FEAF21, 0xA7616032, + 0xFBEEF64B, 0x1A713958, 0x9079C16D, 0x71E60E7E, + 0x22295506, 0xC3B69A15, 0x49BE6220, 0xA821AD33, + 0xF4AE3B4A, 0x1531F459, 0x9F390C6C, 0x7EA6C37F, + 0x278E899E, 0xC611468D, 0x4C19BEB8, 0xAD8671AB, + 0xF109E7D2, 0x109628C1, 0x9A9ED0F4, 0x7B011FE7, + 0x3CA96604, 0xDD36A917, 0x573E5122, 0xB6A19E31, + 0xEA2E0848, 0x0BB1C75B, 0x81B93F6E, 0x6026F07D, + 0x390EBA9C, 0xD891758F, 0x52998DBA, 0xB30642A9, + 0xEF89D4D0, 0x0E161BC3, 0x841EE3F6, 0x65812CE5, + 0x364E779D, 0xD7D1B88E, 0x5DD940BB, 0xBC468FA8, + 0xE0C919D1, 0x0156D6C2, 0x8B5E2EF7, 0x6AC1E1E4, + 0x33E9AB05, 0xD2766416, 0x587E9C23, 0xB9E15330, + 0xE56EC549, 0x04F10A5A, 0x8EF9F26F, 0x6F663D7C, + 0x50358897, 0xB1AA4784, 0x3BA2BFB1, 0xDA3D70A2, + 0x86B2E6DB, 0x672D29C8, 0xED25D1FD, 0x0CBA1EEE, + 0x5592540F, 0xB40D9B1C, 0x3E056329, 0xDF9AAC3A, + 0x83153A43, 0x628AF550, 0xE8820D65, 0x091DC276, + 0x5AD2990E, 0xBB4D561D, 0x3145AE28, 0xD0DA613B, + 0x8C55F742, 0x6DCA3851, 0xE7C2C064, 0x065D0F77, + 0x5F754596, 0xBEEA8A85, 0x34E272B0, 0xD57DBDA3, + 0x89F22BDA, 0x686DE4C9, 0xE2651CFC, 0x03FAD3EF, + 0x4452AA0C, 0xA5CD651F, 0x2FC59D2A, 0xCE5A5239, + 0x92D5C440, 0x734A0B53, 0xF942F366, 0x18DD3C75, + 0x41F57694, 0xA06AB987, 0x2A6241B2, 0xCBFD8EA1, + 0x977218D8, 0x76EDD7CB, 0xFCE52FFE, 0x1D7AE0ED, + 0x4EB5BB95, 0xAF2A7486, 0x25228CB3, 0xC4BD43A0, + 0x9832D5D9, 0x79AD1ACA, 0xF3A5E2FF, 0x123A2DEC, + 0x4B12670D, 0xAA8DA81E, 0x2085502B, 0xC11A9F38, + 0x9D950941, 0x7C0AC652, 0xF6023E67, 0x179DF174, + 0x78FBCC08, 0x9964031B, 0x136CFB2E, 0xF2F3343D, + 0xAE7CA244, 0x4FE36D57, 0xC5EB9562, 0x24745A71, + 0x7D5C1090, 0x9CC3DF83, 0x16CB27B6, 0xF754E8A5, + 0xABDB7EDC, 0x4A44B1CF, 0xC04C49FA, 0x21D386E9, + 0x721CDD91, 0x93831282, 0x198BEAB7, 0xF81425A4, + 0xA49BB3DD, 0x45047CCE, 0xCF0C84FB, 0x2E934BE8, + 0x77BB0109, 0x9624CE1A, 0x1C2C362F, 0xFDB3F93C, + 0xA13C6F45, 0x40A3A056, 0xCAAB5863, 0x2B349770, + 0x6C9CEE93, 0x8D032180, 0x070BD9B5, 0xE69416A6, + 0xBA1B80DF, 0x5B844FCC, 0xD18CB7F9, 0x301378EA, + 0x693B320B, 0x88A4FD18, 0x02AC052D, 0xE333CA3E, + 0xBFBC5C47, 0x5E239354, 0xD42B6B61, 0x35B4A472, + 0x667BFF0A, 0x87E43019, 0x0DECC82C, 0xEC73073F, + 0xB0FC9146, 0x51635E55, 0xDB6BA660, 0x3AF46973, + 0x63DC2392, 0x8243EC81, 0x084B14B4, 0xE9D4DBA7, + 0xB55B4DDE, 0x54C482CD, 0xDECC7AF8, 0x3F53B5EB +}; + +/* + * Multiplication by 1/alpha: 1/alpha * x = (x >> 8) ^ mul_ia[x & 0xFF] + */ +static unum32 mul_ia[] = { + 0x00000000, 0x180F40CD, 0x301E8033, 0x2811C0FE, + 0x603CA966, 0x7833E9AB, 0x50222955, 0x482D6998, + 0xC078FBCC, 0xD877BB01, 0xF0667BFF, 0xE8693B32, + 0xA04452AA, 0xB84B1267, 0x905AD299, 0x88559254, + 0x29F05F31, 0x31FF1FFC, 0x19EEDF02, 0x01E19FCF, + 0x49CCF657, 0x51C3B69A, 0x79D27664, 0x61DD36A9, + 0xE988A4FD, 0xF187E430, 0xD99624CE, 0xC1996403, + 0x89B40D9B, 0x91BB4D56, 0xB9AA8DA8, 0xA1A5CD65, + 0x5249BE62, 0x4A46FEAF, 0x62573E51, 0x7A587E9C, + 0x32751704, 0x2A7A57C9, 0x026B9737, 0x1A64D7FA, + 0x923145AE, 0x8A3E0563, 0xA22FC59D, 0xBA208550, + 0xF20DECC8, 0xEA02AC05, 0xC2136CFB, 0xDA1C2C36, + 0x7BB9E153, 0x63B6A19E, 0x4BA76160, 0x53A821AD, + 0x1B854835, 0x038A08F8, 0x2B9BC806, 0x339488CB, + 0xBBC11A9F, 0xA3CE5A52, 0x8BDF9AAC, 0x93D0DA61, + 0xDBFDB3F9, 0xC3F2F334, 0xEBE333CA, 0xF3EC7307, + 0xA492D5C4, 0xBC9D9509, 0x948C55F7, 0x8C83153A, + 0xC4AE7CA2, 0xDCA13C6F, 0xF4B0FC91, 0xECBFBC5C, + 0x64EA2E08, 0x7CE56EC5, 0x54F4AE3B, 0x4CFBEEF6, + 0x04D6876E, 0x1CD9C7A3, 0x34C8075D, 0x2CC74790, + 0x8D628AF5, 0x956DCA38, 0xBD7C0AC6, 0xA5734A0B, + 0xED5E2393, 0xF551635E, 0xDD40A3A0, 0xC54FE36D, + 0x4D1A7139, 0x551531F4, 0x7D04F10A, 0x650BB1C7, + 0x2D26D85F, 0x35299892, 0x1D38586C, 0x053718A1, + 0xF6DB6BA6, 0xEED42B6B, 0xC6C5EB95, 0xDECAAB58, + 0x96E7C2C0, 0x8EE8820D, 0xA6F942F3, 0xBEF6023E, + 0x36A3906A, 0x2EACD0A7, 0x06BD1059, 0x1EB25094, + 0x569F390C, 0x4E9079C1, 0x6681B93F, 0x7E8EF9F2, + 0xDF2B3497, 0xC724745A, 0xEF35B4A4, 0xF73AF469, + 0xBF179DF1, 0xA718DD3C, 0x8F091DC2, 0x97065D0F, + 0x1F53CF5B, 0x075C8F96, 0x2F4D4F68, 0x37420FA5, + 0x7F6F663D, 0x676026F0, 0x4F71E60E, 0x577EA6C3, + 0xE18D0321, 0xF98243EC, 0xD1938312, 0xC99CC3DF, + 0x81B1AA47, 0x99BEEA8A, 0xB1AF2A74, 0xA9A06AB9, + 0x21F5F8ED, 0x39FAB820, 0x11EB78DE, 0x09E43813, + 0x41C9518B, 0x59C61146, 0x71D7D1B8, 0x69D89175, + 0xC87D5C10, 0xD0721CDD, 0xF863DC23, 0xE06C9CEE, + 0xA841F576, 0xB04EB5BB, 0x985F7545, 0x80503588, + 0x0805A7DC, 0x100AE711, 0x381B27EF, 0x20146722, + 0x68390EBA, 0x70364E77, 0x58278E89, 0x4028CE44, + 0xB3C4BD43, 0xABCBFD8E, 0x83DA3D70, 0x9BD57DBD, + 0xD3F81425, 0xCBF754E8, 0xE3E69416, 0xFBE9D4DB, + 0x73BC468F, 0x6BB30642, 0x43A2C6BC, 0x5BAD8671, + 0x1380EFE9, 0x0B8FAF24, 0x239E6FDA, 0x3B912F17, + 0x9A34E272, 0x823BA2BF, 0xAA2A6241, 0xB225228C, + 0xFA084B14, 0xE2070BD9, 0xCA16CB27, 0xD2198BEA, + 0x5A4C19BE, 0x42435973, 0x6A52998D, 0x725DD940, + 0x3A70B0D8, 0x227FF015, 0x0A6E30EB, 0x12617026, + 0x451FD6E5, 0x5D109628, 0x750156D6, 0x6D0E161B, + 0x25237F83, 0x3D2C3F4E, 0x153DFFB0, 0x0D32BF7D, + 0x85672D29, 0x9D686DE4, 0xB579AD1A, 0xAD76EDD7, + 0xE55B844F, 0xFD54C482, 0xD545047C, 0xCD4A44B1, + 0x6CEF89D4, 0x74E0C919, 0x5CF109E7, 0x44FE492A, + 0x0CD320B2, 0x14DC607F, 0x3CCDA081, 0x24C2E04C, + 0xAC977218, 0xB49832D5, 0x9C89F22B, 0x8486B2E6, + 0xCCABDB7E, 0xD4A49BB3, 0xFCB55B4D, 0xE4BA1B80, + 0x17566887, 0x0F59284A, 0x2748E8B4, 0x3F47A879, + 0x776AC1E1, 0x6F65812C, 0x477441D2, 0x5F7B011F, + 0xD72E934B, 0xCF21D386, 0xE7301378, 0xFF3F53B5, + 0xB7123A2D, 0xAF1D7AE0, 0x870CBA1E, 0x9F03FAD3, + 0x3EA637B6, 0x26A9777B, 0x0EB8B785, 0x16B7F748, + 0x5E9A9ED0, 0x4695DE1D, 0x6E841EE3, 0x768B5E2E, + 0xFEDECC7A, 0xE6D18CB7, 0xCEC04C49, 0xD6CF0C84, + 0x9EE2651C, 0x86ED25D1, 0xAEFCE52F, 0xB6F3A5E2 +}; + +/* + * Compute the next block of bits of output stream. This is equivalent + * to one full rotation of the shift register. + * + * If SOSEMANUK_SPEED is defined, this function takes an extra parameter + * "counter". The function then returns the sum of all produced + * 32-bit words, in an "unum32". That sum prevents the compiler from + * optimizing out part of the computation. + */ +#if defined SOSEMANUK_ECRYPT +static void +sosemanuk_internal(ECRYPT_ctx *rc, u8 *dst) +#elif defined SOSEMANUK_SPEED +static unum32 +sosemanuk_internal(sosemanuk_run_context *rc, unsigned long counter) +#else +static void +sosemanuk_internal(sosemanuk_run_context *rc) +#endif +{ + /* + * MUL_A(x) computes alpha * x (in F_{2^32}). + * MUL_G(x) computes 1/alpha * x (in F_{2^32}). + */ +#define MUL_A(x) (T32((x) << 8) ^ mul_a[(x) >> 24]) +#define MUL_G(x) (((x) >> 8) ^ mul_ia[(x) & 0xFF]) + + /* + * This macro computes the special multiplexer, which chooses + * between "x" and "x xor y", depending on the least significant + * bit of the control word. We use the C "?:" selection operator + * (which most compilers know how to optimise) except for Alpha, + * where the manual sign extension seems to perform equally well + * with DEC/Compaq/HP compiler, and much better with gcc. + */ +#ifdef __alpha +#define XMUX(c, x, y) ((((signed int)((c) << 31) >> 31) & (y)) ^ (x)) +#else +#define XMUX(c, x, y) (((c) & 0x1) ? ((x) ^ (y)) : (x)) +#endif + + /* + * FSM() updates the finite state machine. + */ +#define FSM(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) do { \ + unum32 tt, or1; \ + tt = XMUX(r1, s ## x1, s ## x8); \ + or1 = r1; \ + r1 = T32(r2 + tt); \ + tt = T32(or1 * 0x54655307); \ + r2 = ROTL(tt, 7); \ + PFSM; \ + } while (0) + + /* + * LRU updates the shift register; the dropped value is stored + * in variable "dd". + */ +#define LRU(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, dd) do { \ + dd = s ## x0; \ + s ## x0 = MUL_A(s ## x0) ^ MUL_G(s ## x3) ^ s ## x9; \ + PLFSR(dd, s ## x1, s ## x2, s ## x3, s ## x4, s ## x5, \ + s ## x6, s ## x7, s ## x8, s ## x9, s ## x0); \ + } while (0) + + /* + * CC1 stores into variable "ee" the next intermediate word + * (combination of the new states of the LFSR and the FSM). + */ +#define CC1(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, ee) do { \ + ee = T32(s ## x9 + r1) ^ r2; \ + PCCVAL(ee); \ + } while (0) + + /* + * STEP computes one internal round. "dd" receives the "s_t" + * value (dropped from the LFSR) and "ee" gets the value computed + * from the LFSR and FSM. + */ +#define STEP(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, dd, ee) do { \ + FSM(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9); \ + LRU(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, dd); \ + CC1(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, ee); \ + } while (0) + + /* + * Apply one Serpent round (with the provided S-box macro), XOR + * the result with the "v" values, and encode the result into + * the destination buffer, at the provided offset. The "x*" + * arguments encode the output permutation of the "S" macro. + */ +#ifdef SOSEMANUK_SPEED + +#define SRD(S, x0, x1, x2, x3, ooff) do { \ + S(u0, u1, u2, u3, u4); \ + speed_acc += u ## x0 ^ v0; \ + speed_acc += u ## x1 ^ v1; \ + speed_acc += u ## x2 ^ v2; \ + speed_acc += u ## x3 ^ v3; \ + } while (0) + +#else + +#ifdef SOSEMANUK_ECRYPT +#define OUTWORD_BASE dst +#else +#define OUTWORD_BASE (rc->buf) +#endif + +#define SRD(S, x0, x1, x2, x3, ooff) do { \ + PSPIN(u0, u1, u2, u3); \ + S(u0, u1, u2, u3, u4); \ + PSPOUT(u ## x0, u ## x1, u ## x2, u ## x3); \ + encode32le(OUTWORD_BASE + ooff, u ## x0 ^ v0); \ + encode32le(OUTWORD_BASE + ooff + 4, u ## x1 ^ v1); \ + encode32le(OUTWORD_BASE + ooff + 8, u ## x2 ^ v2); \ + encode32le(OUTWORD_BASE + ooff + 12, u ## x3 ^ v3); \ + POUT(OUTWORD_BASE + ooff); \ + } while (0) + +#endif + + /* + * Audit code; used for detailed test vectors. + */ +#ifdef SOSEMANUK_VECTOR + +#define PFSM do { \ + printf("New FSM state: r1 = %08lX r2 = %08lX\n", \ + (unsigned long)r1, (unsigned long)r2); \ + } while (0) + +#define PLFSR(dd, x1, x2, x3, x4, x5, x6, x7, x8, x9, x0) do { \ + printf("New LFSR state:\n"); \ + printf(" dropped (s_t): %08lX\n", (unsigned long)dd); \ + printf(" s_t+1 = %08lX\n", (unsigned long)x1); \ + printf(" s_t+2 = %08lX\n", (unsigned long)x2); \ + printf(" s_t+3 = %08lX\n", (unsigned long)x3); \ + printf(" s_t+4 = %08lX\n", (unsigned long)x4); \ + printf(" s_t+5 = %08lX\n", (unsigned long)x5); \ + printf(" s_t+6 = %08lX\n", (unsigned long)x6); \ + printf(" s_t+7 = %08lX\n", (unsigned long)x7); \ + printf(" s_t+8 = %08lX\n", (unsigned long)x8); \ + printf(" s_t+9 = %08lX\n", (unsigned long)x9); \ + printf(" s_t+10 = %08lX\n", (unsigned long)x0); \ + } while (0) + +#define PCCVAL(ee) do { \ + printf("Intermediate output: %08lX\n", (unsigned long)ee); \ + } while (0) + +#define PSPIN(x0, x1, x2, x3) do { \ + printf("Serpent1 input: %08lX %08lX %08lX %08lX\n", \ + (unsigned long)x3, (unsigned long)x2, \ + (unsigned long)x1, (unsigned long)x0); \ + } while (0) + +#define PSPOUT(x0, x1, x2, x3) do { \ + printf("Serpent1 output: %08lX %08lX %08lX %08lX\n", \ + (unsigned long)x3, (unsigned long)x2, \ + (unsigned long)x1, (unsigned long)x0); \ + } while (0) + +#define POUT(buf) do { \ + size_t j; \ + printf("Stream output: "); \ + for (j = 0; j < 16; j ++) \ + printf("%02X", (buf)[j]); \ + printf("\n"); \ + } while (0) + +#else + +#define PFSM (void)0 +#define PLFSR(dd, x1, x2, x3, x4, x5, x6, x7, x8, x9, x0) (void)0 +#define PCCVAL(ee) (void)0 +#define PSPIN(x0, x1, x2, x3) (void)0 +#define PSPOUT(x0, x1, x2, x3) (void)0 +#define POUT(buf) (void)0 + +#endif + + unum32 s00 = rc->s00; + unum32 s01 = rc->s01; + unum32 s02 = rc->s02; + unum32 s03 = rc->s03; + unum32 s04 = rc->s04; + unum32 s05 = rc->s05; + unum32 s06 = rc->s06; + unum32 s07 = rc->s07; + unum32 s08 = rc->s08; + unum32 s09 = rc->s09; + unum32 r1 = rc->r1; + unum32 r2 = rc->r2; + unum32 u0, u1, u2, u3, u4; + unum32 v0, v1, v2, v3; +#ifdef SOSEMANUK_SPEED + unum32 speed_acc = 0; +#endif + +#ifdef SOSEMANUK_SPEED + while (counter -- > 0) { +#endif + + STEP(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, v0, u0); + STEP(01, 02, 03, 04, 05, 06, 07, 08, 09, 00, v1, u1); + STEP(02, 03, 04, 05, 06, 07, 08, 09, 00, 01, v2, u2); + STEP(03, 04, 05, 06, 07, 08, 09, 00, 01, 02, v3, u3); + SRD(S2, 2, 3, 1, 4, 0); + STEP(04, 05, 06, 07, 08, 09, 00, 01, 02, 03, v0, u0); + STEP(05, 06, 07, 08, 09, 00, 01, 02, 03, 04, v1, u1); + STEP(06, 07, 08, 09, 00, 01, 02, 03, 04, 05, v2, u2); + STEP(07, 08, 09, 00, 01, 02, 03, 04, 05, 06, v3, u3); + SRD(S2, 2, 3, 1, 4, 16); + STEP(08, 09, 00, 01, 02, 03, 04, 05, 06, 07, v0, u0); + STEP(09, 00, 01, 02, 03, 04, 05, 06, 07, 08, v1, u1); + STEP(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, v2, u2); + STEP(01, 02, 03, 04, 05, 06, 07, 08, 09, 00, v3, u3); + SRD(S2, 2, 3, 1, 4, 32); + STEP(02, 03, 04, 05, 06, 07, 08, 09, 00, 01, v0, u0); + STEP(03, 04, 05, 06, 07, 08, 09, 00, 01, 02, v1, u1); + STEP(04, 05, 06, 07, 08, 09, 00, 01, 02, 03, v2, u2); + STEP(05, 06, 07, 08, 09, 00, 01, 02, 03, 04, v3, u3); + SRD(S2, 2, 3, 1, 4, 48); + STEP(06, 07, 08, 09, 00, 01, 02, 03, 04, 05, v0, u0); + STEP(07, 08, 09, 00, 01, 02, 03, 04, 05, 06, v1, u1); + STEP(08, 09, 00, 01, 02, 03, 04, 05, 06, 07, v2, u2); + STEP(09, 00, 01, 02, 03, 04, 05, 06, 07, 08, v3, u3); + SRD(S2, 2, 3, 1, 4, 64); + +#ifdef SOSEMANUK_SPEED + } +#endif + + rc->s00 = s00; + rc->s01 = s01; + rc->s02 = s02; + rc->s03 = s03; + rc->s04 = s04; + rc->s05 = s05; + rc->s06 = s06; + rc->s07 = s07; + rc->s08 = s08; + rc->s09 = s09; + rc->r1 = r1; + rc->r2 = r2; + +#ifdef SOSEMANUK_SPEED + return T32(speed_acc); +#endif +} + +/* + * Combine buffers in1[] and in2[] by XOR, result in out[]. The length + * is "data_len" (in bytes). Partial overlap of out[] with either in1[] + * or in2[] is not allowed. Total overlap (out == in1 and/or out == in2) + * is allowed. + */ +static INLINE void +xorbuf(const unsigned char *in1, const unsigned char *in2, + unsigned char *out, size_t data_len) +{ + while (data_len -- > 0) + *out ++ = *in1 ++ ^ *in2 ++; +} + +/* ======================================================================== */ +/* + * External API. + */ + +#if defined SOSEMANUK_ECRYPT + +/* see ecrypt-sync.h */ +void +ECRYPT_process_bytes(int action, ECRYPT_ctx *ctx, + const u8 *input, u8 *output, u32 msglen) +{ + (void)action; + + while (msglen > 0) { + unsigned char tbuf[ECRYPT_BLOCKLENGTH]; + size_t len; + + sosemanuk_internal(ctx, tbuf); + len = sizeof tbuf; + if (len > msglen) + len = msglen; + xorbuf(input, tbuf, output, len); + input += len; + output += len; + msglen -= len; + } +} + +/* see ecrypt-sync.h */ +void +ECRYPT_keystream_bytes(ECRYPT_ctx *ctx, u8 *keystream, u32 length) +{ + while (length > 0) { + if (length >= ECRYPT_BLOCKLENGTH) { + sosemanuk_internal(ctx, keystream); + keystream += ECRYPT_BLOCKLENGTH; + length -= ECRYPT_BLOCKLENGTH; + } else { + unsigned char tbuf[ECRYPT_BLOCKLENGTH]; + + sosemanuk_internal(ctx, tbuf); + memcpy(keystream, tbuf, length); + return; + } + } +} + +/* see ecrypt-sync.h */ +void +ECRYPT_process_blocks(int action, ECRYPT_ctx *ctx, + const u8 *input, u8 *output, u32 blocks) +{ + (void)action; + + while (blocks -- > 0) { + unsigned char tbuf[ECRYPT_BLOCKLENGTH]; + + sosemanuk_internal(ctx, tbuf); + xorbuf(input, tbuf, output, ECRYPT_BLOCKLENGTH); + input += ECRYPT_BLOCKLENGTH; + output += ECRYPT_BLOCKLENGTH; + } +} + +/* see ecrypt-sync.h */ +void +ECRYPT_keystream_blocks(ECRYPT_ctx *ctx, u8 *keystream, u32 blocks) +{ + while (blocks -- > 0) { + sosemanuk_internal(ctx, keystream); + keystream += ECRYPT_BLOCKLENGTH; + } +} + +#elif !defined SOSEMANUK_SPEED + +/* see sosemanuk.h */ +void +sosemanuk_prng(sosemanuk_run_context *rc, unsigned char *out, size_t out_len) +{ + if (rc->ptr < (sizeof rc->buf)) { + size_t rlen = (sizeof rc->buf) - rc->ptr; + + if (rlen > out_len) + rlen = out_len; + memcpy(out, rc->buf + rc->ptr, rlen); + out += rlen; + out_len -= rlen; + rc->ptr += rlen; + } + while (out_len > 0) { + sosemanuk_internal(rc); + if (out_len >= sizeof rc->buf) { + memcpy(out, rc->buf, sizeof rc->buf); + out += sizeof rc->buf; + out_len -= sizeof rc->buf; + } else { + memcpy(out, rc->buf, out_len); + rc->ptr = out_len; + out_len = 0; + } + } +} + +/* see sosemanuk.h */ +void +sosemanuk_encrypt(sosemanuk_run_context *rc, + unsigned char *in, unsigned char *out, size_t data_len) +{ + if (rc->ptr < (sizeof rc->buf)) { + size_t rlen = (sizeof rc->buf) - rc->ptr; + + if (rlen > data_len) + rlen = data_len; + xorbuf(rc->buf + rc->ptr, in, out, rlen); + in += rlen; + out += rlen; + data_len -= rlen; + rc->ptr += rlen; + } + while (data_len > 0) { + sosemanuk_internal(rc); + if (data_len >= sizeof rc->buf) { + xorbuf(rc->buf, in, out, sizeof rc->buf); + in += sizeof rc->buf; + out += sizeof rc->buf; + data_len -= sizeof rc->buf; + } else { + xorbuf(rc->buf, in, out, data_len); + rc->ptr = data_len; + data_len = 0; + } + } +} + +#endif + +#if defined SOSEMANUK_VECTOR + +/* ======================================================================== */ +/* + * Test code. This code is used to generate test vectors, with the + * SOSEMANUK_VECTOR macro defined. + */ + +/* + * Generate 160 bytes of stream with the provided key and IV. + */ +static void +maketest(int tvn, unsigned char *key, size_t key_len, + unsigned char *iv, size_t iv_len) +{ +#ifdef SOSEMANUK_ECRYPT + ECRYPT_ctx ctx; +#else + sosemanuk_key_context kc; + sosemanuk_run_context rc; +#endif + unsigned char tmp[160]; + unsigned u; + + printf("=====================================================\n"); + printf("Detailed test vector %d:\n", tvn); + +#ifdef SOSEMANUK_ECRYPT + ECRYPT_init(); + ECRYPT_keysetup(&ctx, key, key_len * 8, iv_len * 8); + ECRYPT_ivsetup(&ctx, iv); +#if defined SOSEMANUK_TEST_ENCRYPT_BYTES + memset(tmp, 0, sizeof tmp); + ECRYPT_encrypt_bytes(&ctx, tmp, tmp, sizeof tmp); +#elif defined SOSEMANUK_TEST_DECRYPT_BYTES + memset(tmp, 0, sizeof tmp); + ECRYPT_decrypt_bytes(&ctx, tmp, tmp, sizeof tmp); +#elif defined SOSEMANUK_TEST_ENCRYPT_BLOCKS + memset(tmp, 0, sizeof tmp); + ECRYPT_encrypt_blocks(&ctx, tmp, tmp, 2); +#elif defined SOSEMANUK_TEST_DECRYPT_BLOCKS + memset(tmp, 0, sizeof tmp); + ECRYPT_decrypt_blocks(&ctx, tmp, tmp, 2); +#elif defined SOSEMANUK_TEST_KEYSTREAM_BLOCKS + ECRYPT_keystream_blocks(&ctx, tmp, 2); +#else + ECRYPT_keystream_bytes(&ctx, tmp, sizeof tmp); +#endif +#else + sosemanuk_schedule(&kc, key, key_len); + sosemanuk_init(&rc, &kc, iv, iv_len); + sosemanuk_prng(&rc, tmp, sizeof tmp); +#endif + + printf("\n"); + printf("Total output:"); + for (u = 0; u < sizeof tmp; u ++) { + if ((u & 0x0F) == 0) + printf("\n"); + printf(" %02X", (unsigned)tmp[u]); + } + printf("\n\n"); +} + +int +main(void) +{ + static unsigned char key1[] = { 0xA7, 0xC0, 0x83, 0xFE, 0xB7 }; + static unsigned char iv1[] = { + 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, + 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF + }; + + static unsigned char key2[] = { + 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, + 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF + }; + static unsigned char iv2[] = { + 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF, + 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 + }; + + maketest(1, key1, sizeof key1, iv1, sizeof iv1); + maketest(2, key2, sizeof key2, iv2, sizeof iv2); + return 0; +} + +#elif defined SOSEMANUK_SPEED + +/* ======================================================================== */ +/* + * Test code. This code is used to measure implementation speed. The + * provided argument is the size of benched output stream, in megabytes. + */ + +static void +usage(void) +{ + fprintf(stderr, "missing argument: output length (in megabytes)\n"); + exit(EXIT_FAILURE); +} + +int +main(int argc, char *argv[]) +{ + static unsigned char key[] = { 0xA7, 0xC0, 0x83, 0xFE, 0xB7 }; + static unsigned char iv[] = { + 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, + 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF + }; + sosemanuk_key_context kc; + sosemanuk_run_context rc; + unsigned long speed_counter; + clock_t orig, end; + double nw, ts; + unum32 sum; + + if (argc < 2) + usage(); + speed_counter = strtoul(argv[1], 0, 0); + speed_counter = (speed_counter * 65536UL) / 5; + if (speed_counter == 0) + usage(); + nw = (double)speed_counter * 20.0; + printf("number of 32-bit words: %.0f\n", nw); + sosemanuk_schedule(&kc, key, sizeof key); + sosemanuk_init(&rc, &kc, iv, sizeof iv); + sosemanuk_internal(&rc, 16); + orig = clock(); + sum = sosemanuk_internal(&rc, speed_counter); + end = clock(); + ts = (double)end / CLOCKS_PER_SEC - (double)orig / CLOCKS_PER_SEC; + if (ts <= 1.0) { + printf("too fast: no meaningful result\n"); + } else { + printf("elapsed time: %.4f seconds\n", ts); + printf("32-bit words per second: %.0f\n", nw / ts); + } + printf("sum = %08lX\n", (unsigned long)sum); + return 0; +} + +#endif diff --git a/sosemanuk.h b/sosemanuk.h new file mode 100644 index 0000000..3cee5a8 --- /dev/null +++ b/sosemanuk.h @@ -0,0 +1,176 @@ +/* + * SOSEMANUK reference API. + * + * This file documents the reference implementation API. If the + * macro SOSEMANUK_ECRYPT is defined, the API follows the ECRYPT + * conventions (types, function names...) and uses the ECRYPT files; + * otherwise, a simpler API is used. + * + * (c) 2005 X-CRYPT project. This software is provided 'as-is', without + * any express or implied warranty. In no event will the authors be held + * liable for any damages arising from the use of this software. + * + * Permission is granted to anyone to use this software for any purpose, + * including commercial applications, and to alter it and redistribute it + * freely, subject to no restriction. + * + * Technical remarks and questions can be addressed to + * + */ + +#ifndef SOSEMANUK_H__ +#define SOSEMANUK_H__ + +/* + * This macro enables the ECRYPT API, and disables the local API. + * It is defined by default, for ECRYPT processing. + */ +//#define SOSEMANUK_ECRYPT + +#ifdef SOSEMANUK_ECRYPT + +#include "ecrypt-sync.h" + +#else + +#include + +/* + * Input/Output is defined in terms of octets, but C provides only + * the C notion of "byte". We require that C bytes are actually octets. + */ +#if CHAR_BIT != 8 +#error We need 8-bit bytes +#endif + +/* + * We want an unsigned integer type with at least (and possibly exactly) + * 32 bits. Such a type implements arithmetics modulo 2^n for a value + * n greater than or equal to 32. The type is named "unum32". + * + * Note: we try to use C99 features such as . This may prove + * problematic on architectures which claim C99 conformance, but fail + * to actually conform. If necessary, define the macro BROKEN_C99 to + * fall back to C90, whatever the environment claims: +#define BROKEN_C99 1 + */ + +#if !defined BROKEN_C99 && defined __STDC__ && __STDC_VERSION__ >= 199901L + +/* + * C99 implementation. We use "uint_least32_t" which has the required + * semantics. + */ +#include +typedef uint_least32_t unum32; + +#else + +/* + * Pre-C99 implementation. "unsigned long" is guaranteed to be wide + * enough, but we want to use "unsigned int" if possible (especially + * for 64-bit architectures). + */ +#if UINT_MAX >= 0xFFFFFFFF +typedef unsigned int unum32; +#else +typedef unsigned long unum32; +#endif + +#endif + +/* + * We want (and sometimes need) to perform explicit truncations to 32 bits. + */ +#define ONE32 ((unum32)0xFFFFFFFF) +#define T32(x) ((x) & ONE32) + +/* + * Some of our functions will be tagged as "inline" to help the compiler + * optimize things. We use "inline" only if the compiler is advanced + * enough to understand it; C99 compilers, and pre-C99 versions of gcc, + * understand enough "inline" for our purposes. + */ +#if (!defined BROKEN_C99 && defined __STDC__ && __STDC_VERSION__ >= 199901L) \ + || defined __GNUC__ +#define INLINE inline +#else +#define INLINE +#endif + +/* + * API description: + * + * The SOSEMANUK algorithm works with a secret key and an initial value (IV). + * Two context structures are used: + * + * -- "sosemanuk_key_context" holds the processed secret key. The contents + * of this structure depends only on the key, not the IV. + * + * -- "sosemanuk_run_context" holds the current cipher internal state. This + * structure is initialized using the "sosemanuk_key_context" structure, and + * the IV; it is updated each time some output is produced. + * + * Both structures may be allocated as local variables. There is no + * other external allocation (using malloc() or any similar function). + * There is no global state; hence, this code is thread-safe and + * reentrant. + */ + +typedef struct { + /* + * Sub-keys for Serpent24. + */ + unum32 sk[100]; +} sosemanuk_key_context; + +typedef struct { + /* + * Internal cipher state. + */ + unum32 s00, s01, s02, s03, s04, s05, s06, s07, s08, s09; + unum32 r1, r2; + + /* + * Buffering: the stream cipher produces output data by + * blocks of 640 bits. buf[] contains such a block, and + * "ptr" is the index of the next output byte. + */ + unsigned char buf[80]; + unsigned ptr; +} sosemanuk_run_context; + +/* + * Key schedule: initialize the key context structure with the provided + * secret key. The secret key is an array of 1 to 32 bytes. + */ +void sosemanuk_schedule(sosemanuk_key_context *kc, + unsigned char *key, size_t key_len); + +/* + * Cipher initialization: the cipher internal state is initialized, using + * the provided key context and IV. The IV length is up to 16 bytes. If + * "iv_len" is 0 (no IV), then the "iv" parameter can be NULL. + */ +void sosemanuk_init(sosemanuk_run_context *rc, + sosemanuk_key_context *kc, unsigned char *iv, size_t iv_len); + +/* + * Cipher operation, as a PRNG: the provided output buffer is filled with + * pseudo-random bytes as output from the stream cipher. + */ +void sosemanuk_prng(sosemanuk_run_context *rc, + unsigned char *out, size_t out_len); + +/* + * Cipher operation, as a stream cipher: data is read from the "in" + * buffer, combined by XOR with the stream, and the result is written + * in the "out" buffer. "in" and "out" must be either equal, or + * reference distinct buffers (no partial overlap is allowed). + */ +void sosemanuk_encrypt(sosemanuk_run_context *rc, + unsigned char *in, unsigned char *out, size_t data_len); + +#endif + +#endif -- cgit 1.4.1