about summary refs log tree commit diff
diff options
context:
space:
mode:
authorChristian Neukirchen <chneukirchen@gmail.com>2013-03-16 01:16:30 +0100
committerChristian Neukirchen <chneukirchen@gmail.com>2013-03-16 01:18:51 +0100
commitd60ebea1fac988fbe7fe9b9d059f37e46cbbd018 (patch)
tree2b74d88943863214451f84dd1403ff137044f3fe
downloadrdd-d60ebea1fac988fbe7fe9b9d059f37e46cbbd018.tar.gz
rdd-d60ebea1fac988fbe7fe9b9d059f37e46cbbd018.tar.xz
rdd-d60ebea1fac988fbe7fe9b9d059f37e46cbbd018.zip
initial import
-rw-r--r--Makefile9
-rw-r--r--Makefile.musl5
-rw-r--r--README.md46
-rw-r--r--rdd.c56
-rw-r--r--sosemanuk.c1283
-rw-r--r--sosemanuk.h176
6 files changed, 1575 insertions, 0 deletions
diff --git a/Makefile b/Makefile
new file mode 100644
index 0000000..43b5e2f
--- /dev/null
+++ b/Makefile
@@ -0,0 +1,9 @@
+CFLAGS=-O3 -Wall
+all: rdd
+
+rdd: sosemanuk.o rdd.o
+
+rdd.c: sosemanuk.h
+
+clean:
+	rm -f rdd rdd.o sosemanuk.o
diff --git a/Makefile.musl b/Makefile.musl
new file mode 100644
index 0000000..6304aee
--- /dev/null
+++ b/Makefile.musl
@@ -0,0 +1,5 @@
+include Makefile
+
+CC=musl-gcc
+CFLAGS+=-fno-asynchronous-unwind-tables -fno-stack-protector
+LDFLAGS=-static -Wl,-z -Wl,noexecstack
diff --git a/README.md b/README.md
new file mode 100644
index 0000000..75c1c92
--- /dev/null
+++ b/README.md
@@ -0,0 +1,46 @@
+# rdd - random data dump
+
+rdd is a high-speed, cryptographically safe random data generator
+using the reference implementation of the eSTREAM Profile 1 SOSEMANUK
+stream cipher.
+
+It is designed to fill crypto devices with random data.
+
+This implementation passed dieharder 3.31.1 "-a" and
+PractRand/RNG_test 0.90 (tested up to 512 GB).
+
+## Usage
+
+	rdd [-i SOURCE] [-r REKEYMB] [-v]
+	   -i SOURCE     read key and IVs from SOURCE (/dev/urandom)
+	   -r REKEYMB    reload the IV every REKEYMB megabytes of output (4)
+           -v            print a . to stderr on every rekey
+
+Random binary data is outputted to stdout.  Better don't put a
+terminal there.
+rdd reads 32 bytes for the initial key and 16 bytes for every rekeying
+from the random source.  Setting REKEYMB to -1 never rekeys.
+
+## Copyright
+
+### rdd.c:
+
+To the extent possible under law, Christian Neukirchen has waived
+all copyright and related or neighboring rights to this work.
+
+http://creativecommons.org/publicdomain/zero/1.0/
+
+### sosemanuk.[ch]:
+
+This program includes code taken from
+http://www.ecrypt.eu.org/stream/p3ciphers/sosemanuk/sosemanuk_p3source.zip
+as of 13mar2013.  An error message which can never occur in rdd usage
+has been #ifdef'ed out.
+
+(c) 2005 X-CRYPT project. This software is provided 'as-is', without
+any express or implied warranty. In no event will the authors be held
+liable for any damages arising from the use of this software.
+
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it
+freely, subject to no restriction.
diff --git a/rdd.c b/rdd.c
new file mode 100644
index 0000000..321ad89
--- /dev/null
+++ b/rdd.c
@@ -0,0 +1,56 @@
+/* rdd - random data dump */
+
+#include <errno.h>
+#include <fcntl.h>
+#include <stdlib.h>
+#include <unistd.h>
+
+#include "sosemanuk.h"
+
+#define fail(i,s) write(2, s, (sizeof s)-1), exit(i);
+
+int
+main(int argc, char *argv[])
+{
+  unsigned char key[32], iv[16], buf[120*512];
+  sosemanuk_key_context kc;
+  sosemanuk_run_context rc;
+
+  int fd, c, i, v=0, r=4;
+  char *src = "/dev/urandom";
+  
+  while ((c = getopt(argc, argv, "i:r:v")) != -1)
+    switch(c) {
+    case 'i': src = optarg; break;
+    case 'r': r = atoi(optarg); break;
+    case 'v': v = 1; break;
+    default:
+    usage:
+      fail(1, "Usage: rdd [-i RANDOMSOURCE] [-r REKEYMB] [-v]\n");
+    }
+
+  if (argc > optind)
+    goto usage;
+
+  if ((fd = open(src, O_RDONLY)) < 0)
+    fail(2, "failed to open random source\n");
+  
+  if (read(fd, key, sizeof key) != sizeof key)
+    fail(3, "failed to read key from random source\n");
+  sosemanuk_schedule(&kc, key, sizeof key);
+
+  while (1) {
+    if (read(fd, iv, sizeof iv) != sizeof iv)
+      fail(3, "failed to read iv from random source\n");
+    sosemanuk_init(&rc, &kc, iv, sizeof iv);
+    if (v)
+      write(2, ".", 1);
+
+    for (i = 0; r<0 || i<r*1024*1024; i+=sizeof buf) {
+      sosemanuk_prng(&rc, buf, sizeof buf);
+      while (write(1, buf, sizeof buf) != sizeof buf)
+        if (errno && errno != EINTR)
+          fail(4, "write error\n");
+    }
+  }  
+}
diff --git a/sosemanuk.c b/sosemanuk.c
new file mode 100644
index 0000000..033ea53
--- /dev/null
+++ b/sosemanuk.c
@@ -0,0 +1,1283 @@
+/*
+ * SOSEMANUK reference implementation.
+ *
+ * This code is supposed to run on any conforming C implementation (C90
+ * or later). When compiled with the SOSEMANUK_VECTOR macro defined, this
+ * is a stand-alone program which outputs detailed test vectors. When
+ * compiled with the SOSEMANUK_SPEED macro defined, this is a stand-alone
+ * program which performs an implementation speed measure.
+ *
+ * (c) 2005 X-CRYPT project. This software is provided 'as-is', without
+ * any express or implied warranty. In no event will the authors be held
+ * liable for any damages arising from the use of this software.
+ *
+ * Permission is granted to anyone to use this software for any purpose,
+ * including commercial applications, and to alter it and redistribute it
+ * freely, subject to no restriction.
+ *
+ * Technical remarks and questions can be addressed to
+ * <thomas.pornin@cryptolog.com>
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#ifdef SOSEMANUK_SPEED
+#include <time.h>
+#endif
+
+#include "sosemanuk.h"
+
+/* ======================================================================== */
+
+#ifdef SOSEMANUK_ECRYPT
+
+/*
+ * No local speed testing when using the ECRYPT mode.
+ */
+#undef SOSEMANUK_SPEED
+
+/*
+ * If we are using the ECRYPT API, then we rely on the ECRYPT portability
+ * macros and types.
+ */
+
+#define unum32    u32
+#define T32(x)    U32V(x)
+
+#define decode32le(data)       U8TO32_LITTLE(data)
+#define encode32le(dst, val)   do { \
+		u8 *encode_dst = (dst); \
+		u32 encode_val = (val); \
+		U32TO8_LITTLE(encode_dst, encode_val); \
+	} while (0)
+
+#define ROTL(x, n)    ROTL32(x, n)
+#define INLINE
+
+#else
+
+/*
+ * 32-bit data decoding, little endian.
+ */
+static INLINE unum32
+decode32le(unsigned char *data)
+{
+#ifdef __i386
+	/*
+	 * On i386, we prefer accessing data directly. Unaligned accesses
+	 * imply only a one-cycle penalty; even with that penalty, this
+	 * method is quite faster than the generic one. Note that i486
+	 * and later may be set in a mode where unaligned access trigger
+	 * exceptions; but such a mode is not compatible with usual ABI
+	 * (which require only 4-byte alignment for "double" and "long
+	 * double", hence operating systems do not set that "alignment
+	 * check" flag.
+	 *
+	 * If this optimized access proves to be a problem, replace the
+	 * test above by "#if 0".
+	 */
+	return *(unum32 *)data;
+#else
+	return (unum32)data[0]
+		| ((unum32)data[1] << 8)
+		| ((unum32)data[2] << 16)
+		| ((unum32)data[3] << 24);
+#endif
+}
+
+/*
+ * 32-bit data encoding, little-endian.
+ */
+static INLINE void
+encode32le(unsigned char *dst, unum32 val)
+{
+#ifdef __i386__
+	/*
+	 * Optimized version for i386. See comments in decode32le().
+	 */
+	*(unum32 *)dst = val;
+#else
+	dst[0] = val & 0xFF;
+	dst[1] = (val >> 8) & 0xFF;
+	dst[2] = (val >> 16) & 0xFF;
+	dst[3] = (val >> 24) & 0xFF;
+#endif
+}
+
+/*
+ * Left-rotation by n bits (0 < n < 32).
+ */
+#define ROTL(x, n)    (T32(((x) << (n)) | T32((x) >> (32 - (n)))))
+
+#endif
+
+/* ======================================================================== */
+
+/*
+ * Serpent S-boxes, implemented in bitslice mode. These circuits have
+ * been published by Dag Arne Osvik ("Speeding up Serpent", published in
+ * the 3rd AES Candidate Conference) and work on five 32-bit registers:
+ * the four inputs, and a fifth scratch register. There are meant to be
+ * quite fast on Pentium-class processors. These are not the fastest
+ * published, but they are "fast enough" and they are unencumbered as
+ * far as intellectual property is concerned (note: these are rewritten
+ * from the article itself, and hence are not covered by the GPL on
+ * Dag's code, which was not used here).
+ *
+ * The output bits are permuted. Here is the correspondance:
+ *   S0:  1420
+ *   S1:  2031
+ *   S2:  2314
+ *   S3:  1234
+ *   S4:  1403
+ *   S5:  1302
+ *   S6:  0142
+ *   S7:  4310
+ * (for instance, the output of S0 is in "r1, r4, r2, r0").
+ */
+
+#define S0(r0, r1, r2, r3, r4)   do { \
+		r3 ^= r0;  r4  = r1; \
+		r1 &= r3;  r4 ^= r2; \
+		r1 ^= r0;  r0 |= r3; \
+		r0 ^= r4;  r4 ^= r3; \
+		r3 ^= r2;  r2 |= r1; \
+		r2 ^= r4;  r4 = ~r4; \
+		r4 |= r1;  r1 ^= r3; \
+		r1 ^= r4;  r3 |= r0; \
+		r1 ^= r3;  r4 ^= r3; \
+	} while (0)
+
+#define S1(r0, r1, r2, r3, r4)   do { \
+		r0 = ~r0;  r2 = ~r2; \
+		r4  = r0;  r0 &= r1; \
+		r2 ^= r0;  r0 |= r3; \
+		r3 ^= r2;  r1 ^= r0; \
+		r0 ^= r4;  r4 |= r1; \
+		r1 ^= r3;  r2 |= r0; \
+		r2 &= r4;  r0 ^= r1; \
+		r1 &= r2; \
+		r1 ^= r0;  r0 &= r2; \
+		r0 ^= r4; \
+	} while (0)
+
+#define S2(r0, r1, r2, r3, r4)   do { \
+		r4  = r0;  r0 &= r2; \
+		r0 ^= r3;  r2 ^= r1; \
+		r2 ^= r0;  r3 |= r4; \
+		r3 ^= r1;  r4 ^= r2; \
+		r1  = r3;  r3 |= r4; \
+		r3 ^= r0;  r0 &= r1; \
+		r4 ^= r0;  r1 ^= r3; \
+		r1 ^= r4;  r4 = ~r4; \
+	} while (0)
+
+#define S3(r0, r1, r2, r3, r4)   do { \
+		r4  = r0;  r0 |= r3; \
+		r3 ^= r1;  r1 &= r4; \
+		r4 ^= r2;  r2 ^= r3; \
+		r3 &= r0;  r4 |= r1; \
+		r3 ^= r4;  r0 ^= r1; \
+		r4 &= r0;  r1 ^= r3; \
+		r4 ^= r2;  r1 |= r0; \
+		r1 ^= r2;  r0 ^= r3; \
+		r2  = r1;  r1 |= r3; \
+		r1 ^= r0; \
+	} while (0)
+
+#define S4(r0, r1, r2, r3, r4)   do { \
+		r1 ^= r3;  r3 = ~r3; \
+		r2 ^= r3;  r3 ^= r0; \
+		r4  = r1;  r1 &= r3; \
+		r1 ^= r2;  r4 ^= r3; \
+		r0 ^= r4;  r2 &= r4; \
+		r2 ^= r0;  r0 &= r1; \
+		r3 ^= r0;  r4 |= r1; \
+		r4 ^= r0;  r0 |= r3; \
+		r0 ^= r2;  r2 &= r3; \
+		r0 = ~r0;  r4 ^= r2; \
+	} while (0)
+
+#define S5(r0, r1, r2, r3, r4)   do { \
+		r0 ^= r1;  r1 ^= r3; \
+		r3 = ~r3;  r4  = r1; \
+		r1 &= r0;  r2 ^= r3; \
+		r1 ^= r2;  r2 |= r4; \
+		r4 ^= r3;  r3 &= r1; \
+		r3 ^= r0;  r4 ^= r1; \
+		r4 ^= r2;  r2 ^= r0; \
+		r0 &= r3;  r2 = ~r2; \
+		r0 ^= r4;  r4 |= r3; \
+		r2 ^= r4; \
+	} while (0)
+
+#define S6(r0, r1, r2, r3, r4)   do { \
+		r2 = ~r2;  r4  = r3; \
+		r3 &= r0;  r0 ^= r4; \
+		r3 ^= r2;  r2 |= r4; \
+		r1 ^= r3;  r2 ^= r0; \
+		r0 |= r1;  r2 ^= r1; \
+		r4 ^= r0;  r0 |= r3; \
+		r0 ^= r2;  r4 ^= r3; \
+		r4 ^= r0;  r3 = ~r3; \
+		r2 &= r4; \
+		r2 ^= r3; \
+	} while (0)
+
+#define S7(r0, r1, r2, r3, r4)   do { \
+		r4  = r1;  r1 |= r2; \
+		r1 ^= r3;  r4 ^= r2; \
+		r2 ^= r1;  r3 |= r4; \
+		r3 &= r0;  r4 ^= r2; \
+		r3 ^= r1;  r1 |= r4; \
+		r1 ^= r0;  r0 |= r4; \
+		r0 ^= r2;  r1 ^= r4; \
+		r2 ^= r1;  r1 &= r0; \
+		r1 ^= r4;  r2 = ~r2; \
+		r2 |= r0; \
+		r4 ^= r2; \
+	} while (0)
+
+/*
+ * The Serpent linear transform.
+ */
+#define SERPENT_LT(x0, x1, x2, x3)  do { \
+		x0 = ROTL(x0, 13); \
+		x2 = ROTL(x2, 3); \
+		x1 = x1 ^ x0 ^ x2; \
+		x3 = x3 ^ x2 ^ T32(x0 << 3); \
+		x1 = ROTL(x1, 1); \
+		x3 = ROTL(x3, 7); \
+		x0 = x0 ^ x1 ^ x3; \
+		x2 = x2 ^ x3 ^ T32(x1 << 7); \
+		x0 = ROTL(x0, 5); \
+		x2 = ROTL(x2, 22); \
+	} while (0)
+
+/* ======================================================================== */
+
+#ifdef SOSEMANUK_ECRYPT
+void
+ECRYPT_init(void)
+{
+	return;
+}
+#endif
+
+#ifdef SOSEMANUK_ECRYPT
+void
+ECRYPT_keysetup(ECRYPT_ctx *kc, const u8 *key, u32 keysize, u32 ivsize)
+#else
+/* see sosemanuk.h */
+void
+sosemanuk_schedule(sosemanuk_key_context *kc,
+	unsigned char *key, size_t key_len)
+#endif
+{
+	/*
+	 * This key schedule is actually a truncated Serpent key schedule.
+	 * The key-derived words (w_i) are computed within the eight
+	 * local variables w0 to w7, which are reused again and again.
+	 */
+
+#define SKS(S, o0, o1, o2, o3, d0, d1, d2, d3)   do { \
+		unum32 r0, r1, r2, r3, r4; \
+		r0 = w ## o0; \
+		r1 = w ## o1; \
+		r2 = w ## o2; \
+		r3 = w ## o3; \
+		S(r0, r1, r2, r3, r4); \
+		kc->sk[i ++] = r ## d0; \
+		kc->sk[i ++] = r ## d1; \
+		kc->sk[i ++] = r ## d2; \
+		kc->sk[i ++] = r ## d3; \
+	} while (0)
+
+#define SKS0    SKS(S0, 4, 5, 6, 7, 1, 4, 2, 0)
+#define SKS1    SKS(S1, 0, 1, 2, 3, 2, 0, 3, 1)
+#define SKS2    SKS(S2, 4, 5, 6, 7, 2, 3, 1, 4)
+#define SKS3    SKS(S3, 0, 1, 2, 3, 1, 2, 3, 4)
+#define SKS4    SKS(S4, 4, 5, 6, 7, 1, 4, 0, 3)
+#define SKS5    SKS(S5, 0, 1, 2, 3, 1, 3, 0, 2)
+#define SKS6    SKS(S6, 4, 5, 6, 7, 0, 1, 4, 2)
+#define SKS7    SKS(S7, 0, 1, 2, 3, 4, 3, 1, 0)
+
+#define WUP(wi, wi5, wi3, wi1, cc)   do { \
+		unum32 tt = (wi) ^ (wi5) ^ (wi3) \
+			^ (wi1) ^ (0x9E3779B9 ^ (unum32)(cc)); \
+		(wi) = ROTL(tt, 11); \
+	} while (0)
+
+#define WUP0(cc)   do { \
+		WUP(w0, w3, w5, w7, cc); \
+		WUP(w1, w4, w6, w0, cc + 1); \
+		WUP(w2, w5, w7, w1, cc + 2); \
+		WUP(w3, w6, w0, w2, cc + 3); \
+	} while (0)
+
+#define WUP1(cc)   do { \
+		WUP(w4, w7, w1, w3, cc); \
+		WUP(w5, w0, w2, w4, cc + 1); \
+		WUP(w6, w1, w3, w5, cc + 2); \
+		WUP(w7, w2, w4, w6, cc + 3); \
+	} while (0)
+
+	unsigned char wbuf[32];
+	register unum32 w0, w1, w2, w3, w4, w5, w6, w7;
+	int i = 0;
+#ifdef SOSEMANUK_ECRYPT
+	size_t key_len = keysize / 8;
+
+	kc->ivlen = ivsize / 8;
+#endif
+
+	/*
+	 * The key is copied into the wbuf[] buffer and padded to 256 bits
+	 * as described in the Serpent specification.
+	 */
+#ifdef WASTE_SPACE_ON_STDIO
+	if (key_len == 0 || key_len > 32) {
+		fprintf(stderr, "invalid key size: %lu\n",
+			(unsigned long)key_len);
+		exit(EXIT_FAILURE);
+	}
+#endif
+	memcpy(wbuf, key, key_len);
+	if (key_len < 32) {
+		wbuf[key_len] = 0x01;
+		if (key_len < 31)
+			memset(wbuf + key_len + 1, 0, 31 - key_len);
+	}
+
+#ifdef SOSEMANUK_VECTOR
+	{
+		size_t u;
+
+		printf("key = ");
+		for (u = 0; u < key_len; u ++)
+			printf("%02X", key[u]);
+		printf("\n");
+	}
+#endif
+
+	w0 = decode32le(wbuf);
+	w1 = decode32le(wbuf + 4);
+	w2 = decode32le(wbuf + 8);
+	w3 = decode32le(wbuf + 12);
+	w4 = decode32le(wbuf + 16);
+	w5 = decode32le(wbuf + 20);
+	w6 = decode32le(wbuf + 24);
+	w7 = decode32le(wbuf + 28);
+
+#ifdef SOSEMANUK_VECTOR
+	printf("  -> %08lX %08lX %08lX %08lX %08lX %08lX %08lX %08lX\n",
+		(unsigned long)w7, (unsigned long)w6,
+		(unsigned long)w5, (unsigned long)w4,
+		(unsigned long)w3, (unsigned long)w2,
+		(unsigned long)w1, (unsigned long)w0);
+#endif
+
+	WUP0(0);   SKS3;
+	WUP1(4);   SKS2;
+	WUP0(8);   SKS1;
+	WUP1(12);  SKS0;
+	WUP0(16);  SKS7;
+	WUP1(20);  SKS6;
+	WUP0(24);  SKS5;
+	WUP1(28);  SKS4;
+	WUP0(32);  SKS3;
+	WUP1(36);  SKS2;
+	WUP0(40);  SKS1;
+	WUP1(44);  SKS0;
+	WUP0(48);  SKS7;
+	WUP1(52);  SKS6;
+	WUP0(56);  SKS5;
+	WUP1(60);  SKS4;
+	WUP0(64);  SKS3;
+	WUP1(68);  SKS2;
+	WUP0(72);  SKS1;
+	WUP1(76);  SKS0;
+	WUP0(80);  SKS7;
+	WUP1(84);  SKS6;
+	WUP0(88);  SKS5;
+	WUP1(92);  SKS4;
+	WUP0(96);  SKS3;
+
+#ifdef SOSEMANUK_VECTOR
+	{
+		unsigned u;
+
+		for (u = 0; u < 100; u += 4) {
+			printf("Serpent24 subkey %2u:"
+				" %08lX %08lX %08lX %08lX\n", u / 4,
+				(unsigned long)kc->sk[u + 3],
+				(unsigned long)kc->sk[u + 2],
+				(unsigned long)kc->sk[u + 1],
+				(unsigned long)kc->sk[u + 0]);
+		}
+	}
+#endif
+
+#undef SKS
+#undef SKS0
+#undef SKS1
+#undef SKS2
+#undef SKS3
+#undef SKS4
+#undef SKS5
+#undef SKS6
+#undef SKS7
+#undef WUP
+#undef WUP0
+#undef WUP1
+}
+
+#ifdef SOSEMANUK_ECRYPT
+void
+ECRYPT_ivsetup(ECRYPT_ctx *ctx, const u8 *iv)
+#else
+/* see sosemanuk.h */
+void
+sosemanuk_init(sosemanuk_run_context *rc, sosemanuk_key_context *kc,
+	unsigned char *iv, size_t iv_len)
+#endif
+{
+
+#ifdef SOSEMANUK_ECRYPT
+#define rc       ctx
+#define kc       ctx
+#define iv_len   (ctx->ivlen)
+#endif
+
+	/*
+	 * The Serpent key addition step.
+	 */
+#define KA(zc, x0, x1, x2, x3)  do { \
+		x0 ^= kc->sk[(zc)]; \
+		x1 ^= kc->sk[(zc) + 1]; \
+		x2 ^= kc->sk[(zc) + 2]; \
+		x3 ^= kc->sk[(zc) + 3]; \
+	} while (0)
+
+	/*
+	 * One Serpent round.
+	 *   zc = current subkey counter
+	 *   S = S-box macro for this round
+	 *   i0 to i4 = input register numbers (the fifth is a scratch register)
+	 *   o0 to o3 = output register numbers
+	 */
+#define FSS(zc, S, i0, i1, i2, i3, i4, o0, o1, o2, o3)  do { \
+		KA(zc, r ## i0, r ## i1, r ## i2, r ## i3); \
+		S(r ## i0, r ## i1, r ## i2, r ## i3, r ## i4); \
+		SERPENT_LT(r ## o0, r ## o1, r ## o2, r ## o3); \
+	} while (0)
+
+	/*
+	 * Last Serpent round. Contrary to the "true" Serpent, we keep
+	 * the linear transformation for that last round.
+	 */
+#define FSF(zc, S, i0, i1, i2, i3, i4, o0, o1, o2, o3)  do { \
+		KA(zc, r ## i0, r ## i1, r ## i2, r ## i3); \
+		S(r ## i0, r ## i1, r ## i2, r ## i3, r ## i4); \
+		SERPENT_LT(r ## o0, r ## o1, r ## o2, r ## o3); \
+		KA(zc + 4, r ## o0, r ## o1, r ## o2, r ## o3); \
+	} while (0)
+
+	register unum32 r0, r1, r2, r3, r4;
+	unsigned char ivtmp[16];
+
+	if (iv_len >= sizeof ivtmp) {
+		memcpy(ivtmp, iv, sizeof ivtmp);
+	} else {
+		if (iv_len > 0)
+			memcpy(ivtmp, iv, iv_len);
+		memset(ivtmp + iv_len, 0, (sizeof ivtmp) - iv_len);
+	}
+
+#ifdef SOSEMANUK_VECTOR
+	{
+		size_t u;
+
+		printf("IV = ");
+		for (u = 0; u < 16; u ++)
+			printf("%02X", ivtmp[u]);
+		printf("\n");
+	}
+#endif
+
+	/*
+	 * Decode IV into four 32-bit words (little-endian).
+	 */
+	r0 = decode32le(ivtmp);
+	r1 = decode32le(ivtmp + 4);
+	r2 = decode32le(ivtmp + 8);
+	r3 = decode32le(ivtmp + 12);
+
+#ifdef SOSEMANUK_VECTOR
+	printf("  -> %08lX %08lX %08lX %08lX\n",
+		(unsigned long)r3, (unsigned long)r2,
+		(unsigned long)r1, (unsigned long)r0);
+#endif
+
+	/*
+	 * Encrypt IV with Serpent24. Some values are extracted from the
+	 * output of the twelfth, eighteenth and twenty-fourth rounds.
+	 */
+	FSS(0, S0, 0, 1, 2, 3, 4, 1, 4, 2, 0);
+	FSS(4, S1, 1, 4, 2, 0, 3, 2, 1, 0, 4);
+	FSS(8, S2, 2, 1, 0, 4, 3, 0, 4, 1, 3);
+	FSS(12, S3, 0, 4, 1, 3, 2, 4, 1, 3, 2);
+	FSS(16, S4, 4, 1, 3, 2, 0, 1, 0, 4, 2);
+	FSS(20, S5, 1, 0, 4, 2, 3, 0, 2, 1, 4);
+	FSS(24, S6, 0, 2, 1, 4, 3, 0, 2, 3, 1);
+	FSS(28, S7, 0, 2, 3, 1, 4, 4, 1, 2, 0);
+	FSS(32, S0, 4, 1, 2, 0, 3, 1, 3, 2, 4);
+	FSS(36, S1, 1, 3, 2, 4, 0, 2, 1, 4, 3);
+	FSS(40, S2, 2, 1, 4, 3, 0, 4, 3, 1, 0);
+	FSS(44, S3, 4, 3, 1, 0, 2, 3, 1, 0, 2);
+	rc->s09 = r3;
+	rc->s08 = r1;
+	rc->s07 = r0;
+	rc->s06 = r2;
+
+	FSS(48, S4, 3, 1, 0, 2, 4, 1, 4, 3, 2);
+	FSS(52, S5, 1, 4, 3, 2, 0, 4, 2, 1, 3);
+	FSS(56, S6, 4, 2, 1, 3, 0, 4, 2, 0, 1);
+	FSS(60, S7, 4, 2, 0, 1, 3, 3, 1, 2, 4);
+	FSS(64, S0, 3, 1, 2, 4, 0, 1, 0, 2, 3);
+	FSS(68, S1, 1, 0, 2, 3, 4, 2, 1, 3, 0);
+	rc->r1  = r2;
+	rc->s04 = r1;
+	rc->r2  = r3;
+	rc->s05 = r0;
+
+	FSS(72, S2, 2, 1, 3, 0, 4, 3, 0, 1, 4);
+	FSS(76, S3, 3, 0, 1, 4, 2, 0, 1, 4, 2);
+	FSS(80, S4, 0, 1, 4, 2, 3, 1, 3, 0, 2);
+	FSS(84, S5, 1, 3, 0, 2, 4, 3, 2, 1, 0);
+	FSS(88, S6, 3, 2, 1, 0, 4, 3, 2, 4, 1);
+	FSF(92, S7, 3, 2, 4, 1, 0, 0, 1, 2, 3);
+	rc->s03 = r0;
+	rc->s02 = r1;
+	rc->s01 = r2;
+	rc->s00 = r3;
+
+#ifdef SOSEMANUK_VECTOR
+	printf("Initial LFSR state:\n");
+	printf("      s1  = %08lX\n", (unsigned long)rc->s00);
+	printf("      s2  = %08lX\n", (unsigned long)rc->s01);
+	printf("      s3  = %08lX\n", (unsigned long)rc->s02);
+	printf("      s4  = %08lX\n", (unsigned long)rc->s03);
+	printf("      s5  = %08lX\n", (unsigned long)rc->s04);
+	printf("      s6  = %08lX\n", (unsigned long)rc->s05);
+	printf("      s7  = %08lX\n", (unsigned long)rc->s06);
+	printf("      s8  = %08lX\n", (unsigned long)rc->s07);
+	printf("      s9  = %08lX\n", (unsigned long)rc->s08);
+	printf("      s10 = %08lX\n", (unsigned long)rc->s09);
+	printf("Initial FSM state:  r1 = %08lX   r2 = %08lX\n",
+		(unsigned long)rc->r1, (unsigned long)rc->r2);
+#endif
+
+#ifndef SOSEMANUK_ECRYPT
+	rc->ptr = sizeof rc->buf;
+#endif
+
+#undef KA
+#undef FSS
+#undef FSF
+
+#ifdef SOSEMANUK_ECRYPT
+#undef rc
+#undef kc
+#undef iv_len
+#endif
+}
+
+/*
+ * Multiplication by alpha: alpha * x = T32(x << 8) ^ mul_a[x >> 24]
+ */
+static unum32 mul_a[] = {
+	0x00000000, 0xE19FCF13, 0x6B973726, 0x8A08F835,
+	0xD6876E4C, 0x3718A15F, 0xBD10596A, 0x5C8F9679,
+	0x05A7DC98, 0xE438138B, 0x6E30EBBE, 0x8FAF24AD,
+	0xD320B2D4, 0x32BF7DC7, 0xB8B785F2, 0x59284AE1,
+	0x0AE71199, 0xEB78DE8A, 0x617026BF, 0x80EFE9AC,
+	0xDC607FD5, 0x3DFFB0C6, 0xB7F748F3, 0x566887E0,
+	0x0F40CD01, 0xEEDF0212, 0x64D7FA27, 0x85483534,
+	0xD9C7A34D, 0x38586C5E, 0xB250946B, 0x53CF5B78,
+	0x1467229B, 0xF5F8ED88, 0x7FF015BD, 0x9E6FDAAE,
+	0xC2E04CD7, 0x237F83C4, 0xA9777BF1, 0x48E8B4E2,
+	0x11C0FE03, 0xF05F3110, 0x7A57C925, 0x9BC80636,
+	0xC747904F, 0x26D85F5C, 0xACD0A769, 0x4D4F687A,
+	0x1E803302, 0xFF1FFC11, 0x75170424, 0x9488CB37,
+	0xC8075D4E, 0x2998925D, 0xA3906A68, 0x420FA57B,
+	0x1B27EF9A, 0xFAB82089, 0x70B0D8BC, 0x912F17AF,
+	0xCDA081D6, 0x2C3F4EC5, 0xA637B6F0, 0x47A879E3,
+	0x28CE449F, 0xC9518B8C, 0x435973B9, 0xA2C6BCAA,
+	0xFE492AD3, 0x1FD6E5C0, 0x95DE1DF5, 0x7441D2E6,
+	0x2D699807, 0xCCF65714, 0x46FEAF21, 0xA7616032,
+	0xFBEEF64B, 0x1A713958, 0x9079C16D, 0x71E60E7E,
+	0x22295506, 0xC3B69A15, 0x49BE6220, 0xA821AD33,
+	0xF4AE3B4A, 0x1531F459, 0x9F390C6C, 0x7EA6C37F,
+	0x278E899E, 0xC611468D, 0x4C19BEB8, 0xAD8671AB,
+	0xF109E7D2, 0x109628C1, 0x9A9ED0F4, 0x7B011FE7,
+	0x3CA96604, 0xDD36A917, 0x573E5122, 0xB6A19E31,
+	0xEA2E0848, 0x0BB1C75B, 0x81B93F6E, 0x6026F07D,
+	0x390EBA9C, 0xD891758F, 0x52998DBA, 0xB30642A9,
+	0xEF89D4D0, 0x0E161BC3, 0x841EE3F6, 0x65812CE5,
+	0x364E779D, 0xD7D1B88E, 0x5DD940BB, 0xBC468FA8,
+	0xE0C919D1, 0x0156D6C2, 0x8B5E2EF7, 0x6AC1E1E4,
+	0x33E9AB05, 0xD2766416, 0x587E9C23, 0xB9E15330,
+	0xE56EC549, 0x04F10A5A, 0x8EF9F26F, 0x6F663D7C,
+	0x50358897, 0xB1AA4784, 0x3BA2BFB1, 0xDA3D70A2,
+	0x86B2E6DB, 0x672D29C8, 0xED25D1FD, 0x0CBA1EEE,
+	0x5592540F, 0xB40D9B1C, 0x3E056329, 0xDF9AAC3A,
+	0x83153A43, 0x628AF550, 0xE8820D65, 0x091DC276,
+	0x5AD2990E, 0xBB4D561D, 0x3145AE28, 0xD0DA613B,
+	0x8C55F742, 0x6DCA3851, 0xE7C2C064, 0x065D0F77,
+	0x5F754596, 0xBEEA8A85, 0x34E272B0, 0xD57DBDA3,
+	0x89F22BDA, 0x686DE4C9, 0xE2651CFC, 0x03FAD3EF,
+	0x4452AA0C, 0xA5CD651F, 0x2FC59D2A, 0xCE5A5239,
+	0x92D5C440, 0x734A0B53, 0xF942F366, 0x18DD3C75,
+	0x41F57694, 0xA06AB987, 0x2A6241B2, 0xCBFD8EA1,
+	0x977218D8, 0x76EDD7CB, 0xFCE52FFE, 0x1D7AE0ED,
+	0x4EB5BB95, 0xAF2A7486, 0x25228CB3, 0xC4BD43A0,
+	0x9832D5D9, 0x79AD1ACA, 0xF3A5E2FF, 0x123A2DEC,
+	0x4B12670D, 0xAA8DA81E, 0x2085502B, 0xC11A9F38,
+	0x9D950941, 0x7C0AC652, 0xF6023E67, 0x179DF174,
+	0x78FBCC08, 0x9964031B, 0x136CFB2E, 0xF2F3343D,
+	0xAE7CA244, 0x4FE36D57, 0xC5EB9562, 0x24745A71,
+	0x7D5C1090, 0x9CC3DF83, 0x16CB27B6, 0xF754E8A5,
+	0xABDB7EDC, 0x4A44B1CF, 0xC04C49FA, 0x21D386E9,
+	0x721CDD91, 0x93831282, 0x198BEAB7, 0xF81425A4,
+	0xA49BB3DD, 0x45047CCE, 0xCF0C84FB, 0x2E934BE8,
+	0x77BB0109, 0x9624CE1A, 0x1C2C362F, 0xFDB3F93C,
+	0xA13C6F45, 0x40A3A056, 0xCAAB5863, 0x2B349770,
+	0x6C9CEE93, 0x8D032180, 0x070BD9B5, 0xE69416A6,
+	0xBA1B80DF, 0x5B844FCC, 0xD18CB7F9, 0x301378EA,
+	0x693B320B, 0x88A4FD18, 0x02AC052D, 0xE333CA3E,
+	0xBFBC5C47, 0x5E239354, 0xD42B6B61, 0x35B4A472,
+	0x667BFF0A, 0x87E43019, 0x0DECC82C, 0xEC73073F,
+	0xB0FC9146, 0x51635E55, 0xDB6BA660, 0x3AF46973,
+	0x63DC2392, 0x8243EC81, 0x084B14B4, 0xE9D4DBA7,
+	0xB55B4DDE, 0x54C482CD, 0xDECC7AF8, 0x3F53B5EB
+};
+
+/*
+ * Multiplication by 1/alpha: 1/alpha * x = (x >> 8) ^ mul_ia[x & 0xFF]
+ */
+static unum32 mul_ia[] = {
+	0x00000000, 0x180F40CD, 0x301E8033, 0x2811C0FE,
+	0x603CA966, 0x7833E9AB, 0x50222955, 0x482D6998,
+	0xC078FBCC, 0xD877BB01, 0xF0667BFF, 0xE8693B32,
+	0xA04452AA, 0xB84B1267, 0x905AD299, 0x88559254,
+	0x29F05F31, 0x31FF1FFC, 0x19EEDF02, 0x01E19FCF,
+	0x49CCF657, 0x51C3B69A, 0x79D27664, 0x61DD36A9,
+	0xE988A4FD, 0xF187E430, 0xD99624CE, 0xC1996403,
+	0x89B40D9B, 0x91BB4D56, 0xB9AA8DA8, 0xA1A5CD65,
+	0x5249BE62, 0x4A46FEAF, 0x62573E51, 0x7A587E9C,
+	0x32751704, 0x2A7A57C9, 0x026B9737, 0x1A64D7FA,
+	0x923145AE, 0x8A3E0563, 0xA22FC59D, 0xBA208550,
+	0xF20DECC8, 0xEA02AC05, 0xC2136CFB, 0xDA1C2C36,
+	0x7BB9E153, 0x63B6A19E, 0x4BA76160, 0x53A821AD,
+	0x1B854835, 0x038A08F8, 0x2B9BC806, 0x339488CB,
+	0xBBC11A9F, 0xA3CE5A52, 0x8BDF9AAC, 0x93D0DA61,
+	0xDBFDB3F9, 0xC3F2F334, 0xEBE333CA, 0xF3EC7307,
+	0xA492D5C4, 0xBC9D9509, 0x948C55F7, 0x8C83153A,
+	0xC4AE7CA2, 0xDCA13C6F, 0xF4B0FC91, 0xECBFBC5C,
+	0x64EA2E08, 0x7CE56EC5, 0x54F4AE3B, 0x4CFBEEF6,
+	0x04D6876E, 0x1CD9C7A3, 0x34C8075D, 0x2CC74790,
+	0x8D628AF5, 0x956DCA38, 0xBD7C0AC6, 0xA5734A0B,
+	0xED5E2393, 0xF551635E, 0xDD40A3A0, 0xC54FE36D,
+	0x4D1A7139, 0x551531F4, 0x7D04F10A, 0x650BB1C7,
+	0x2D26D85F, 0x35299892, 0x1D38586C, 0x053718A1,
+	0xF6DB6BA6, 0xEED42B6B, 0xC6C5EB95, 0xDECAAB58,
+	0x96E7C2C0, 0x8EE8820D, 0xA6F942F3, 0xBEF6023E,
+	0x36A3906A, 0x2EACD0A7, 0x06BD1059, 0x1EB25094,
+	0x569F390C, 0x4E9079C1, 0x6681B93F, 0x7E8EF9F2,
+	0xDF2B3497, 0xC724745A, 0xEF35B4A4, 0xF73AF469,
+	0xBF179DF1, 0xA718DD3C, 0x8F091DC2, 0x97065D0F,
+	0x1F53CF5B, 0x075C8F96, 0x2F4D4F68, 0x37420FA5,
+	0x7F6F663D, 0x676026F0, 0x4F71E60E, 0x577EA6C3,
+	0xE18D0321, 0xF98243EC, 0xD1938312, 0xC99CC3DF,
+	0x81B1AA47, 0x99BEEA8A, 0xB1AF2A74, 0xA9A06AB9,
+	0x21F5F8ED, 0x39FAB820, 0x11EB78DE, 0x09E43813,
+	0x41C9518B, 0x59C61146, 0x71D7D1B8, 0x69D89175,
+	0xC87D5C10, 0xD0721CDD, 0xF863DC23, 0xE06C9CEE,
+	0xA841F576, 0xB04EB5BB, 0x985F7545, 0x80503588,
+	0x0805A7DC, 0x100AE711, 0x381B27EF, 0x20146722,
+	0x68390EBA, 0x70364E77, 0x58278E89, 0x4028CE44,
+	0xB3C4BD43, 0xABCBFD8E, 0x83DA3D70, 0x9BD57DBD,
+	0xD3F81425, 0xCBF754E8, 0xE3E69416, 0xFBE9D4DB,
+	0x73BC468F, 0x6BB30642, 0x43A2C6BC, 0x5BAD8671,
+	0x1380EFE9, 0x0B8FAF24, 0x239E6FDA, 0x3B912F17,
+	0x9A34E272, 0x823BA2BF, 0xAA2A6241, 0xB225228C,
+	0xFA084B14, 0xE2070BD9, 0xCA16CB27, 0xD2198BEA,
+	0x5A4C19BE, 0x42435973, 0x6A52998D, 0x725DD940,
+	0x3A70B0D8, 0x227FF015, 0x0A6E30EB, 0x12617026,
+	0x451FD6E5, 0x5D109628, 0x750156D6, 0x6D0E161B,
+	0x25237F83, 0x3D2C3F4E, 0x153DFFB0, 0x0D32BF7D,
+	0x85672D29, 0x9D686DE4, 0xB579AD1A, 0xAD76EDD7,
+	0xE55B844F, 0xFD54C482, 0xD545047C, 0xCD4A44B1,
+	0x6CEF89D4, 0x74E0C919, 0x5CF109E7, 0x44FE492A,
+	0x0CD320B2, 0x14DC607F, 0x3CCDA081, 0x24C2E04C,
+	0xAC977218, 0xB49832D5, 0x9C89F22B, 0x8486B2E6,
+	0xCCABDB7E, 0xD4A49BB3, 0xFCB55B4D, 0xE4BA1B80,
+	0x17566887, 0x0F59284A, 0x2748E8B4, 0x3F47A879,
+	0x776AC1E1, 0x6F65812C, 0x477441D2, 0x5F7B011F,
+	0xD72E934B, 0xCF21D386, 0xE7301378, 0xFF3F53B5,
+	0xB7123A2D, 0xAF1D7AE0, 0x870CBA1E, 0x9F03FAD3,
+	0x3EA637B6, 0x26A9777B, 0x0EB8B785, 0x16B7F748,
+	0x5E9A9ED0, 0x4695DE1D, 0x6E841EE3, 0x768B5E2E,
+	0xFEDECC7A, 0xE6D18CB7, 0xCEC04C49, 0xD6CF0C84,
+	0x9EE2651C, 0x86ED25D1, 0xAEFCE52F, 0xB6F3A5E2
+};
+
+/*
+ * Compute the next block of bits of output stream. This is equivalent
+ * to one full rotation of the shift register.
+ *
+ * If SOSEMANUK_SPEED is defined, this function takes an extra parameter
+ * "counter". The function then returns the sum of all produced
+ * 32-bit words, in an "unum32". That sum prevents the compiler from
+ * optimizing out part of the computation.
+ */
+#if defined SOSEMANUK_ECRYPT
+static void
+sosemanuk_internal(ECRYPT_ctx *rc, u8 *dst)
+#elif defined SOSEMANUK_SPEED
+static unum32
+sosemanuk_internal(sosemanuk_run_context *rc, unsigned long counter)
+#else
+static void
+sosemanuk_internal(sosemanuk_run_context *rc)
+#endif
+{
+	/*
+	 * MUL_A(x) computes alpha * x (in F_{2^32}).
+	 * MUL_G(x) computes 1/alpha * x (in F_{2^32}).
+	 */
+#define MUL_A(x)    (T32((x) << 8) ^ mul_a[(x) >> 24])
+#define MUL_G(x)    (((x) >> 8) ^ mul_ia[(x) & 0xFF])
+
+	/*
+	 * This macro computes the special multiplexer, which chooses
+	 * between "x" and "x xor y", depending on the least significant
+	 * bit of the control word. We use the C "?:" selection operator
+	 * (which most compilers know how to optimise) except for Alpha,
+	 * where the manual sign extension seems to perform equally well
+	 * with DEC/Compaq/HP compiler, and much better with gcc.
+	 */
+#ifdef __alpha
+#define XMUX(c, x, y)   ((((signed int)((c) << 31) >> 31) & (y)) ^ (x))
+#else
+#define XMUX(c, x, y)   (((c) & 0x1) ? ((x) ^ (y)) : (x))
+#endif
+
+	/*
+	 * FSM() updates the finite state machine.
+	 */
+#define FSM(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9)   do { \
+		unum32 tt, or1; \
+		tt = XMUX(r1, s ## x1, s ## x8); \
+		or1 = r1; \
+		r1 = T32(r2 + tt); \
+		tt = T32(or1 * 0x54655307); \
+		r2 = ROTL(tt, 7); \
+		PFSM; \
+	} while (0)
+
+	/*
+	 * LRU updates the shift register; the dropped value is stored
+	 * in variable "dd".
+	 */
+#define LRU(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, dd)   do { \
+		dd = s ## x0; \
+		s ## x0 = MUL_A(s ## x0) ^ MUL_G(s ## x3) ^ s ## x9; \
+		PLFSR(dd, s ## x1, s ## x2, s ## x3, s ## x4, s ## x5, \
+			s ## x6, s ## x7, s ## x8, s ## x9, s ## x0); \
+	} while (0)
+
+	/*
+	 * CC1 stores into variable "ee" the next intermediate word
+	 * (combination of the new states of the LFSR and the FSM).
+	 */
+#define CC1(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, ee)   do { \
+		ee = T32(s ## x9 + r1) ^ r2; \
+		PCCVAL(ee); \
+	} while (0)
+
+	/*
+	 * STEP computes one internal round. "dd" receives the "s_t"
+	 * value (dropped from the LFSR) and "ee" gets the value computed
+	 * from the LFSR and FSM.
+	 */
+#define STEP(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, dd, ee)   do { \
+		FSM(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9); \
+		LRU(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, dd); \
+		CC1(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, ee); \
+	} while (0)
+
+	/*
+	 * Apply one Serpent round (with the provided S-box macro), XOR
+	 * the result with the "v" values, and encode the result into
+	 * the destination buffer, at the provided offset. The "x*"
+	 * arguments encode the output permutation of the "S" macro.
+	 */
+#ifdef SOSEMANUK_SPEED
+
+#define SRD(S, x0, x1, x2, x3, ooff)   do { \
+		S(u0, u1, u2, u3, u4); \
+		speed_acc += u ## x0 ^ v0; \
+		speed_acc += u ## x1 ^ v1; \
+		speed_acc += u ## x2 ^ v2; \
+		speed_acc += u ## x3 ^ v3; \
+	} while (0)
+
+#else
+
+#ifdef SOSEMANUK_ECRYPT
+#define OUTWORD_BASE   dst
+#else
+#define OUTWORD_BASE   (rc->buf)
+#endif
+
+#define SRD(S, x0, x1, x2, x3, ooff)   do { \
+		PSPIN(u0, u1, u2, u3); \
+		S(u0, u1, u2, u3, u4); \
+		PSPOUT(u ## x0, u ## x1, u ## x2, u ## x3); \
+		encode32le(OUTWORD_BASE + ooff, u ## x0 ^ v0); \
+		encode32le(OUTWORD_BASE + ooff + 4, u ## x1 ^ v1); \
+		encode32le(OUTWORD_BASE + ooff + 8, u ## x2 ^ v2); \
+		encode32le(OUTWORD_BASE + ooff + 12, u ## x3 ^ v3); \
+		POUT(OUTWORD_BASE + ooff); \
+	} while (0)
+
+#endif
+
+	/*
+	 * Audit code; used for detailed test vectors.
+	 */
+#ifdef SOSEMANUK_VECTOR
+
+#define PFSM   do { \
+		printf("New FSM state:  r1 = %08lX   r2 = %08lX\n", \
+			(unsigned long)r1, (unsigned long)r2); \
+	} while (0)
+
+#define PLFSR(dd, x1, x2, x3, x4, x5, x6, x7, x8, x9, x0)   do { \
+		printf("New LFSR state:\n"); \
+		printf("   dropped (s_t): %08lX\n", (unsigned long)dd); \
+		printf("         s_t+1  = %08lX\n", (unsigned long)x1); \
+		printf("         s_t+2  = %08lX\n", (unsigned long)x2); \
+		printf("         s_t+3  = %08lX\n", (unsigned long)x3); \
+		printf("         s_t+4  = %08lX\n", (unsigned long)x4); \
+		printf("         s_t+5  = %08lX\n", (unsigned long)x5); \
+		printf("         s_t+6  = %08lX\n", (unsigned long)x6); \
+		printf("         s_t+7  = %08lX\n", (unsigned long)x7); \
+		printf("         s_t+8  = %08lX\n", (unsigned long)x8); \
+		printf("         s_t+9  = %08lX\n", (unsigned long)x9); \
+		printf("         s_t+10 = %08lX\n", (unsigned long)x0); \
+	} while (0)
+
+#define PCCVAL(ee)   do { \
+		printf("Intermediate output: %08lX\n", (unsigned long)ee); \
+	} while (0)
+
+#define PSPIN(x0, x1, x2, x3)    do { \
+		printf("Serpent1 input:  %08lX %08lX %08lX %08lX\n", \
+			(unsigned long)x3, (unsigned long)x2, \
+			(unsigned long)x1, (unsigned long)x0); \
+	} while (0)
+
+#define PSPOUT(x0, x1, x2, x3)    do { \
+		printf("Serpent1 output: %08lX %08lX %08lX %08lX\n", \
+			(unsigned long)x3, (unsigned long)x2, \
+			(unsigned long)x1, (unsigned long)x0); \
+	} while (0)
+
+#define POUT(buf)   do { \
+		size_t j; \
+		printf("Stream output: "); \
+		for (j = 0; j < 16; j ++) \
+			printf("%02X", (buf)[j]); \
+		printf("\n"); \
+	} while (0)
+
+#else
+
+#define PFSM                      (void)0
+#define PLFSR(dd, x1, x2, x3, x4, x5, x6, x7, x8, x9, x0)   (void)0
+#define PCCVAL(ee)                (void)0
+#define PSPIN(x0, x1, x2, x3)     (void)0
+#define PSPOUT(x0, x1, x2, x3)    (void)0
+#define POUT(buf)                 (void)0
+
+#endif
+
+	unum32 s00 = rc->s00;
+	unum32 s01 = rc->s01;
+	unum32 s02 = rc->s02;
+	unum32 s03 = rc->s03;
+	unum32 s04 = rc->s04;
+	unum32 s05 = rc->s05;
+	unum32 s06 = rc->s06;
+	unum32 s07 = rc->s07;
+	unum32 s08 = rc->s08;
+	unum32 s09 = rc->s09;
+	unum32 r1 = rc->r1;
+	unum32 r2 = rc->r2;
+	unum32 u0, u1, u2, u3, u4;
+	unum32 v0, v1, v2, v3;
+#ifdef SOSEMANUK_SPEED
+	unum32 speed_acc = 0;
+#endif
+
+#ifdef SOSEMANUK_SPEED
+	while (counter -- > 0) {
+#endif
+
+	STEP(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, v0, u0);
+	STEP(01, 02, 03, 04, 05, 06, 07, 08, 09, 00, v1, u1);
+	STEP(02, 03, 04, 05, 06, 07, 08, 09, 00, 01, v2, u2);
+	STEP(03, 04, 05, 06, 07, 08, 09, 00, 01, 02, v3, u3);
+	SRD(S2, 2, 3, 1, 4, 0);
+	STEP(04, 05, 06, 07, 08, 09, 00, 01, 02, 03, v0, u0);
+	STEP(05, 06, 07, 08, 09, 00, 01, 02, 03, 04, v1, u1);
+	STEP(06, 07, 08, 09, 00, 01, 02, 03, 04, 05, v2, u2);
+	STEP(07, 08, 09, 00, 01, 02, 03, 04, 05, 06, v3, u3);
+	SRD(S2, 2, 3, 1, 4, 16);
+	STEP(08, 09, 00, 01, 02, 03, 04, 05, 06, 07, v0, u0);
+	STEP(09, 00, 01, 02, 03, 04, 05, 06, 07, 08, v1, u1);
+	STEP(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, v2, u2);
+	STEP(01, 02, 03, 04, 05, 06, 07, 08, 09, 00, v3, u3);
+	SRD(S2, 2, 3, 1, 4, 32);
+	STEP(02, 03, 04, 05, 06, 07, 08, 09, 00, 01, v0, u0);
+	STEP(03, 04, 05, 06, 07, 08, 09, 00, 01, 02, v1, u1);
+	STEP(04, 05, 06, 07, 08, 09, 00, 01, 02, 03, v2, u2);
+	STEP(05, 06, 07, 08, 09, 00, 01, 02, 03, 04, v3, u3);
+	SRD(S2, 2, 3, 1, 4, 48);
+	STEP(06, 07, 08, 09, 00, 01, 02, 03, 04, 05, v0, u0);
+	STEP(07, 08, 09, 00, 01, 02, 03, 04, 05, 06, v1, u1);
+	STEP(08, 09, 00, 01, 02, 03, 04, 05, 06, 07, v2, u2);
+	STEP(09, 00, 01, 02, 03, 04, 05, 06, 07, 08, v3, u3);
+	SRD(S2, 2, 3, 1, 4, 64);
+
+#ifdef SOSEMANUK_SPEED
+	}
+#endif
+
+	rc->s00 = s00;
+	rc->s01 = s01;
+	rc->s02 = s02;
+	rc->s03 = s03;
+	rc->s04 = s04;
+	rc->s05 = s05;
+	rc->s06 = s06;
+	rc->s07 = s07;
+	rc->s08 = s08;
+	rc->s09 = s09;
+	rc->r1 = r1;
+	rc->r2 = r2;
+
+#ifdef SOSEMANUK_SPEED
+	return T32(speed_acc);
+#endif
+}
+
+/*
+ * Combine buffers in1[] and in2[] by XOR, result in out[]. The length
+ * is "data_len" (in bytes). Partial overlap of out[] with either in1[]
+ * or in2[] is not allowed. Total overlap (out == in1 and/or out == in2)
+ * is allowed.
+ */
+static INLINE void
+xorbuf(const unsigned char *in1, const unsigned char *in2,
+	unsigned char *out, size_t data_len)
+{
+	while (data_len -- > 0)
+		*out ++ = *in1 ++ ^ *in2 ++;
+}
+
+/* ======================================================================== */
+/*
+ * External API.
+ */
+
+#if defined SOSEMANUK_ECRYPT
+
+/* see ecrypt-sync.h */
+void
+ECRYPT_process_bytes(int action, ECRYPT_ctx *ctx,
+	const u8 *input, u8 *output, u32 msglen)
+{
+	(void)action;
+
+	while (msglen > 0) {
+		unsigned char tbuf[ECRYPT_BLOCKLENGTH];
+		size_t len;
+
+		sosemanuk_internal(ctx, tbuf);
+		len = sizeof tbuf;
+		if (len > msglen)
+			len = msglen;
+		xorbuf(input, tbuf, output, len);
+		input += len;
+		output += len;
+		msglen -= len;
+	}
+}
+
+/* see ecrypt-sync.h */
+void
+ECRYPT_keystream_bytes(ECRYPT_ctx *ctx, u8 *keystream, u32 length)
+{
+	while (length > 0) {
+		if (length >= ECRYPT_BLOCKLENGTH) {
+			sosemanuk_internal(ctx, keystream);
+			keystream += ECRYPT_BLOCKLENGTH;
+			length -= ECRYPT_BLOCKLENGTH;
+		} else {
+			unsigned char tbuf[ECRYPT_BLOCKLENGTH];
+
+			sosemanuk_internal(ctx, tbuf);
+			memcpy(keystream, tbuf, length);
+			return;
+		}
+	}
+}
+
+/* see ecrypt-sync.h */
+void
+ECRYPT_process_blocks(int action, ECRYPT_ctx *ctx,
+	const u8 *input, u8 *output, u32 blocks)
+{
+	(void)action;
+
+	while (blocks -- > 0) {
+		unsigned char tbuf[ECRYPT_BLOCKLENGTH];
+
+		sosemanuk_internal(ctx, tbuf);
+		xorbuf(input, tbuf, output, ECRYPT_BLOCKLENGTH);
+		input += ECRYPT_BLOCKLENGTH;
+		output += ECRYPT_BLOCKLENGTH;
+	}
+}
+
+/* see ecrypt-sync.h */
+void
+ECRYPT_keystream_blocks(ECRYPT_ctx *ctx, u8 *keystream, u32 blocks)
+{
+	while (blocks -- > 0) {
+		sosemanuk_internal(ctx, keystream);
+		keystream += ECRYPT_BLOCKLENGTH;
+	}
+}
+
+#elif !defined SOSEMANUK_SPEED
+
+/* see sosemanuk.h */
+void
+sosemanuk_prng(sosemanuk_run_context *rc, unsigned char *out, size_t out_len)
+{
+	if (rc->ptr < (sizeof rc->buf)) {
+		size_t rlen = (sizeof rc->buf) - rc->ptr;
+
+		if (rlen > out_len)
+			rlen = out_len;
+		memcpy(out, rc->buf + rc->ptr, rlen);
+		out += rlen;
+		out_len -= rlen;
+		rc->ptr += rlen;
+	}
+	while (out_len > 0) {
+		sosemanuk_internal(rc);
+		if (out_len >= sizeof rc->buf) {
+			memcpy(out, rc->buf, sizeof rc->buf);
+			out += sizeof rc->buf;
+			out_len -= sizeof rc->buf;
+		} else {
+			memcpy(out, rc->buf, out_len);
+			rc->ptr = out_len;
+			out_len = 0;
+		}
+	}
+}
+
+/* see sosemanuk.h */
+void
+sosemanuk_encrypt(sosemanuk_run_context *rc,
+	unsigned char *in, unsigned char *out, size_t data_len)
+{
+	if (rc->ptr < (sizeof rc->buf)) {
+		size_t rlen = (sizeof rc->buf) - rc->ptr;
+
+		if (rlen > data_len)
+			rlen = data_len;
+		xorbuf(rc->buf + rc->ptr, in, out, rlen);
+		in += rlen;
+		out += rlen;
+		data_len -= rlen;
+		rc->ptr += rlen;
+	}
+	while (data_len > 0) {
+		sosemanuk_internal(rc);
+		if (data_len >= sizeof rc->buf) {
+			xorbuf(rc->buf, in, out, sizeof rc->buf);
+			in += sizeof rc->buf;
+			out += sizeof rc->buf;
+			data_len -= sizeof rc->buf;
+		} else {
+			xorbuf(rc->buf, in, out, data_len);
+			rc->ptr = data_len;
+			data_len = 0;
+		}
+	}
+}
+
+#endif
+
+#if defined SOSEMANUK_VECTOR
+
+/* ======================================================================== */
+/*
+ * Test code. This code is used to generate test vectors, with the
+ * SOSEMANUK_VECTOR macro defined.
+ */
+
+/*
+ * Generate 160 bytes of stream with the provided key and IV.
+ */
+static void
+maketest(int tvn, unsigned char *key, size_t key_len,
+	unsigned char *iv, size_t iv_len)
+{
+#ifdef SOSEMANUK_ECRYPT
+	ECRYPT_ctx ctx;
+#else
+	sosemanuk_key_context kc;
+	sosemanuk_run_context rc;
+#endif
+	unsigned char tmp[160];
+	unsigned u;
+
+	printf("=====================================================\n");
+	printf("Detailed test vector %d:\n", tvn);
+
+#ifdef SOSEMANUK_ECRYPT
+	ECRYPT_init();
+	ECRYPT_keysetup(&ctx, key, key_len * 8, iv_len * 8);
+	ECRYPT_ivsetup(&ctx, iv);
+#if defined SOSEMANUK_TEST_ENCRYPT_BYTES
+	memset(tmp, 0, sizeof tmp);
+	ECRYPT_encrypt_bytes(&ctx, tmp, tmp, sizeof tmp);
+#elif defined SOSEMANUK_TEST_DECRYPT_BYTES
+	memset(tmp, 0, sizeof tmp);
+	ECRYPT_decrypt_bytes(&ctx, tmp, tmp, sizeof tmp);
+#elif defined SOSEMANUK_TEST_ENCRYPT_BLOCKS
+	memset(tmp, 0, sizeof tmp);
+	ECRYPT_encrypt_blocks(&ctx, tmp, tmp, 2);
+#elif defined SOSEMANUK_TEST_DECRYPT_BLOCKS
+	memset(tmp, 0, sizeof tmp);
+	ECRYPT_decrypt_blocks(&ctx, tmp, tmp, 2);
+#elif defined SOSEMANUK_TEST_KEYSTREAM_BLOCKS
+	ECRYPT_keystream_blocks(&ctx, tmp, 2);
+#else
+	ECRYPT_keystream_bytes(&ctx, tmp, sizeof tmp);
+#endif
+#else
+	sosemanuk_schedule(&kc, key, key_len);
+	sosemanuk_init(&rc, &kc, iv, iv_len);
+	sosemanuk_prng(&rc, tmp, sizeof tmp);
+#endif
+
+	printf("\n");
+	printf("Total output:");
+	for (u = 0; u < sizeof tmp; u ++) {
+		if ((u & 0x0F) == 0)
+			printf("\n");
+		printf(" %02X", (unsigned)tmp[u]);
+	}
+	printf("\n\n");
+}
+
+int
+main(void)
+{
+	static unsigned char key1[] = { 0xA7, 0xC0, 0x83, 0xFE, 0xB7 };
+	static unsigned char iv1[] = {
+		0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
+		0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF
+	};
+
+	static unsigned char key2[] = {
+		0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
+		0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF
+	};
+	static unsigned char iv2[] = {
+		0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF,
+		0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77
+	};
+
+	maketest(1, key1, sizeof key1, iv1, sizeof iv1);
+	maketest(2, key2, sizeof key2, iv2, sizeof iv2);
+	return 0;
+}
+
+#elif defined SOSEMANUK_SPEED
+
+/* ======================================================================== */
+/*
+ * Test code. This code is used to measure implementation speed. The
+ * provided argument is the size of benched output stream, in megabytes.
+ */
+
+static void
+usage(void)
+{
+	fprintf(stderr, "missing argument: output length (in megabytes)\n");
+	exit(EXIT_FAILURE);
+}
+
+int
+main(int argc, char *argv[])
+{
+	static unsigned char key[] = { 0xA7, 0xC0, 0x83, 0xFE, 0xB7 };
+	static unsigned char iv[] = {
+		0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
+		0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF
+	};
+	sosemanuk_key_context kc;
+	sosemanuk_run_context rc;
+	unsigned long speed_counter;
+	clock_t orig, end;
+	double nw, ts;
+	unum32 sum;
+
+	if (argc < 2)
+		usage();
+	speed_counter = strtoul(argv[1], 0, 0);
+	speed_counter = (speed_counter * 65536UL) / 5;
+	if (speed_counter == 0)
+		usage();
+	nw = (double)speed_counter * 20.0;
+	printf("number of 32-bit words: %.0f\n", nw);
+	sosemanuk_schedule(&kc, key, sizeof key);
+	sosemanuk_init(&rc, &kc, iv, sizeof iv);
+	sosemanuk_internal(&rc, 16);
+	orig = clock();
+	sum = sosemanuk_internal(&rc, speed_counter);
+	end = clock();
+	ts = (double)end / CLOCKS_PER_SEC - (double)orig / CLOCKS_PER_SEC;
+	if (ts <= 1.0) {
+		printf("too fast: no meaningful result\n");
+	} else {
+		printf("elapsed time: %.4f seconds\n", ts);
+		printf("32-bit words per second: %.0f\n", nw / ts);
+	}
+	printf("sum = %08lX\n", (unsigned long)sum);
+	return 0;
+}
+
+#endif
diff --git a/sosemanuk.h b/sosemanuk.h
new file mode 100644
index 0000000..3cee5a8
--- /dev/null
+++ b/sosemanuk.h
@@ -0,0 +1,176 @@
+/*
+ * SOSEMANUK reference API.
+ *
+ * This file documents the reference implementation API. If the
+ * macro SOSEMANUK_ECRYPT is defined, the API follows the ECRYPT
+ * conventions (types, function names...) and uses the ECRYPT files;
+ * otherwise, a simpler API is used.
+ *
+ * (c) 2005 X-CRYPT project. This software is provided 'as-is', without
+ * any express or implied warranty. In no event will the authors be held
+ * liable for any damages arising from the use of this software.
+ *
+ * Permission is granted to anyone to use this software for any purpose,
+ * including commercial applications, and to alter it and redistribute it
+ * freely, subject to no restriction.
+ *
+ * Technical remarks and questions can be addressed to
+ * <thomas.pornin@cryptolog.com>
+ */
+
+#ifndef SOSEMANUK_H__
+#define SOSEMANUK_H__
+
+/*
+ * This macro enables the ECRYPT API, and disables the local API.
+ * It is defined by default, for ECRYPT processing.
+ */
+//#define SOSEMANUK_ECRYPT
+
+#ifdef SOSEMANUK_ECRYPT
+
+#include "ecrypt-sync.h"
+
+#else
+
+#include <limits.h>
+
+/*
+ * Input/Output is defined in terms of octets, but C provides only
+ * the C notion of "byte". We require that C bytes are actually octets.
+ */
+#if CHAR_BIT != 8
+#error We need 8-bit bytes
+#endif
+
+/*
+ * We want an unsigned integer type with at least (and possibly exactly)
+ * 32 bits. Such a type implements arithmetics modulo 2^n for a value
+ * n greater than or equal to 32. The type is named "unum32".
+ *
+ * Note: we try to use C99 features such as <stdint.h>. This may prove
+ * problematic on architectures which claim C99 conformance, but fail
+ * to actually conform. If necessary, define the macro BROKEN_C99 to
+ * fall back to C90, whatever the environment claims:
+#define BROKEN_C99  1
+ */
+
+#if !defined BROKEN_C99 && defined __STDC__ && __STDC_VERSION__ >= 199901L
+
+/*
+ * C99 implementation. We use "uint_least32_t" which has the required
+ * semantics.
+ */
+#include <stdint.h>
+typedef uint_least32_t unum32;
+
+#else
+
+/*
+ * Pre-C99 implementation. "unsigned long" is guaranteed to be wide
+ * enough, but we want to use "unsigned int" if possible (especially
+ * for 64-bit architectures).
+ */
+#if UINT_MAX >= 0xFFFFFFFF
+typedef unsigned int unum32;
+#else
+typedef unsigned long unum32;
+#endif
+
+#endif
+
+/*
+ * We want (and sometimes need) to perform explicit truncations to 32 bits.
+ */
+#define ONE32    ((unum32)0xFFFFFFFF)
+#define T32(x)   ((x) & ONE32)
+
+/*
+ * Some of our functions will be tagged as "inline" to help the compiler
+ * optimize things. We use "inline" only if the compiler is advanced
+ * enough to understand it; C99 compilers, and pre-C99 versions of gcc,
+ * understand enough "inline" for our purposes.
+ */
+#if (!defined BROKEN_C99 && defined __STDC__ && __STDC_VERSION__ >= 199901L) \
+	|| defined __GNUC__
+#define INLINE inline
+#else
+#define INLINE
+#endif
+
+/*
+ * API description:
+ *
+ * The SOSEMANUK algorithm works with a secret key and an initial value (IV).
+ * Two context structures are used:
+ *
+ * -- "sosemanuk_key_context" holds the processed secret key. The contents
+ * of this structure depends only on the key, not the IV.
+ *
+ * -- "sosemanuk_run_context" holds the current cipher internal state. This
+ * structure is initialized using the "sosemanuk_key_context" structure, and
+ * the IV; it is updated each time some output is produced.
+ *
+ * Both structures may be allocated as local variables. There is no
+ * other external allocation (using malloc() or any similar function).
+ * There is no global state; hence, this code is thread-safe and
+ * reentrant.
+ */
+
+typedef struct {
+	/*
+	 * Sub-keys for Serpent24.
+	 */
+	unum32 sk[100];
+} sosemanuk_key_context;
+
+typedef struct {
+	/*
+	 * Internal cipher state.
+	 */
+	unum32 s00, s01, s02, s03, s04, s05, s06, s07, s08, s09;
+	unum32 r1, r2;
+
+	/*
+	 * Buffering: the stream cipher produces output data by
+	 * blocks of 640 bits. buf[] contains such a block, and
+	 * "ptr" is the index of the next output byte.
+	 */
+	unsigned char buf[80];
+	unsigned ptr;
+} sosemanuk_run_context;
+
+/*
+ * Key schedule: initialize the key context structure with the provided
+ * secret key. The secret key is an array of 1 to 32 bytes.
+ */
+void sosemanuk_schedule(sosemanuk_key_context *kc,
+	unsigned char *key, size_t key_len);
+
+/*
+ * Cipher initialization: the cipher internal state is initialized, using
+ * the provided key context and IV. The IV length is up to 16 bytes. If
+ * "iv_len" is 0 (no IV), then the "iv" parameter can be NULL.
+ */
+void sosemanuk_init(sosemanuk_run_context *rc,
+	sosemanuk_key_context *kc, unsigned char *iv, size_t iv_len);
+
+/*
+ * Cipher operation, as a PRNG: the provided output buffer is filled with
+ * pseudo-random bytes as output from the stream cipher.
+ */
+void sosemanuk_prng(sosemanuk_run_context *rc,
+	unsigned char *out, size_t out_len);
+
+/*
+ * Cipher operation, as a stream cipher: data is read from the "in"
+ * buffer, combined by XOR with the stream, and the result is written
+ * in the "out" buffer. "in" and "out" must be either equal, or
+ * reference distinct buffers (no partial overlap is allowed).
+ */
+void sosemanuk_encrypt(sosemanuk_run_context *rc,
+	unsigned char *in, unsigned char *out, size_t data_len);
+
+#endif
+
+#endif