1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
/*
Fractal cratering
Designed and implemented in November of 1989 by:
John Walker
Autodesk SA
Avenue des Champs-Montants 14b
CH-2074 MARIN
Switzerland
Usenet: kelvin@Autodesk.com
Fax: 038/33 88 15
Voice: 038/33 76 33
The algorithm used to determine crater size is as described on
pages 31 and 32 of:
Peitgen, H.-O., and Saupe, D. eds., The Science Of Fractal
Images, New York: Springer Verlag, 1988.
The mathematical technique used to calculate crater radii that
obey the proper area law distribution from a uniformly distributed
pseudorandom sequence was developed by Rudy Rucker.
Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, without any conditions or restrictions. This software is
provided "as is" without express or implied warranty.
PLUGWARE!
If you like this kind of stuff, you may also enjoy "James Gleick's
Chaos--The Software" for MS-DOS, available for $59.95 from your
local software store or directly from Autodesk, Inc., Attn: Science
Series, 2320 Marinship Way, Sausalito, CA 94965, USA. Telephone:
(800) 688-2344 toll-free or, outside the U.S. (415) 332-2344 Ext
4886. Fax: (415) 289-4718. "Chaos--The Software" includes a more
comprehensive fractal forgery generator which creates
three-dimensional landscapes as well as clouds and planets, plus
five more modules which explore other aspects of Chaos. The user
guide of more than 200 pages includes an introduction by James
Gleick and detailed explanations by Rudy Rucker of the mathematics
and algorithms used by each program.
*/
/* Modifications by Arjen Bax, 2001-06-21: Remove black vertical line at right
* edge. Make craters wrap around the image (enables tiling of image).
*/
#define _XOPEN_SOURCE /* get M_PI in math.h */
#include <assert.h>
#include <math.h>
#include "pm_c_util.h"
#include "pgm.h"
#include "mallocvar.h"
static void gencraters ARGS((void));
static void initseed ARGS((void));
/* Definitions for obtaining random numbers. */
#define Cast(low, high) ((low)+((high)-(low)) * ((rand() & 0x7FFF) / arand))
/* Data types */
typedef int Boolean;
#define FALSE 0
#define TRUE 1
#define V (void)
/* Display parameters */
#define SCRX screenxsize /* Screen width */
#define SCRY screenysize /* Screen height */
#define SCRGAMMA 1.0 /* Display gamma */
/* Local variables */
#define ImageGamma 0.5 /* Inherent gamma of mapped image */
static int screenxsize = 256; /* Screen X size */
static int screenysize = 256; /* Screen Y size */
static double dgamma = SCRGAMMA; /* Display gamma */
static double arand = 32767.0; /* Random number parameters */
static long ncraters = 50000L; /* Number of craters to generate */
static double CdepthPower = 1.5; /* Crater depth power factor */
static double DepthBias = 0.707107; /* Depth bias */
static int modulo(int t, int n)
{
int m;
assert(n>0);
m = t % n;
while (m<0) {
m+=n;
}
return m;
}
/* INITSEED -- Generate initial random seed, if needed. */
static void initseed()
{
int i;
i = time(NULL) * 0xF37C;
srand(i);
for (i = 0; i < 7; i++)
V rand();
}
/* GENCRATERS -- Generate cratered terrain. */
static void gencraters()
{
int i, j, x, y;
long l;
unsigned short *aux;
int slopemin = -52, slopemax = 52;
#define RGBQuant 255
unsigned char *slopemap; /* Slope to pixel map */
gray *pixels; /* Pixel vector */
#define Auxadr(x, y) &aux[modulo(y, SCRY)*SCRX+modulo(x, SCRX)]
/* Acquire the elevation array and initialize it to mean
surface elevation. */
MALLOCARRAY(aux, SCRX * SCRY);
if (aux == NULL)
pm_error("out of memory allocating elevation array");
/* Acquire the elevation buffer and initialize to mean
initial elevation. */
for (i = 0; i < SCRY; i++) {
unsigned short *zax = aux + (((long) SCRX) * i);
for (j = 0; j < SCRX; j++) {
*zax++ = 32767;
}
}
/* Every time we go around this loop we plop another crater
on the surface. */
for (l = 0; l < ncraters; l++) {
double g;
int cx = Cast(0.0, ((double) SCRX - 1)),
cy = Cast(0.0, ((double) SCRY - 1)),
gx, gy, x, y;
unsigned long amptot = 0, axelev;
unsigned int npatch = 0;
/* Phase 1. Compute the mean elevation of the impact
area. We assume the impact area is a
fraction of the total crater size. */
/* Thanks, Rudy, for this equation that maps the uniformly
distributed numbers from Cast into an area-law
distribution as observed on cratered bodies. */
g = sqrt(1 / (M_PI * (1 - Cast(0, 0.9999))));
/* If the crater is tiny, handle it specially. */
#if 0
fprintf(stderr, "crater=%lu ", (unsigned long)l);
fprintf(stderr, "cx=%d ", cx);
fprintf(stderr, "cy=%d ", cy);
fprintf(stderr, "size=%g\n", g);
#endif
if (g < 3) {
/* Set pixel to the average of its Moore neighbourhood. */
for (y = cy - 1; y <= cy + 1; y++) {
for (x = cx - 1; x <= cx + 1; x++) {
amptot += *Auxadr(x, y);
npatch++;
}
}
axelev = amptot / npatch;
/* Perturb the mean elevation by a small random factor. */
x = (g >= 1) ? ((rand() >> 8) & 3) - 1 : 0;
*Auxadr(cx, cy) = axelev + x;
/* Jam repaint sizes to correct patch. */
gx = 1;
gy = 0;
} else {
/* Regular crater. Generate an impact feature of the
correct size and shape. */
/* Determine mean elevation around the impact area. */
gx = MAX(2, (g / 3));
gy = MAX(2, g / 3);
for (y = cy - gy; y <= cy + gy; y++) {
for (x = cx-gx; x <= cx + gx; x++) {
amptot += *Auxadr(x,y);
npatch++;
}
}
axelev = amptot / npatch;
gy = MAX(2, g);
g = gy;
gx = MAX(2, g);
for (y = cy - gy; y <= cy + gy; y++) {
double dy = (cy - y) / (double) gy,
dysq = dy * dy;
for (x = cx - gx; x <= cx + gx; x++) {
double dx = ((cx - x) / (double) gx),
cd = (dx * dx) + dysq,
cd2 = cd * 2.25,
tcz = DepthBias - sqrt(fabs(1 - cd2)),
cz = MAX((cd2 > 1) ? 0.0 : -10, tcz),
roll, iroll;
unsigned short av;
cz *= pow(g, CdepthPower);
if (dy == 0 && dx == 0 && ((int) cz) == 0) {
cz = cz < 0 ? -1 : 1;
}
#define rollmin 0.9
roll = (((1 / (1 - MIN(rollmin, cd))) /
(1 / (1 - rollmin))) - (1 - rollmin)) / rollmin;
iroll = 1 - roll;
av = (axelev + cz) * iroll + (*Auxadr(x,y) + cz) * roll;
av = MAX(1000, MIN(64000, av));
*Auxadr(x,y) = av;
}
}
}
if ((l % 5000) == 4999) {
pm_message( "%ld craters generated of %ld (%ld%% done)",
l + 1, ncraters, ((l + 1) * 100) / ncraters);
}
}
i = MAX((slopemax - slopemin) + 1, 1);
MALLOCARRAY(slopemap, i);
if (slopemap == NULL)
pm_error("out of memory allocating slope map");
for (i = slopemin; i <= slopemax; i++) {
/* Confused? OK, we're using the left-to-right slope to
calculate a shade based on the sine of the angle with
respect to the vertical (light incident from the left).
Then, with one exponentiation, we account for both the
inherent gamma of the image (ad-hoc), and the
user-specified display gamma, using the identity:
(x^y)^z = (x^(y*z)) */
slopemap[i - slopemin] = i > 0 ?
(128 + 127.0 *
pow(sin((M_PI / 2) * i / slopemax),
dgamma * ImageGamma)) :
(128 - 127.0 *
pow(sin((M_PI / 2) * i / slopemin),
dgamma * ImageGamma));
}
/* Generate the screen image. */
pgm_writepgminit(stdout, SCRX, SCRY, RGBQuant, FALSE);
pixels = pgm_allocrow(SCRX);
for (y = 0; y < SCRY; y++) {
gray *pix = pixels;
for (x = 0; x < SCRX; x++) {
int j = *Auxadr(x+1, y) - *Auxadr(x, y);
j = MIN(MAX(slopemin, j), slopemax);
*pix++ = slopemap[j - slopemin];
}
pgm_writepgmrow(stdout, pixels, SCRX, RGBQuant, FALSE);
}
pm_close(stdout);
pgm_freerow(pixels);
#undef Auxadr
#undef Scradr
free((char *) slopemap);
free((char *) aux);
}
/* MAIN -- Main program. */
int main(argc, argv)
int argc;
char *argv[];
{
int i;
Boolean gammaspec = FALSE, numspec = FALSE,
widspec = FALSE, hgtspec = FALSE;
const char * const usage = "[-number <n>] [-width|-xsize <w>]\n\
[-height|-ysize <h>] [-gamma <f>]";
DepthBias = sqrt(0.5); /* Get exact value for depth bias */
pgm_init(&argc, argv);
i = 1;
while ((i < argc) && (argv[i][0] == '-') && (argv[i][1] != '\0')) {
if (pm_keymatch(argv[i], "-gamma", 2)) {
if (gammaspec) {
pm_error("already specified gamma correction");
}
i++;
if ((i == argc) || (sscanf(argv[i], "%lf", &dgamma) != 1))
pm_usage(usage);
if (dgamma <= 0.0) {
pm_error("gamma correction must be greater than 0");
}
gammaspec = TRUE;
} else if (pm_keymatch(argv[i], "-number", 2)) {
if (numspec) {
pm_error("already specified number of craters");
}
i++;
if ((i == argc) || (sscanf(argv[i], "%ld", &ncraters) != 1))
pm_usage(usage);
if (ncraters <= 0) {
pm_error("number of craters must be greater than 0!");
}
numspec = TRUE;
} else if (pm_keymatch(argv[i], "-xsize", 2) ||
pm_keymatch(argv[i], "-width", 2)) {
if (widspec) {
pm_error("already specified a width/xsize");
}
i++;
if ((i == argc) || (sscanf(argv[i], "%d", &screenxsize) != 1))
pm_usage(usage);
if (screenxsize <= 0) {
pm_error("screen width must be greater than 0");
}
widspec = TRUE;
} else if (pm_keymatch(argv[i], "-ysize", 2) ||
pm_keymatch(argv[i], "-height", 2)) {
if (hgtspec) {
pm_error("already specified a height/ysize");
}
i++;
if ((i == argc) || (sscanf(argv[i], "%d", &screenysize) != 1))
pm_usage(usage);
if (screenxsize <= 0) {
pm_error("screen height must be greater than 0");
}
hgtspec = TRUE;
} else {
pm_usage(usage);
}
i++;
}
initseed();
gencraters();
exit(0);
}
|