1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
|
/* pnmscale.c - read a portable anymap and scale it
**
** Copyright (C) 1989, 1991 by Jef Poskanzer.
**
** Permission to use, copy, modify, and distribute this software and its
** documentation for any purpose and without fee is hereby granted, provided
** that the above copyright notice appear in all copies and that both that
** copyright notice and this permission notice appear in supporting
** documentation. This software is provided "as is" without express or
** implied warranty.
**
*/
/*
DON'T ADD NEW FUNCTION TO THIS PROGRAM. ADD IT TO pamscale.c
INSTEAD.
*/
#include <math.h>
#include <string.h>
#include "pnm.h"
#include "shhopt.h"
/* The pnm library allows us to code this program without branching cases
for PGM and PPM, but we do the branch anyway to speed up processing of
PGM images.
*/
struct cmdline_info {
/* All the information the user supplied in the command line,
in a form easy for the program to use.
*/
const char *input_filespec; /* Filespecs of input files */
unsigned int xsize;
unsigned int ysize;
float xscale;
float yscale;
unsigned int xbox;
unsigned int ybox;
unsigned int pixels;
unsigned int verbose;
unsigned int nomix;
};
static void
parse_command_line(int argc, char ** argv,
struct cmdline_info *cmdline_p) {
/*----------------------------------------------------------------------------
Note that the file spec array we return is stored in the storage that
was passed to us as the argv array.
-----------------------------------------------------------------------------*/
optEntry *option_def = malloc( 100*sizeof( optEntry ) );
/* Instructions to optParseOptions3 on how to parse our options.
*/
optStruct3 opt;
unsigned int option_def_index;
unsigned int xysize;
int xsize, ysize, pixels;
int reduce;
float xscale, yscale, scale_parm;
option_def_index = 0; /* incremented by OPTENTRY */
OPTENT3(0, "xsize", OPT_UINT, &xsize, NULL, 0);
OPTENT3(0, "width", OPT_UINT, &xsize, NULL, 0);
OPTENT3(0, "ysize", OPT_UINT, &ysize, NULL, 0);
OPTENT3(0, "height", OPT_UINT, &ysize, NULL, 0);
OPTENT3(0, "xscale", OPT_FLOAT, &xscale, NULL, 0);
OPTENT3(0, "yscale", OPT_FLOAT, &yscale, NULL, 0);
OPTENT3(0, "pixels", OPT_UINT, &pixels, NULL, 0);
OPTENT3(0, "reduce", OPT_UINT, &reduce, NULL, 0);
OPTENT3(0, "xysize", OPT_FLAG, NULL, &xysize, 0);
OPTENT3(0, "verbose", OPT_FLAG, NULL, &cmdline_p->verbose, 0);
OPTENT3(0, "nomix", OPT_FLAG, NULL, &cmdline_p->nomix, 0);
/* Set the defaults. -1 = unspecified */
/* (Now that we're using ParseOptions3, we don't have to do this -1
nonsense, but we don't want to risk screwing these complex
option compatibilities up, so we'll convert that later.
*/
xsize = -1;
ysize = -1;
xscale = -1.0;
yscale = -1.0;
pixels = -1;
reduce = -1;
opt.opt_table = option_def;
opt.short_allowed = FALSE; /* We have no short (old-fashioned) options */
opt.allowNegNum = FALSE; /* We have no parms that are negative numbers */
optParseOptions3( &argc, argv, opt, sizeof(opt), 0 );
/* Uses and sets argc, argv, and some of *cmdline_p and others. */
if (xsize == 0)
pm_error("-xsize/width must be greater than zero.");
if (ysize == 0)
pm_error("-ysize/height must be greater than zero.");
if (xscale != -1.0 && xscale <= 0.0)
pm_error("-xscale must be greater than zero.");
if (yscale != -1.0 && yscale <= 0.0)
pm_error("-yscale must be greater than zero.");
if (reduce <= 0 && reduce != -1)
pm_error("-reduce must be greater than zero.");
if (xsize != -1 && xscale != -1)
pm_error("Cannot specify both -xsize/width and -xscale.");
if (ysize != -1 && yscale != -1)
pm_error("Cannot specify both -ysize/height and -yscale.");
if (xysize &&
(xsize != -1 || xscale != -1 || ysize != -1 || yscale != -1 ||
reduce != -1 || pixels != -1) )
pm_error("Cannot specify -xysize with other dimension options.");
if (pixels != -1 &&
(xsize != -1 || xscale != -1 || ysize != -1 || yscale != -1 ||
reduce != -1) )
pm_error("Cannot specify -pixels with other dimension options.");
if (reduce != -1 &&
(xsize != -1 || xscale != -1 || ysize != -1 || yscale != -1) )
pm_error("Cannot specify -reduce with other dimension options.");
if (pixels == 0)
pm_error("-pixels must be greater than zero");
/* Get the program parameters */
if (xysize) {
/* parameters are xbox, ybox, and optional filespec */
scale_parm = 0.0;
if (argc-1 < 2)
pm_error("You must supply at least two parameters with -xysize:\n "
"x and y dimensions of the bounding box.");
else if (argc-1 > 3)
pm_error("Too many arguments. With -xysize, you need 2 or 3 "
"arguments.");
else {
char * endptr;
cmdline_p->xbox = strtol(argv[1], &endptr, 10);
if (strlen(argv[1]) > 0 && *endptr != '\0')
pm_error("horizontal xysize not an integer: '%s'", argv[1]);
if (cmdline_p->xbox <= 0)
pm_error("horizontal size is not positive: %d",
cmdline_p->xbox);
cmdline_p->ybox = strtol(argv[2], &endptr, 10);
if (strlen(argv[2]) > 0 && *endptr != '\0')
pm_error("vertical xysize not an integer: '%s'", argv[2]);
if (cmdline_p->ybox <= 0)
pm_error("vertical size is not positive: %d",
cmdline_p->ybox);
if (argc-1 < 3)
cmdline_p->input_filespec = "-";
else
cmdline_p->input_filespec = argv[3];
}
} else {
cmdline_p->xbox = 0;
cmdline_p->ybox = 0;
if (xsize == -1 && xscale == -1 && ysize == -1 && yscale == -1
&& pixels == -1 && reduce == -1) {
/* parameters are scale factor and optional filespec */
if (argc-1 < 1)
pm_error("With no dimension options, you must supply at least "
"one parameter: \nthe scale factor.");
else {
scale_parm = atof(argv[1]);
if (scale_parm == 0.0)
pm_error("The scale parameter %s is not "
"a positive number.",
argv[1]);
else {
if (argc-1 < 2)
cmdline_p->input_filespec = "-";
else
cmdline_p->input_filespec = argv[2];
}
}
} else {
/* Only parameter allowed is optional filespec */
if (argc-1 < 1)
cmdline_p->input_filespec = "-";
else
cmdline_p->input_filespec = argv[1];
if (reduce != -1) {
scale_parm = ((double) 1.0) / ((double) reduce);
pm_message("reducing by %d gives scale factor of %f.",
reduce, scale_parm);
} else
scale_parm = 0.0;
}
}
cmdline_p->xsize = xsize == -1 ? 0 : xsize;
cmdline_p->ysize = ysize == -1 ? 0 : ysize;
cmdline_p->pixels = pixels == -1 ? 0 : pixels;
if (scale_parm) {
cmdline_p->xscale = scale_parm;
cmdline_p->yscale = scale_parm;
} else {
cmdline_p->xscale = xscale == -1.0 ? 0.0 : xscale;
cmdline_p->yscale = yscale == -1.0 ? 0.0 : yscale;
}
}
static void
compute_output_dimensions(const struct cmdline_info cmdline,
const int rows, const int cols,
int * newrowsP, int * newcolsP) {
if (cmdline.pixels) {
if (rows * cols <= cmdline.pixels) {
*newrowsP = rows;
*newcolsP = cols;
} else {
const double scale =
sqrt( (float) cmdline.pixels / ((float) cols * (float) rows));
*newrowsP = rows * scale;
*newcolsP = cols * scale;
}
} else if (cmdline.xbox) {
const double aspect_ratio = (float) cols / (float) rows;
const double box_aspect_ratio =
(float) cmdline.xbox / (float) cmdline.ybox;
if (box_aspect_ratio > aspect_ratio) {
*newrowsP = cmdline.ybox;
*newcolsP = *newrowsP * aspect_ratio + 0.5;
} else {
*newcolsP = cmdline.xbox;
*newrowsP = *newcolsP / aspect_ratio + 0.5;
}
} else {
if (cmdline.xsize)
*newcolsP = cmdline.xsize;
else if (cmdline.xscale)
*newcolsP = cmdline.xscale * cols + .5;
else if (cmdline.ysize)
*newcolsP = cols * ((float) cmdline.ysize/rows) +.5;
else
*newcolsP = cols;
if (cmdline.ysize)
*newrowsP = cmdline.ysize;
else if (cmdline.yscale)
*newrowsP = cmdline.yscale * rows +.5;
else if (cmdline.xsize)
*newrowsP = rows * ((float) cmdline.xsize/cols) +.5;
else
*newrowsP = rows;
}
/* If the calculations above yielded (due to rounding) a zero
dimension, we fudge it up to 1. We do this rather than considering
it a specification error (and dying) because it's friendlier to
automated processes that work on arbitrary input. It saves them
having to check their numbers to avoid catastrophe.
*/
if (*newcolsP < 1) *newcolsP = 1;
if (*newrowsP < 1) *newrowsP = 1;
}
static void
horizontal_scale(const xel inputxelrow[], xel newxelrow[],
const int cols, const int newcols, const float xscale,
const int format, const xelval maxval,
float * const stretchP) {
/*----------------------------------------------------------------------------
Take the input row inputxelrow[], which is 'cols' columns wide, and
scale it by a factor of 'xscale', to create
the output row newxelrow[], which is 'newcols' columns wide.
'format' and 'maxval' describe the Netpbm format of the both input and
output rows.
-----------------------------------------------------------------------------*/
float r, g, b;
float fraccoltofill, fraccolleft;
unsigned int col;
unsigned int newcol;
newcol = 0;
fraccoltofill = 1.0; /* Output column is "empty" now */
r = g = b = 0; /* initial value */
for (col = 0; col < cols; ++col) {
/* Process one pixel from input ('inputxelrow') */
fraccolleft = xscale;
/* Output all columns, if any, that can be filled using information
from this input column, in addition to what's already in the output
column.
*/
while (fraccolleft >= fraccoltofill) {
/* Generate one output pixel in 'newxelrow'. It will consist
of anything accumulated from prior input pixels in 'r','g',
and 'b', plus a fraction of the current input pixel.
*/
switch (PNM_FORMAT_TYPE(format)) {
case PPM_TYPE:
r += fraccoltofill * PPM_GETR(inputxelrow[col]);
g += fraccoltofill * PPM_GETG(inputxelrow[col]);
b += fraccoltofill * PPM_GETB(inputxelrow[col]);
PPM_ASSIGN( newxelrow[newcol],
MIN(maxval, (int) (r + 0.5)),
MIN(maxval, (int) (g + 0.5)),
MIN(maxval, (int) (b + 0.5))
);
break;
default:
g += fraccoltofill * PNM_GET1(inputxelrow[col]);
PNM_ASSIGN1( newxelrow[newcol], MIN(maxval, (int) (g + 0.5)));
break;
}
fraccolleft -= fraccoltofill;
/* Set up to start filling next output column */
newcol++;
fraccoltofill = 1.0;
r = g = b = 0.0;
}
/* There's not enough left in the current input pixel to fill up
a whole output column, so just accumulate the remainder of the
pixel into the current output column.
*/
if (fraccolleft > 0.0) {
switch (PNM_FORMAT_TYPE(format)) {
case PPM_TYPE:
r += fraccolleft * PPM_GETR(inputxelrow[col]);
g += fraccolleft * PPM_GETG(inputxelrow[col]);
b += fraccolleft * PPM_GETB(inputxelrow[col]);
break;
default:
g += fraccolleft * PNM_GET1(inputxelrow[col]);
break;
}
fraccoltofill -= fraccolleft;
}
}
if (newcol < newcols-1 || newcol > newcols)
pm_error("Internal error: last column filled is %d, but %d "
"is the rightmost output column.",
newcol, newcols-1);
if (newcol < newcols ) {
/* We were still working on the last output column when we
ran out of input columns. This would be because of rounding
down, and we should be missing only a tiny fraction of that
last output column.
*/
*stretchP = fraccoltofill;
switch (PNM_FORMAT_TYPE(format)) {
case PPM_TYPE:
r += fraccoltofill * PPM_GETR(inputxelrow[cols-1]);
g += fraccoltofill * PPM_GETG(inputxelrow[cols-1]);
b += fraccoltofill * PPM_GETB(inputxelrow[cols-1]);
PPM_ASSIGN(newxelrow[newcol],
MIN(maxval, (int) (r + 0.5)),
MIN(maxval, (int) (g + 0.5)),
MIN(maxval, (int) (b + 0.5))
);
break;
default:
g += fraccoltofill * PNM_GET1(inputxelrow[cols-1]);
PNM_ASSIGN1( newxelrow[newcol], MIN(maxval, (int) (g + 0.5)));
break;
}
} else
*stretchP = 0;
}
static void
zeroAccum(int const cols, int const format,
float rs[], float gs[], float bs[]) {
int col;
for ( col = 0; col < cols; ++col )
rs[col] = gs[col] = bs[col] = 0.0;
}
static void
accumOutputRow(xel * const xelrow, float const fraction,
float rs[], float gs[], float bs[],
int const cols, int const format) {
/*----------------------------------------------------------------------------
Take 'fraction' times the color in row xelrow and add it to
rs/gs/bs. 'fraction' is less than 1.0.
-----------------------------------------------------------------------------*/
int col;
switch ( PNM_FORMAT_TYPE(format) ) {
case PPM_TYPE:
for ( col = 0; col < cols; ++col ) {
rs[col] += fraction * PPM_GETR(xelrow[col]);
gs[col] += fraction * PPM_GETG(xelrow[col]);
bs[col] += fraction * PPM_GETB(xelrow[col]);
}
break;
default:
for ( col = 0; col < cols; ++col)
gs[col] += fraction * PNM_GET1(xelrow[col]);
break;
}
}
static void
makeRow(xel * const xelrow, float rs[], float gs[], float bs[],
int const cols, xelval const maxval, int const format) {
/*----------------------------------------------------------------------------
Make an xel row at 'xelrow' with format 'format' and
maxval 'maxval' out of the color values in
rs[], gs[], and bs[].
-----------------------------------------------------------------------------*/
int col;
switch ( PNM_FORMAT_TYPE(format) ) {
case PPM_TYPE:
for ( col = 0; col < cols; ++col) {
PPM_ASSIGN(xelrow[col],
MIN(maxval, (int) (rs[col] + 0.5)),
MIN(maxval, (int) (gs[col] + 0.5)),
MIN(maxval, (int) (bs[col] + 0.5))
);
}
break;
default:
for ( col = 0; col < cols; ++col ) {
PNM_ASSIGN1(xelrow[col],
MIN(maxval, (int) (gs[col] + 0.5)));
}
break;
}
}
static void
scaleWithMixing(FILE * const ifP,
int const cols, int const rows,
xelval const maxval, int const format,
int const newcols, int const newrows,
xelval const newmaxval, int const newformat,
float const xscale, float const yscale,
bool const verbose) {
/*----------------------------------------------------------------------------
Scale the image on input file 'ifP' (which is described by
'cols', 'rows', 'format', and 'maxval') by xscale horizontally and
yscale vertically and write the result to standard output as format
'newformat' and with maxval 'newmaxval'.
The input file is positioned past the header, to the beginning of the
raster. The output file is too.
Mix colors from input rows together in the output rows.
-----------------------------------------------------------------------------*/
/* Here's how we think of the color mixing scaling operation:
First, I'll describe scaling in one dimension. Assume we have
a one row image. A raster row is ordinarily a sequence of
discrete pixels which have no width and no distance between
them -- only a sequence. Instead, think of the raster row as a
bunch of pixels 1 unit wide adjacent to each other. For
example, we are going to scale a 100 pixel row to a 150 pixel
row. Imagine placing the input row right above the output row
and stretching it so it is the same size as the output row. It
still contains 100 pixels, but they are 1.5 units wide each.
Our goal is to make the output row look as much as possible
like the input row, while observing that a pixel can be only
one color.
Output Pixel 0 is completely covered by Input Pixel 0, so we
make Output Pixel 0 the same color as Input Pixel 0. Output
Pixel 1 is covered half by Input Pixel 0 and half by Input
Pixel 1. So we make Output Pixel 1 a 50/50 mix of Input Pixels
0 and 1. If you stand back far enough, input and output will
look the same.
This works for all scale factors, both scaling up and scaling down.
This program always stretches or squeezes the input row to be the
same length as the output row; The output row's pixels are always
1 unit wide.
The same thing works in the vertical direction. We think of
rows as stacked strips of 1 unit height. We conceptually
stretch the image vertically first (same process as above, but
in place of a single-color pixels, we have a vector of colors).
Then we take each row this vertical stretching generates and
stretch it horizontally.
*/
xel* xelrow; /* An input row */
xel* vertScaledRow;
/* An output row after vertical scaling, but before horizontal
scaling
*/
xel* newxelrow;
float rowsleft;
/* The number of rows of output that need to be formed from the
current input row (the one in xelrow[]), less the number that
have already been formed (either in the rs/gs/bs accumulators
or output to the file). This can be fractional because of the
way we define rows as having height.
*/
float fracrowtofill;
/* The fraction of the current output row (the one in vertScaledRow[])
that hasn't yet been filled in from an input row.
*/
float *rs, *gs, *bs;
/* The red, green, and blue color intensities so far accumulated
from input rows for the current output row.
*/
int rowsread;
/* Number of rows of the input file that have been read */
int row;
xelrow = pnm_allocrow(cols);
vertScaledRow = pnm_allocrow(cols);
rs = (float*) pm_allocrow( cols, sizeof(float) );
gs = (float*) pm_allocrow( cols, sizeof(float) );
bs = (float*) pm_allocrow( cols, sizeof(float) );
rowsread = 0;
rowsleft = 0.0;
zeroAccum(cols, format, rs, gs, bs);
fracrowtofill = 1.0;
newxelrow = pnm_allocrow( newcols );
for ( row = 0; row < newrows; ++row ) {
/* First scale Y from xelrow[] into vertScaledRow[]. */
if ( newrows == rows ) { /* shortcut Y scaling if possible */
pnm_readpnmrow( ifP, vertScaledRow, cols, newmaxval, format );
} else {
while (fracrowtofill > 0) {
if (rowsleft <= 0.0) {
if (rowsread < rows) {
pnm_readpnmrow(ifP, xelrow, cols, newmaxval, format);
++rowsread;
} else {
/* We need another input row to fill up this
output row, but there aren't any more.
That's because of rounding down on our
scaling arithmetic. So we go ahead with
the data from the last row we read, which
amounts to stretching out the last output
row.
*/
if (verbose)
pm_message("%f of bottom row stretched due to "
"arithmetic imprecision",
fracrowtofill);
}
rowsleft = yscale;
}
if (rowsleft < fracrowtofill) {
accumOutputRow(xelrow, rowsleft, rs, gs, bs,
cols, format);
fracrowtofill -= rowsleft;
rowsleft = 0.0;
} else {
accumOutputRow(xelrow, fracrowtofill, rs, gs, bs,
cols, format);
rowsleft = rowsleft - fracrowtofill;
fracrowtofill = 0.0;
}
}
makeRow(vertScaledRow, rs, gs, bs, cols, newmaxval, format);
zeroAccum(cols, format, rs, gs, bs);
fracrowtofill = 1.0;
}
/* Now scale vertScaledRow horizontally into newxelrow and write
it out.
*/
if (newcols == cols) /* shortcut X scaling if possible */
pnm_writepnmrow(stdout, vertScaledRow, newcols,
newmaxval, newformat, 0);
else {
float stretch;
horizontal_scale(vertScaledRow, newxelrow, cols, newcols, xscale,
format, newmaxval, &stretch);
if (verbose && row == 0)
pm_message("%f of right column stretched due to "
"arithmetic imprecision",
stretch);
pnm_writepnmrow(stdout, newxelrow, newcols,
newmaxval, newformat, 0 );
}
}
pnm_freerow(newxelrow);
pnm_freerow(xelrow);
pnm_freerow(vertScaledRow);
}
static void
scaleWithoutMixing(FILE * const ifP,
int const cols, int const rows,
xelval const maxval, int const format,
int const newcols, int const newrows,
xelval const newmaxval, int const newformat,
float const xscale, float const yscale) {
/*----------------------------------------------------------------------------
Scale the image on input file 'ifP' (which is described by
'cols', 'rows', 'format', and 'maxval') by xscale horizontally and
yscale vertically and write the result to standard output as format
'newformat' and with maxval 'newmaxval'.
The input file is positioned past the header, to the beginning of the
raster. The output file is too.
Don't mix colors from different input pixels together in the output
pixels. Each output pixel is an exact copy of some corresponding
input pixel.
-----------------------------------------------------------------------------*/
xel* xelrow; /* An input row */
xel* newxelrow;
int row;
int rowInXelrow;
xelrow = pnm_allocrow(cols);
rowInXelrow = -1;
newxelrow = pnm_allocrow(newcols);
for (row = 0; row < newrows; ++row) {
int col;
int const inputRow = (int) (row / yscale);
for (; rowInXelrow < inputRow; ++rowInXelrow)
pnm_readpnmrow(ifP, xelrow, cols, newmaxval, format);
for (col = 0; col < newcols; ++col) {
int const inputCol = (int) (col / xscale);
newxelrow[col] = xelrow[inputCol];
}
pnm_writepnmrow(stdout, newxelrow, newcols,
newmaxval, newformat, 0 );
}
pnm_freerow(xelrow);
pnm_freerow(newxelrow);
}
int
main(int argc, char **argv ) {
struct cmdline_info cmdline;
FILE* ifP;
int rows, cols, format, newformat, newrows, newcols;
xelval maxval, newmaxval;
float xscale, yscale;
pnm_init( &argc, argv );
parse_command_line(argc, argv, &cmdline);
ifP = pm_openr(cmdline.input_filespec);
pnm_readpnminit( ifP, &cols, &rows, &maxval, &format );
/* Promote PBM files to PGM. */
if ( PNM_FORMAT_TYPE(format) == PBM_TYPE ) {
newformat = PGM_TYPE;
newmaxval = PGM_MAXMAXVAL;
pm_message( "promoting from PBM to PGM" );
} else {
newformat = format;
newmaxval = maxval;
}
compute_output_dimensions(cmdline, rows, cols, &newrows, &newcols);
/* We round the scale factor down so that we never fill up the
output while (a fractional pixel of) input remains unused. Instead,
we will run out of input while (a fractional pixel of) output is
unfilled -- which is easier for our algorithm to handle.
*/
xscale = (float) newcols / cols;
yscale = (float) newrows / rows;
if (cmdline.verbose) {
pm_message("Scaling by %f horizontally to %d columns.",
xscale, newcols );
pm_message("Scaling by %f vertically to %d rows.",
yscale, newrows);
}
if (xscale * cols < newcols - 1 ||
yscale * rows < newrows - 1)
pm_error("Arithmetic precision of this program is inadequate to "
"do the specified scaling. Use a smaller input image "
"or a slightly different scale factor.");
pnm_writepnminit(stdout, newcols, newrows, newmaxval, newformat, 0);
if (cmdline.nomix)
scaleWithoutMixing(ifP, cols, rows, maxval, format,
newcols, newrows, newmaxval, newformat,
xscale, yscale);
else
scaleWithMixing(ifP, cols, rows, maxval, format,
newcols, newrows, newmaxval, newformat,
xscale, yscale, cmdline.verbose);
pm_close(ifP);
pm_close(stdout);
exit(0);
}
|