1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
|
/* pnmconvol.c - general MxN convolution on a Netpbm image
**
** Major rewriting by Mike Burns
** Copyright (C) 1994, 1995 by Mike Burns (burns@chem.psu.edu)
**
** Copyright (C) 1989, 1991 by Jef Poskanzer.
**
** Permission to use, copy, modify, and distribute this software and its
** documentation for any purpose and without fee is hereby granted, provided
** that the above copyright notice appear in all copies and that both that
** copyright notice and this permission notice appear in supporting
** documentation. This software is provided "as is" without express or
** implied warranty.
*/
/* A change history is at the bottom */
#include <stdlib.h>
#include <assert.h>
#include "pm_c_util.h"
#include "mallocvar.h"
#include "nstring.h"
#include "token.h"
#include "io.h"
#include "shhopt.h"
#include "pam.h"
static sample const
clipSample(sample const unclipped,
sample const maxval) {
return MIN(maxval, MAX(0, unclipped));
}
static void
validateKernelDimensions(unsigned int const width,
unsigned int const height) {
if (height == 0)
pm_error("Convolution matrix height is zero");
if (width == 0)
pm_error("Convolution matrix width is zero");
if (height % 2 != 1)
pm_error("The convolution matrix must have an odd number of rows. "
"Yours has %u", height);
if (width % 2 != 1)
pm_error("The convolution matrix must have an odd number of columns. "
"Yours has %u", width);
}
struct matrixOpt {
unsigned int width;
unsigned int height;
float ** weight;
};
struct cmdlineInfo {
/* All the information the user supplied in the command line,
in a form easy for the program to use.
*/
const char * inputFileName; /* '-' if stdin */
const char * pnmMatrixFileName;
unsigned int nooffset;
const char ** matrixfile;
unsigned int matrixSpec;
struct matrixOpt matrix;
unsigned int normalize;
unsigned int bias;
};
static void
countMatrixOptColumns(const char * const rowString,
unsigned int * const colCtP) {
const char * cursor;
unsigned int colCt;
for (cursor = &rowString[0], colCt = 0; *cursor; ) {
const char * colString;
const char * next;
const char * error;
pm_gettoken(cursor, ',', &colString, &next, &error);
if (error) {
pm_error("Unable to parse -matrix value row '%s'. %s",
rowString, error);
pm_strfree(error);
} else {
++colCt;
cursor = next;
if (*cursor) {
assert(*cursor == ',');
++cursor; /* advance over comma to next column */
}
pm_strfree(colString);
}
}
*colCtP = colCt;
}
static void
getMatrixOptDimensions(const char * const matrixOptString,
unsigned int * const widthP,
unsigned int * const heightP) {
/*----------------------------------------------------------------------------
Given the value of a -matrix option, 'matrixOptString', return the
height and width of the matrix it describes.
If it's not valid enough to determine that (e.g. it has rows of different
widths), abort.
An example of 'matrixOptString':
".04,.15,.04;.15,.24,.15;.04,.15,.04"
-----------------------------------------------------------------------------*/
unsigned int rowCt;
const char * cursor;
for (cursor = &matrixOptString[0], rowCt = 0; *cursor; ) {
const char * rowString;
const char * next;
const char * error;
pm_gettoken(cursor, ';', &rowString, &next, &error);
if (error) {
pm_error("Unable to parse -matrix value '%s'. %s",
matrixOptString, error);
pm_strfree(error);
} else {
unsigned int colCt;
++rowCt;
countMatrixOptColumns(rowString, &colCt);
if (rowCt == 1)
*widthP = colCt;
else {
if (colCt != *widthP)
pm_error("-matrix option value contains rows of different "
"widths: %u and %u", *widthP, colCt);
}
pm_strfree(rowString);
cursor = next;
if (*cursor) {
assert(*cursor == ';');
++cursor; /* advance cursor over semicolon to next row */
}
}
}
*heightP = rowCt;
}
static void
parseMatrixRow(const char * const matrixOptRowString,
unsigned int const width,
float * const weight) {
unsigned int col;
const char * cursor;
for (col = 0, cursor = &matrixOptRowString[0]; col < width; ++col) {
const char * colString;
const char * next;
const char * error;
pm_gettoken(cursor, ',', &colString, &next, &error);
if (error) {
pm_error("Failed parsing a row in the -matrix value. %s", error);
pm_strfree(error);
} else {
if (colString[0] == '\0')
pm_error("The Column %u element of the row '%s' in the "
"-matrix value is a null string", col,
matrixOptRowString);
else {
char * trailingJunk;
weight[col] = strtod(colString, &trailingJunk);
if (*trailingJunk != '\0')
pm_error("The Column %u element of the row '%s' in the "
"-matrix value is not a valid floating point "
"number", col, matrixOptRowString);
}
pm_strfree(colString);
cursor = next;
if (*cursor) {
assert(*cursor == ',');
++cursor; /* advance over comma to next column */
}
}
}
}
static void
parseMatrixOptWithDimensions(const char * const matrixOptString,
unsigned int const width,
unsigned int const height,
float ** const weight) {
unsigned int row;
const char * cursor;
for (row = 0, cursor = &matrixOptString[0]; row < height; ++row) {
const char * rowString;
const char * next;
const char * error;
pm_gettoken(cursor, ';', &rowString, &next, &error);
if (error) {
pm_error("Failed parsing -matrix value. %s", error);
pm_strfree(error);
} else {
parseMatrixRow(rowString, width, weight[row]);
pm_strfree(rowString);
cursor = next;
if (*cursor) {
assert(*cursor == ';');
++cursor; /* advance over semicolon to next row */
}
}
}
}
static void
parseMatrixOpt(const char * const matrixOptString,
struct matrixOpt * const matrixOptP) {
/*----------------------------------------------------------------------------
An example of 'matrixOptString':
".04,.15,.04;.15,.24,.15;.04,.15,.04"
-----------------------------------------------------------------------------*/
unsigned int width, height;
getMatrixOptDimensions(matrixOptString, &width, &height);
validateKernelDimensions(width, height);
matrixOptP->height = height;
matrixOptP->width = width;
{
unsigned int row;
MALLOCARRAY_NOFAIL(matrixOptP->weight, height);
for (row = 0; row < height; ++row)
MALLOCARRAY_NOFAIL(matrixOptP->weight[row], width);
}
parseMatrixOptWithDimensions(matrixOptString, width, height,
matrixOptP->weight);
}
static void
validateMatrixfileOpt(const char ** const matrixFileOpt) {
if (matrixFileOpt[0] == NULL)
pm_error("You specified an empty string as the value of "
"-matrixfile. You must specify at least one file name");
}
static void
parseCommandLine(int argc, char ** argv,
struct cmdlineInfo * const cmdlineP) {
/*----------------------------------------------------------------------------
parse program command line described in Unix standard form by argc
and argv. Return the information in the options as *cmdlineP.
If command line is internally inconsistent (invalid options, etc.),
issue error message to stderr and abort program.
Note that the strings we return are stored in the storage that
was passed to us as the argv array. We also trash *argv.
-----------------------------------------------------------------------------*/
optEntry *option_def;
/* Instructions to pm_optParseOptions3 on how to parse our options.
*/
optStruct3 opt;
unsigned int option_def_index;
unsigned int matrixfileSpec;
const char * matrixOpt;
unsigned int biasSpec;
MALLOCARRAY_NOFAIL(option_def, 100);
option_def_index = 0; /* incremented by OPTENT3 */
OPTENT3(0, "matrix", OPT_STRING, &matrixOpt,
&cmdlineP->matrixSpec, 0)
OPTENT3(0, "matrixfile", OPT_STRINGLIST, &cmdlineP->matrixfile,
&matrixfileSpec, 0)
OPTENT3(0, "nooffset", OPT_FLAG, NULL,
&cmdlineP->nooffset, 0);
OPTENT3(0, "normalize", OPT_FLAG, NULL,
&cmdlineP->normalize, 0);
OPTENT3(0, "bias", OPT_UINT, &cmdlineP->bias,
&biasSpec, 0);
opt.opt_table = option_def;
opt.short_allowed = FALSE; /* We have no short (old-fashioned) options */
opt.allowNegNum = FALSE; /* We have no parms that are negative numbers */
pm_optParseOptions3( &argc, argv, opt, sizeof(opt), 0);
/* Uses and sets argc, argv, and some of *cmdlineP and others. */
if (!biasSpec)
cmdlineP->bias = 0;
if (matrixfileSpec && cmdlineP->matrixSpec)
pm_error("You can't specify by -matrix and -matrixfile");
if (cmdlineP->matrixSpec)
parseMatrixOpt(matrixOpt, &cmdlineP->matrix);
if (matrixfileSpec)
validateMatrixfileOpt(cmdlineP->matrixfile);
else
cmdlineP->matrixfile = NULL;
if (matrixfileSpec || cmdlineP->matrixSpec) {
if (cmdlineP->nooffset)
pm_error("-nooffset is meaningless and not allowed with "
"-matrix or -matrixfile");
cmdlineP->pnmMatrixFileName = NULL;
if (argc-1 >= 1)
cmdlineP->inputFileName = argv[1];
else
cmdlineP->inputFileName = "-";
if (argc-1 > 1)
pm_error("Too many arguments. When you specify -matrix "
"or -matrixfile, the only allowable non-option "
"argument is the input file name");
} else {
/* It's an old style invocation we accept for backward compatibility */
if (argc-1 < 1)
pm_error("You must specify either -matrix or -matrixfile "
"at least one argument which names an old-style PGM "
"convolution matrix file.");
else {
cmdlineP->pnmMatrixFileName = argv[1];
if (argc-1 >= 2)
cmdlineP->inputFileName = argv[2];
else
cmdlineP->inputFileName = "-";
if (argc-1 > 2)
pm_error("Too many arguments. Only acceptable arguments are: "
"convolution matrix file name and input file name");
}
}
}
struct ConvKernel {
unsigned int cols;
/* Width of the convolution window */
unsigned int rows;
/* Height of the convolution window */
unsigned int planes;
/* Depth of the kernel -- this had better be the same as the
depth of the image being convolved.
*/
float ** weight[3];
/* weight[PLANE][ROW][COL] is the weight to give to Plane PLANE
of the pixel at row ROW, column COL within the convolution window.
One means full weight.
It can have magnitude greater than or less than one. It can be
positive or negative.
*/
unsigned int bias;
/* The amount to be added to the linear combination of sample values.
We take a little liberty with the term "convolution kernel" to
include this value, since convolution per se does not involve any
such biasing.
*/
};
static void
warnBadKernel(struct ConvKernel * const convKernelP) {
float sum[3];
unsigned int plane;
unsigned int row;
for (plane = 0; plane < convKernelP->planes; ++plane)
sum[plane] = 0.0; /* initial value */
for (row = 0; row < convKernelP->rows; ++row) {
unsigned int col;
for (col = 0; col < convKernelP->cols; ++col) {
unsigned int plane;
for (plane = 0; plane < convKernelP->planes; ++plane)
sum[plane] += convKernelP->weight[plane][row][col];
}
}
if (convKernelP->planes == 3) {
unsigned int plane;
bool biased, negative;
for (plane = 0, biased = false, negative = false;
plane < convKernelP->planes;
++plane) {
if (sum[plane] < 0.9 || sum[plane] > 1.1)
biased = true;
if (sum[plane] < 0.0)
negative = true;
}
if (biased) {
pm_message("WARNING - this convolution matrix is biased. "
"red, green, and blue average weights: %f, %f, %f "
"(unbiased would be 1).",
sum[PAM_RED_PLANE],
sum[PAM_GRN_PLANE],
sum[PAM_BLU_PLANE]);
if (negative)
pm_message("Maybe you want the -nooffset option?");
}
} else if (convKernelP->planes == 1) {
if (sum[0] < 0.9 || sum[0] > 1.1)
pm_message("WARNING - this convolution matrix is biased. "
"average weight = %f (unbiased would be 1)",
sum[0]);
if (sum[0] < 0.0)
pm_message("Maybe you want the -nooffset option?");
}
}
static void
convKernelCreatePnm(struct pam * const cpamP,
tuple * const * const ctuples,
unsigned int const depth,
bool const offsetPnm,
struct ConvKernel ** const convKernelPP) {
/*----------------------------------------------------------------------------
Compute the convolution matrix in normalized form from the PGM form
'ctuples'/'cpamP'. Each element of the output matrix is the actual weight
we give an input pixel -- i.e. the thing by which we multiple a value from
the input image.
'depth' is the required number of planes in the kernel. If 'ctuples' has
fewer planes than that, we duplicate as necessary. E.g. if 'ctuples' is
from a PGM input file and we're convolving a PPM image, we'll make a
3-plane convolution kernel by repeating the one plane in 'ctuples'. If
'ctuples' has more planes than specified, we ignore the higher numbered
ones.
'offsetPnm' means the PNM convolution matrix is defined in offset form so
that it can represent negative values. E.g. with maxval 100, 50 means
0, 100 means 50, and 0 means -50. If 'offsetPgm' is false, 0 means 0
and there are no negative weights.
-----------------------------------------------------------------------------*/
double const scale = (offsetPnm ? 2.0 : 1.0) / cpamP->maxval;
double const offset = offsetPnm ? - 1.0 : 0.0;
unsigned int const planes = MIN(3, depth);
struct ConvKernel * convKernelP;
unsigned int plane;
MALLOCVAR_NOFAIL(convKernelP);
convKernelP->cols = cpamP->width;
convKernelP->rows = cpamP->height;
convKernelP->planes = planes;
for (plane = 0; plane < planes; ++plane) {
unsigned int row;
MALLOCARRAY_NOFAIL(convKernelP->weight[plane], cpamP->height);
for (row = 0; row < cpamP->height; ++row) {
unsigned int col;
MALLOCARRAY_NOFAIL(convKernelP->weight[plane][row], cpamP->width);
for (col = 0; col < cpamP->width; ++col) {
sample const inValue = plane < cpamP->depth ?
ctuples[row][col][plane] : ctuples[row][col][0];
convKernelP->weight[plane][row][col] =
inValue * scale + offset;
}
}
}
convKernelP->bias = 0;
*convKernelPP = convKernelP;
}
static void
convKernelDestroy(struct ConvKernel * const convKernelP) {
unsigned int plane;
for (plane = 0; plane < convKernelP->planes; ++plane) {
unsigned int row;
for (row = 0; row < convKernelP->rows; ++row)
free(convKernelP->weight[plane][row]);
free(convKernelP->weight[plane]);
}
free(convKernelP);
}
static void
normalizeKernelPlane(struct ConvKernel * const convKernelP,
unsigned int const plane) {
unsigned int row;
float sum;
for (row = 0, sum = 0.0; row < convKernelP->rows; ++row) {
unsigned int col;
for (col = 0; col < convKernelP->cols; ++col) {
sum += convKernelP->weight[plane][row][col];
}
}
{
float const scaler = 1.0/sum;
unsigned int row;
for (row = 0; row < convKernelP->rows; ++row) {
unsigned int col;
for (col = 0; col < convKernelP->cols; ++col)
convKernelP->weight[plane][row][col] *= scaler;
}
}
}
static void
normalizeKernel(struct ConvKernel * const convKernelP) {
/*----------------------------------------------------------------------------
Modify *convKernelP by scaling every weight in a plane by the same factor
such that the weights in the plane all add up to 1.
-----------------------------------------------------------------------------*/
unsigned int plane;
for (plane = 0; plane < convKernelP->planes; ++plane)
normalizeKernelPlane(convKernelP, plane);
}
static void
getKernelPnm(const char * const fileName,
unsigned int const depth,
bool const offset,
struct ConvKernel ** const convKernelPP) {
/*----------------------------------------------------------------------------
Get the convolution kernel from the PNM file named 'fileName'.
'offset' means the PNM convolution matrix is defined in offset form so
that it can represent negative values. E.g. with maxval 100, 50 means
0, 100 means 50, and 0 means -50. If 'offsetPgm' is false, 0 means 0
and there are no negative weights.
Make the kernel suitable for convolving an image of depth 'depth'.
Return the kernel as *convKernelPP.
-----------------------------------------------------------------------------*/
struct pam cpam;
FILE * cifP;
tuple ** ctuples;
cifP = pm_openr(fileName);
/* Read in the convolution matrix. */
ctuples = pnm_readpam(cifP, &cpam, PAM_STRUCT_SIZE(tuple_type));
pm_close(cifP);
validateKernelDimensions(cpam.width, cpam.height);
convKernelCreatePnm(&cpam, ctuples, depth, offset, convKernelPP);
}
static void
convKernelCreateMatrixOpt(struct matrixOpt const matrixOpt,
bool const normalize,
unsigned int const depth,
unsigned int const bias,
struct ConvKernel ** const convKernelPP) {
/*----------------------------------------------------------------------------
Create a convolution kernel as described by a -matrix command line
option.
The option value is 'matrixOpt'.
If 'normalize' is true, we normalize whatever numbers the option specifies
so that they add up to one; otherwise, we take the numbers as we find them,
so they may form a biased matrix -- i.e. one which brightens or dims the
image overall.
-----------------------------------------------------------------------------*/
struct ConvKernel * convKernelP;
unsigned int plane;
MALLOCVAR(convKernelP);
convKernelP->cols = matrixOpt.width;
convKernelP->rows = matrixOpt.height;
convKernelP->planes = depth;
for (plane = 0; plane < depth; ++plane) {
unsigned int row;
MALLOCARRAY_NOFAIL(convKernelP->weight[plane], matrixOpt.height);
for (row = 0; row < matrixOpt.height; ++row) {
unsigned int col;
MALLOCARRAY_NOFAIL(convKernelP->weight[plane][row],
matrixOpt.width);
for (col = 0; col < matrixOpt.width; ++col)
convKernelP->weight[plane][row][col] =
matrixOpt.weight[row][col];
}
}
if (normalize)
normalizeKernel(convKernelP);
convKernelP->bias = bias;
*convKernelPP = convKernelP;
}
static void
parsePlaneFileLine(const char * const line,
unsigned int * const widthP,
float ** const weightP) {
unsigned int colCt;
const char * error;
float * weight;
const char * cursor;
colCt = 0; /* initial value */
weight = NULL;
for (cursor = &line[0]; *cursor; ) {
const char * token;
const char * next;
REALLOCARRAY(weight, colCt + 1);
pm_gettoken(cursor, ' ', &token, &next, &error);
if (error)
pm_error("Invalid format of line in convolution matrix file: "
"'%s'. %s", line, error);
cursor = next;
if (*cursor) {
assert(*next == ' ');
++cursor; /* advance over space */
}
if (strlen(token) == 0)
pm_error("Column %u value in line '%s' of convolution matrix file "
"is null string.", colCt, line);
else {
char * trailingJunk;
weight[colCt] = strtod(token, &trailingJunk);
if (*trailingJunk != '\0')
pm_error("The Column %u element of the row '%s' in the "
"-matrix value is not a valid floating point "
"number", colCt, line);
++colCt;
}
pm_strfree(token);
}
*weightP = weight;
*widthP = colCt;
}
static void
readPlaneFile(FILE * const ifP,
float *** const weightP,
unsigned int * const widthP,
unsigned int * const heightP) {
/*----------------------------------------------------------------------------
Read weights of one plane from a file.
The file is a simple matrix, one line per row, with columns separated
by a single space.
Each column is a floating point decimal ASCII number, positive zero,
or negative, with any magnitude.
If the rows don't all have the same number of columns, we abort.
Return the dimensions seen in the file as *widthP and *heightP.
-----------------------------------------------------------------------------*/
unsigned int rowCt;
float ** weight;
unsigned int width;
bool eof;
weight = NULL; /* initial value */
for (eof = false, rowCt = 0; !eof; ) {
const char * error;
const char * line;
pm_freadline(ifP, &line, &error);
if (error)
pm_error("Failed to read row %u "
"from the convolutionmatrix file. %s",
rowCt, error);
else {
if (line == NULL)
eof = true;
else {
REALLOCARRAY(weight, rowCt + 1);
if (weight == NULL)
pm_error("Unable to allocate memory for "
"convolution matrix");
else {
unsigned int thisWidth;
parsePlaneFileLine(line, &thisWidth, &weight[rowCt]);
if (rowCt == 0)
width = thisWidth;
else {
if (thisWidth != width)
pm_error("Multiple row widths in the convolution "
"matrix file: %u columns and %u columns.",
width, thisWidth);
}
++rowCt;
}
pm_strfree(line);
}
}
}
validateKernelDimensions(width, rowCt);
*weightP = weight;
*heightP = rowCt;
*widthP = width;
}
static void
copyWeight(float ** const srcWeight,
unsigned int const width,
unsigned int const height,
float *** const dstWeightP) {
/*----------------------------------------------------------------------------
Make a copy, in dynamically allocated memory, of the weight matrix
'srcWeight', whose dimensions are 'width' by 'height'. Return the
new matrix as *dstWeightP.
-----------------------------------------------------------------------------*/
unsigned int row;
float ** dstWeight;
MALLOCARRAY(dstWeight, height);
if (dstWeight == NULL)
pm_error("Could not allocate memory for convolution matrix");
for (row = 0; row < height; ++row) {
unsigned int col;
MALLOCARRAY(dstWeight[row], width);
if (dstWeight[row] == NULL)
pm_error("Could not allocation memory for a "
"convolution matrix row");
for (col = 0; col < width; ++col) {
dstWeight[row][col] = srcWeight[row][col];
}
}
*dstWeightP = dstWeight;
}
static void
convKernelCreateSimpleFile(const char ** const fileNameList,
bool const normalize,
unsigned int const depth,
unsigned int const bias,
struct ConvKernel ** const convKernelPP) {
/*----------------------------------------------------------------------------
Create a convolution kernel as described by a convolution matrix file.
This is the simple file with floating point numbers in it, not the
legacy pseudo-PNM thing.
The name of the file is 'fileNameList'.
If 'normalize' is true, we normalize whatever numbers we find in the file
so that they add up to one; otherwise, we take the numbers as we find them,
so they may form a biased matrix -- i.e. one which brightens or dims the
image overall.
-----------------------------------------------------------------------------*/
struct ConvKernel * convKernelP;
unsigned int fileCt;
unsigned int planeCt;
unsigned int plane;
unsigned int width, height;
fileCt = 0;
while (fileNameList[fileCt])
++fileCt;
assert(fileCt > 0);
planeCt = MIN(3, depth);
MALLOCVAR_NOFAIL(convKernelP);
convKernelP->planes = planeCt;
for (plane = 0; plane < planeCt; ++plane) {
if (plane < fileCt) {
const char * const fileName = fileNameList[plane];
FILE * ifP;
unsigned int thisWidth, thisHeight;
ifP = pm_openr(fileName);
readPlaneFile(ifP, &convKernelP->weight[plane],
&thisWidth, &thisHeight);
if (plane == 0) {
width = thisWidth;
height = thisHeight;
} else {
if (thisWidth != width)
pm_error("Convolution matrix files show two different "
"widths: %u and %u", width, thisWidth);
if (thisHeight != height)
pm_error("Convolution matrix files show two different "
"heights: %u and %u", height, thisHeight);
}
pm_close(ifP);
} else {
assert(plane > 0);
copyWeight(convKernelP->weight[0], width, height,
&convKernelP->weight[plane]);
}
}
if (normalize)
normalizeKernel(convKernelP);
convKernelP->cols = width;
convKernelP->rows = height;
convKernelP->bias = bias;
*convKernelPP = convKernelP;
}
static void
getKernel(struct cmdlineInfo const cmdline,
unsigned int const depth,
struct ConvKernel ** const convKernelPP) {
/*----------------------------------------------------------------------------
Figure out what the convolution kernel is. It can come from various
sources in various forms, as described on the command line, represented
by 'cmdline'.
We generate a kernel object in standard form (free of any indication of
where it came from) and return a handle to it as *convKernelPP.
----------------------------------------------------------------------------*/
struct ConvKernel * convKernelP;
if (cmdline.pnmMatrixFileName)
getKernelPnm(cmdline.pnmMatrixFileName, depth, !cmdline.nooffset,
&convKernelP);
else if (cmdline.matrixfile)
convKernelCreateSimpleFile(cmdline.matrixfile, cmdline.normalize,
depth, cmdline.bias, &convKernelP);
else if (cmdline.matrixSpec)
convKernelCreateMatrixOpt(cmdline.matrix, cmdline.normalize,
depth, cmdline.bias, &convKernelP);
warnBadKernel(convKernelP);
*convKernelPP = convKernelP;
}
static void
validateEnoughImageToConvolve(const struct pam * const inpamP,
const struct ConvKernel * const convKernelP) {
/*----------------------------------------------------------------------------
Abort program if the image isn't big enough in both directions to have
at least one convolved pixel.
The program could theoretically operate with an image smaller than that by
simply outputting the input unchanged (like it does with the edges of an
image anyway), but we're too lazy to write code for this special case. The
simple code expects the unconvolved edges to exist full-size and some of it
convolves the first convolveable row and/or column specially and expects it
to exist.
-----------------------------------------------------------------------------*/
if (inpamP->height < convKernelP->rows + 1)
pm_error("Image is too short (%u rows) to convolve with this "
"%u-row convolution kernel.",
inpamP->height, convKernelP->rows);
if (inpamP->width < convKernelP->cols + 1)
pm_error("Image is too narrow (%u columns) to convolve with this "
"%u-column convolution kernel.",
inpamP->width, convKernelP->cols);
}
static tuple **
allocRowbuf(struct pam * const pamP,
unsigned int const height) {
tuple ** rowbuf;
MALLOCARRAY(rowbuf, height);
if (rowbuf == NULL)
pm_error("Failed to allocate %u-row buffer", height);
else {
unsigned int row;
for (row = 0; row < height; ++row)
rowbuf[row] = pnm_allocpamrow(pamP);
}
return rowbuf;
}
static void
freeRowbuf(tuple ** const rowbuf,
unsigned int const height) {
unsigned int row;
for (row = 0; row < height; ++row)
pnm_freepamrow(rowbuf[row]);
free(rowbuf);
}
static void
readAndScaleRow(struct pam * const inpamP,
tuple * const inrow,
sample const newMaxval,
unsigned int const newDepth) {
pnm_readpamrow(inpamP, inrow);
if (newMaxval != inpamP->maxval)
pnm_scaletuplerow(inpamP, inrow, inrow, newMaxval);
if (newDepth == 3 && inpamP->depth == 1)
pnm_makerowrgb(inpamP, inrow);
}
static void
readAndScaleRows(struct pam * const inpamP,
unsigned int const count,
tuple ** const rowbuf,
sample const outputMaxval,
unsigned int const outputDepth) {
/*----------------------------------------------------------------------------
Read in 'count' rows into rowbuf[].
Scale the contents to maxval 'outputMaxval' and expand to depth
'outputDepth'.
-----------------------------------------------------------------------------*/
unsigned int row;
for (row = 0; row < count; ++row)
readAndScaleRow(inpamP, rowbuf[row], outputMaxval, outputDepth);
}
static void
writePamRowBiased(struct pam * const outpamP,
tuple * const row,
unsigned int const bias) {
/*----------------------------------------------------------------------------
Write row[] to the output file according to *outpamP, but with
'bias' added to each sample value, clipped to maxval.
-----------------------------------------------------------------------------*/
if (bias == 0)
pnm_writepamrow(outpamP, row);
else {
unsigned int col;
tuple * const outrow = pnm_allocpamrow(outpamP);
for (col = 0; col < outpamP->width; ++col) {
unsigned int plane;
for (plane = 0; plane < outpamP->depth; ++plane) {
outrow[col][plane] =
MIN(outpamP->maxval, bias + row[col][plane]);
}
}
pnm_writepamrow(outpamP, outrow);
pnm_freepamrow(outrow);
}
}
static void
writeUnconvolvedTop(struct pam * const outpamP,
const struct ConvKernel * const convKernelP,
tuple ** const rowbuf) {
/*----------------------------------------------------------------------------
Write out the top part that we can't convolve because the convolution
kernel runs off the top of the image.
Assume those rows are in the window rowbuf[], with the top row of the
image as the first row in rowbuf[].
-----------------------------------------------------------------------------*/
unsigned int row;
for (row = 0; row < convKernelP->rows/2; ++row)
writePamRowBiased(outpamP, rowbuf[row], convKernelP->bias);
}
static void
writeUnconvolvedBottom(struct pam * const outpamP,
const struct ConvKernel * const convKernelP,
unsigned int const windowHeight,
tuple ** const circMap) {
/*----------------------------------------------------------------------------
Write out the bottom part that we can't convolve because the convolution
kernel runs off the bottom of the image.
Assume the 'windowHeight' rows at the bottom of the image are in the row
buffer, mapped by 'circMap' such that the top of the window is circMap[0].
-----------------------------------------------------------------------------*/
unsigned int row;
for (row = windowHeight - convKernelP->rows / 2;
row < windowHeight;
++row) {
writePamRowBiased(outpamP, circMap[row], convKernelP->bias);
}
}
static void
setupCircMap(tuple ** const circMap,
tuple ** const rowbuf,
unsigned int const windowHeight,
unsigned int const topRowbufRow) {
/*----------------------------------------------------------------------------
Set up circMap[] to reflect the case that index 'topRowbufRow' of rowbuf[]
is for the topmost row in the window.
-----------------------------------------------------------------------------*/
unsigned int row;
unsigned int i;
i = 0;
for (row = topRowbufRow; row < windowHeight; ++i, ++row)
circMap[i] = rowbuf[row];
for (row = 0; row < topRowbufRow; ++row, ++i)
circMap[i] = rowbuf[row];
}
static void
convolveGeneralRowPlane(struct pam * const pamP,
tuple ** const window,
const struct ConvKernel * const convKernelP,
unsigned int const plane,
tuple * const outputrow) {
/*----------------------------------------------------------------------------
Given a window of input window[], where window[0] is the top row of the
window and the window is the height of the convolution kernel, convolve
Plane 'plane' of the row at the center of the window.
Return the convolved row as outputrow[].
*pamP describes the rows in window[] (but not the number of rows).
*convKernelP is the convolution kernel to use.
-----------------------------------------------------------------------------*/
unsigned int const crowso2 = convKernelP->rows / 2;
unsigned int const ccolso2 = convKernelP->cols / 2;
unsigned int col;
for (col = 0; col < pamP->width; ++col) {
if (col < ccolso2 || col >= pamP->width - ccolso2)
/* The unconvolved left or right edge */
outputrow[col][plane] =
clipSample(convKernelP->bias + window[crowso2][col][plane],
pamP->maxval);
else {
unsigned int const leftcol = col - ccolso2;
unsigned int crow;
float sum;
sum = 0.0;
for (crow = 0; crow < convKernelP->rows; ++crow) {
const tuple * const leftrptr = &window[crow][leftcol];
unsigned int ccol;
for (ccol = 0; ccol < convKernelP->cols; ++ccol)
sum += leftrptr[ccol][plane] *
convKernelP->weight[plane][crow][ccol];
}
outputrow[col][plane] =
clipSample(convKernelP->bias + sum + 0.5, pamP->maxval);
}
}
}
static void
convolveGeneral(struct pam * const inpamP,
struct pam * const outpamP,
const struct ConvKernel * const convKernelP) {
/*----------------------------------------------------------------------------
Do the convolution without taking advantage of any useful redundancy in the
convolution matrix.
-----------------------------------------------------------------------------*/
tuple ** rowbuf;
/* A vertical window of the input image. It holds as many rows as the
convolution kernel covers -- the rows we're currently using to
create output rows. It is a circular buffer.
*/
tuple ** circMap;
/* A map from image row number within window to element of rowbuf[].
E.g. if rowbuf[] if 5 rows high and rowbuf[2] contains the
topmost row, then circMap[0] == 2, circMap[1] = 3,
circMap[4] = 1. You could calculate the same thing with a mod
function, but that is sometimes more expensive.
*/
tuple * outputrow;
/* The convolved row to be output */
unsigned int row;
/* Row number of the bottom of the current convolution window;
i.e. the row to be read or just read from the input file.
*/
rowbuf = allocRowbuf(outpamP, convKernelP->rows);
MALLOCARRAY_NOFAIL(circMap, convKernelP->rows);
outputrow = pnm_allocpamrow(outpamP);
pnm_writepaminit(outpamP);
assert(convKernelP->rows > 0);
readAndScaleRows(inpamP, convKernelP->rows - 1, rowbuf,
outpamP->maxval, outpamP->depth);
writeUnconvolvedTop(outpamP, convKernelP, rowbuf);
/* Now the rest of the image - read in the row at the bottom of the
window, then convolve and write out the row in the middle of the
window.
*/
for (row = convKernelP->rows - 1; row < inpamP->height; ++row) {
unsigned int const rowbufRow = row % convKernelP->rows;
unsigned int plane;
setupCircMap(circMap, rowbuf, convKernelP->rows,
(row + 1) % convKernelP->rows);
readAndScaleRow(inpamP, rowbuf[rowbufRow],
outpamP->maxval, outpamP->depth);
for (plane = 0; plane < outpamP->depth; ++plane)
convolveGeneralRowPlane(outpamP, circMap, convKernelP, plane,
outputrow);
pnm_writepamrow(outpamP, outputrow);
}
writeUnconvolvedBottom(outpamP, convKernelP, convKernelP->rows, circMap);
freeRowbuf(rowbuf, convKernelP->rows);
}
static sample **
allocSum(unsigned int const depth,
unsigned int const size) {
sample ** sum;
MALLOCARRAY(sum, depth);
if (!sum)
pm_error("Could not allocate memory for %u planes of sums", depth);
else {
unsigned int plane;
for (plane = 0; plane < depth; ++plane) {
MALLOCARRAY(sum[plane], size);
if (!sum[plane])
pm_error("Could not allocate memory for %u sums", size);
}
}
return sum;
}
static void
freeSum(sample ** const sum,
unsigned int const depth) {
unsigned int plane;
for (plane = 0; plane < depth; ++plane)
free(sum[plane]);
free(sum);
}
static void
computeInitialColumnSums(struct pam * const pamP,
tuple ** const window,
const struct ConvKernel * const convKernelP,
sample ** const convColumnSum) {
/*----------------------------------------------------------------------------
Add up the sum of each column of window[][], whose rows are described
by *inpamP. The window's height is that of tthe convolution kernel
*convKernelP.
Return it as convColumnSum[][].
-----------------------------------------------------------------------------*/
unsigned int plane;
for (plane = 0; plane < pamP->depth; ++plane) {
unsigned int col;
for (col = 0; col < pamP->width; ++col) {
unsigned int row;
for (row = 0, convColumnSum[plane][col] = 0;
row < convKernelP->rows;
++row)
convColumnSum[plane][col] += window[row][col][plane];
}
}
}
static void
convolveRowWithColumnSumsMean(const struct ConvKernel * const convKernelP,
struct pam * const pamP,
tuple ** const window,
tuple * const outputrow,
sample ** const convColumnSum) {
/*----------------------------------------------------------------------------
Convolve the rows in window[][] -- one convolution kernel's worth, where
window[0] is the top. Put the result in outputrow[].
Use convColumnSum[][]: the sum of the pixels in each column over the
convolution window, where convColumnSum[P][C] is the sum for Plane P of
Column C.
Assume the convolution weight is the same everywhere within the convolution
matrix. Ergo, we don't need any more information about the contents of a
column than the sum of its pixels.
Except that we need the individual input pixels for the edges (which can't
be convolved because the convolution window runs off the edge).
-----------------------------------------------------------------------------*/
unsigned int plane;
for (plane = 0; plane < pamP->depth; ++plane) {
unsigned int const crowso2 = convKernelP->rows / 2;
unsigned int const ccolso2 = convKernelP->cols / 2;
float const weight = convKernelP->weight[plane][0][0];
unsigned int col;
sample gisum;
for (col = 0, gisum = 0; col < pamP->width; ++col) {
if (col < ccolso2 || col >= pamP->width - ccolso2) {
/* The unconvolved left or right edge */
outputrow[col][plane] =
clipSample(convKernelP->bias +
window[crowso2][col][plane],
pamP->maxval);
} else {
if (col == ccolso2) {
unsigned int const leftcol = col - ccolso2;
unsigned int ccol;
for (ccol = 0; ccol < convKernelP->cols; ++ccol)
gisum += convColumnSum[plane][leftcol + ccol];
} else {
/* Column numbers to subtract or add to isum */
unsigned int const subcol = col - ccolso2 - 1;
unsigned int const addcol = col + ccolso2;
gisum -= convColumnSum[plane][subcol];
gisum += convColumnSum[plane][addcol];
}
outputrow[col][plane] =
clipSample(convKernelP->bias + gisum * weight + 0.5,
pamP->maxval);
}
}
}
}
static void
convolveRowWithColumnSumsVertical(
const struct ConvKernel * const convKernelP,
struct pam * const pamP,
tuple ** const window,
tuple * const outputrow,
sample ** const convColumnSum) {
/*----------------------------------------------------------------------------
Convolve the rows in window[][] -- one convolution kernel's worth, where
window[0] is the top. Put the result in outputrow[].
Use convColumnSum[][]: the sum of the pixels in each column over the
convolution window, where convColumnSum[P][C] is the sum for Plane P of
Column C.
Assume the convolution weight is the same everywhere within a column. Ergo,
we don't need any more information about the contents of a column than the
sum of its pixels.
Except that we need the individual input pixels for the edges (which can't
be convolved because the convolution window runs off the edge).
-----------------------------------------------------------------------------*/
unsigned int const crowso2 = convKernelP->rows / 2;
unsigned int const ccolso2 = convKernelP->cols / 2;
unsigned int plane;
for (plane = 0; plane < pamP->depth; ++plane) {
unsigned int col;
for (col = 0; col < pamP->width; ++col) {
if (col < ccolso2 || col >= pamP->width - ccolso2) {
/* The unconvolved left or right edge */
outputrow[col][plane] =
clipSample(convKernelP->bias +
window[crowso2][col][plane],
pamP->maxval);
} else {
unsigned int const leftcol = col - ccolso2;
unsigned int ccol;
float sum;
sum = 0.0;
for (ccol = 0; ccol < convKernelP->cols; ++ccol)
sum += convColumnSum[plane][leftcol + ccol] *
convKernelP->weight[plane][0][ccol];
outputrow[col][plane] =
clipSample(convKernelP->bias + sum + 0.5, pamP->maxval);
}
}
}
}
static void
convolveMeanRowPlane(struct pam * const pamP,
tuple ** const window,
const struct ConvKernel * const convKernelP,
unsigned int const plane,
tuple * const outputrow,
sample * const convColumnSum) {
/*----------------------------------------------------------------------------
Convolve plane 'plane' of one row of the image. window[] is a vertical
window of the input image, one convolution kernel plus one row high. The
top row (window[0] is the row that just passed out of the convolution
window, whereas the bottom row is the row that just entered it.
*pamP describes the tuple rows in window[] and also 'outputrow' (they are
the same).
Return the convolution result as outputrow[].
We update convColumnSum[] for use in convolving later rows.
-----------------------------------------------------------------------------*/
unsigned int const crowso2 = convKernelP->rows / 2;
unsigned int const ccolso2 = convKernelP->cols / 2;
float const weight = convKernelP->weight[plane][0][0];
unsigned int const subrow = 0;
/* Row just above convolution window -- what we subtract from
running sum
*/
unsigned int const addrow = 1 + (convKernelP->rows - 1);
/* Bottom row of convolution window: What we add to running sum */
unsigned int col;
sample gisum;
for (col = 0, gisum = 0; col < pamP->width; ++col) {
if (col < ccolso2 || col >= pamP->width - ccolso2) {
/* The unconvolved left or right edge */
outputrow[col][plane] =
clipSample(convKernelP->bias + window[crowso2][col][plane],
pamP->maxval);
} else {
if (col == ccolso2) {
unsigned int const leftcol = col - ccolso2;
unsigned int ccol;
for (ccol = 0; ccol < convKernelP->cols; ++ccol) {
sample * const thisColumnSumP =
&convColumnSum[leftcol + ccol];
*thisColumnSumP = *thisColumnSumP
- window[subrow][ccol][plane]
+ window[addrow][ccol][plane];
gisum += *thisColumnSumP;
}
} else {
/* Column numbers to subtract or add to isum */
unsigned int const subcol = col - ccolso2 - 1;
unsigned int const addcol = col + ccolso2;
convColumnSum[addcol] = convColumnSum[addcol]
- window[subrow][addcol][plane]
+ window[addrow][addcol][plane];
gisum = gisum - convColumnSum[subcol] + convColumnSum[addcol];
}
outputrow[col][plane] =
clipSample(convKernelP->bias + gisum * weight + 0.5,
pamP->maxval);
}
}
}
typedef void convolver(struct pam * const inpamP,
struct pam * const outpamP,
const struct ConvKernel * const convKernelP);
static convolver convolveMean;
static void
convolveMean(struct pam * const inpamP,
struct pam * const outpamP,
const struct ConvKernel * const convKernelP) {
/*----------------------------------------------------------------------------
Mean Convolution
This is for the common case where you just want the target pixel replaced
with the average value of its neighbors. This can work much faster than the
general case because you can reduce the number of floating point operations
that are required since all the weights are the same. You will only need to
multiply by the weight once, not for every pixel in the convolution matrix.
This algorithm works as follows: At a certain vertical position in the
image, create sums for each column fragment of the convolution height all
the way across the image. Then add those sums across the convolution width
to obtain the total sum over the convolution area and multiply that sum by
the weight. As you move left to right, to calculate the next output pixel,
take the total sum you just generated, add in the value of the next column
and subtract the value of the leftmost column. Multiply that by the weight
and that's it. As you move down a row, calculate new column sums by using
previous sum for that column and adding in pixel on current row and
subtracting pixel in top row.
We assume the convolution kernel is uniform -- same weights everywhere.
We assume the output is PGM and the input is PGM or PBM.
-----------------------------------------------------------------------------*/
unsigned int const windowHeight = convKernelP->rows + 1;
/* The height of the window we keep in the row buffer. The buffer
contains the rows covered by the convolution kernel, plus the row
immediately above that. The latter is there because to compute
the sliding mean, we need to subtract off the row that the
convolution kernel just slid past.
*/
unsigned int const crowso2 = convKernelP->rows / 2;
/* Number of rows of the convolution window above/below the current
row. Note that the convolution window is always an odd number
of rows, so this rounds down.
*/
tuple ** rowbuf;
/* Same as in convolveGeneral */
tuple ** circMap;
/* Same as in convolveGeneral */
tuple * outputrow;
/* Same as in convolveGeneral */
unsigned int row;
/* Row number of the row currently being convolved; i.e. the row
at the center of the current convolution window and the row of
the output file to be output next.
*/
sample ** convColumnSum; /* Malloc'd */
/* convColumnSum[plane][col] is the sum of Plane 'plane' of all the
pixels in the Column 'col' of the image within the current vertical
convolution window. I.e. if our convolution kernel is 5 rows high
and we're now looking at Rows 10-15, convColumn[0][3] is the sum of
Plane 0 of Column 3, Rows 10-15.
*/
rowbuf = allocRowbuf(outpamP, windowHeight);
MALLOCARRAY_NOFAIL(circMap, windowHeight);
outputrow = pnm_allocpamrow(outpamP);
convColumnSum = allocSum(outpamP->depth, outpamP->width);
pnm_writepaminit(outpamP);
readAndScaleRows(inpamP, convKernelP->rows, rowbuf,
outpamP->maxval, outpamP->depth);
writeUnconvolvedTop(outpamP, convKernelP, rowbuf);
setupCircMap(circMap, rowbuf, windowHeight, 0);
/* Convolve the first window the long way */
computeInitialColumnSums(inpamP, circMap, convKernelP, convColumnSum);
convolveRowWithColumnSumsMean(convKernelP, outpamP, circMap,
outputrow, convColumnSum);
pnm_writepamrow(outpamP, outputrow);
/* For all subsequent rows do it this way as the columnsums have been
generated. Now we can use them to reduce further calculations. We
slide the window down a row at a time by reading a row into the bottom
of the circular buffer, adding it to the column sums, then subtracting
out the row at the top of the circular buffer.
*/
for (row = crowso2 + 1; row < inpamP->height - crowso2; ++row) {
unsigned int const windowBotRow = row + crowso2;
/* Row number of bottom-most row present in rowbuf[],
which is the bottom of the convolution window for the current
row.
*/
unsigned int const windowTopRow = row - crowso2 - 1;
/* Row number of top-most row present in rowbuf[], which is
the top row of the convolution window for the previous row:
just above the convolution window for the current row.
*/
unsigned int plane;
readAndScaleRow(inpamP, rowbuf[windowBotRow % windowHeight],
outpamP->maxval, outpamP->depth);
setupCircMap(circMap, rowbuf, windowHeight,
windowTopRow % windowHeight);
for (plane = 0; plane < outpamP->depth; ++plane)
convolveMeanRowPlane(outpamP, circMap, convKernelP, plane,
outputrow, convColumnSum[plane]);
pnm_writepamrow(outpamP, outputrow);
}
writeUnconvolvedBottom(outpamP, convKernelP, windowHeight, circMap);
freeSum(convColumnSum, outpamP->depth);
freeRowbuf(rowbuf, windowHeight);
}
static sample ***
allocRowSum(unsigned int const depth,
unsigned int const height,
unsigned int const width) {
sample *** sum;
MALLOCARRAY(sum, depth);
if (!sum)
pm_error("Could not allocate memory for %u planes of sums", depth);
else {
unsigned int plane;
for (plane = 0; plane < depth; ++plane) {
MALLOCARRAY(sum[plane], height);
if (!sum[plane])
pm_error("Could not allocate memory for %u rows of sums",
height);
else {
unsigned int row;
for (row = 0; row < height; ++row) {
MALLOCARRAY(sum[plane][row], width);
if (!sum[plane][row])
pm_error("Could not allocate memory "
"for a row of sums");
}
}
}
}
return sum;
}
static void
freeRowSum(sample *** const sum,
unsigned int const depth,
unsigned int const height) {
unsigned int plane;
for (plane = 0; plane < depth; ++plane) {
unsigned int row;
for (row = 0; row < height; ++row)
free(sum[plane][row]);
free(sum[plane]);
}
free(sum);
}
static void
convolveHorizontalRowPlane0(struct pam * const outpamP,
tuple ** const window,
const struct ConvKernel * const convKernelP,
unsigned int const plane,
tuple * const outputrow,
sample ** const sumWindow) {
/*----------------------------------------------------------------------------
Convolve the first convolvable row and generate the row sums from scratch.
(For subsequent rows, Caller can just incrementally modify the row sums).
-----------------------------------------------------------------------------*/
unsigned int const crowso2 = convKernelP->rows / 2;
unsigned int const ccolso2 = convKernelP->cols / 2;
unsigned int col;
for (col = 0; col < outpamP->width; ++col) {
if (col < ccolso2 || col >= outpamP->width - ccolso2) {
/* The unconvolved left or right edge */
outputrow[col][plane] =
clipSample(convKernelP->bias + window[crowso2][col][plane],
outpamP->maxval);
} else {
float matrixSum;
if (col == ccolso2) {
/* This is the first column for which the entire convolution
kernel fits within the image horizontally. I.e. the window
starts at the left edge of the image.
*/
unsigned int const leftcol = 0;
unsigned int crow;
for (crow = 0, matrixSum = 0.0;
crow < convKernelP->rows;
++crow) {
tuple * const tuplesInWindow = &window[crow][leftcol];
unsigned int ccol;
sumWindow[crow][col] = 0;
for (ccol = 0; ccol < convKernelP->cols; ++ccol)
sumWindow[crow][col] += tuplesInWindow[ccol][plane];
matrixSum +=
sumWindow[crow][col] *
convKernelP->weight[plane][crow][0];
}
} else {
unsigned int const subcol = col - ccolso2 - 1;
unsigned int const addcol = col + ccolso2;
unsigned int crow;
for (crow = 0, matrixSum = 0.0;
crow < convKernelP->rows;
++crow) {
sumWindow[crow][col] = sumWindow[crow][col-1] +
+ window[crow][addcol][plane]
- window[crow][subcol][plane];
matrixSum +=
sumWindow[crow][col] *
convKernelP->weight[plane][crow][0];
}
}
outputrow[col][plane] =
clipSample(convKernelP->bias + matrixSum + 0.5,
outpamP->maxval);
}
}
}
static void
setupCircMap2(tuple ** const rowbuf,
sample ** const convRowSum,
tuple ** const circMap,
sample ** const sumCircMap,
unsigned int const windowTopRow,
unsigned int const windowHeight) {
unsigned int const toprow = windowTopRow % windowHeight;
unsigned int crow;
unsigned int i;
i = 0;
for (crow = toprow; crow < windowHeight; ++i, ++crow) {
circMap[i] = rowbuf[crow];
sumCircMap[i] = convRowSum[crow];
}
for (crow = 0; crow < toprow; ++crow, ++i) {
circMap[i] = rowbuf[crow];
sumCircMap[i] = convRowSum[crow];
}
}
static void
convolveHorizontalRowPlane(struct pam * const pamP,
tuple ** const window,
const struct ConvKernel * const convKernelP,
unsigned int const plane,
tuple * const outputrow,
sample ** const sumWindow) {
/*----------------------------------------------------------------------------
Convolve the row at the center of the convolution window described
by *convKernelP, where window[][] contains the input image tuples
for the window. *pamP describes the rows in it, but its height is
one convolution window.
Convolve only the Plane 'plane' samples.
sumWindow[][] mirrors window[]. sumWindow[R] applies to window[R].
sumWindow[R][C] is the sum of samples in row R of the convolution window
centered on Column C. We assume the convolution weights are the same
everywhere within a row of the kernel, so that we can generate these
sums incrementally, moving to the right through the image.
-----------------------------------------------------------------------------*/
unsigned int const ccolso2 = convKernelP->cols / 2;
unsigned int const crowso2 = convKernelP->rows / 2;
unsigned int const newrow = convKernelP->rows - 1;
unsigned int col;
for (col = 0; col < pamP->width; ++col) {
float matrixSum;
if (col < ccolso2 || col >= pamP->width - ccolso2) {
outputrow[col][plane] =
clipSample(convKernelP->bias + window[crowso2][col][plane],
pamP->maxval);
} else if (col == ccolso2) {
unsigned int const leftcol = 0;
/* Window is up againt left edge of image */
{
unsigned int ccol;
sumWindow[newrow][col] = 0;
for (ccol = 0; ccol < convKernelP->cols; ++ccol)
sumWindow[newrow][col] +=
window[newrow][leftcol + ccol][plane];
}
{
unsigned int crow;
for (crow = 0, matrixSum = 0.0;
crow < convKernelP->rows;
++crow) {
matrixSum += sumWindow[crow][col] *
convKernelP->weight[plane][crow][0];
}
}
} else {
unsigned int const subcol = col - ccolso2 - 1;
unsigned int const addcol = col + ccolso2;
unsigned int crow;
sumWindow[newrow][col] =
sumWindow[newrow][col-1]
+ window[newrow][addcol][plane]
- window[newrow][subcol][plane];
for (crow = 0, matrixSum = 0.0; crow < convKernelP->rows; ++crow) {
matrixSum += sumWindow[crow][col] *
convKernelP->weight[plane][crow][0];
}
}
outputrow[col][plane] =
clipSample(convKernelP->bias + matrixSum + 0.5, pamP->maxval);
}
}
static convolver convolveHorizontal;
static void
convolveHorizontal(struct pam * const inpamP,
struct pam * const outpamP,
const struct ConvKernel * const convKernelP) {
/*----------------------------------------------------------------------------
Horizontal Convolution
Similar idea to using columnsums of the Mean and Vertical convolution, but
uses temporary sums of row values. Need to multiply by weights once for
each row in the convolution kernel. Each time we start a new line, we must
recalculate the initials rowsums for the newest row only. Uses queue to
still access previous row sums.
-----------------------------------------------------------------------------*/
unsigned int const crowso2 = convKernelP->rows / 2;
/* Same as in convolveMean */
unsigned int const windowHeight = convKernelP->rows;
/* Same as in convolveMean */
tuple ** rowbuf;
/* Same as in convolveGeneral */
tuple ** circMap;
/* Same as in convolveGeneral */
tuple * outputrow;
/* Same as in convolveGeneral */
unsigned int plane;
sample *** convRowSum; /* Malloc'd */
sample ** sumCircMap; /* Malloc'd */
rowbuf = allocRowbuf(inpamP, windowHeight);
MALLOCARRAY_NOFAIL(circMap, windowHeight);
outputrow = pnm_allocpamrow(outpamP);
convRowSum = allocRowSum(outpamP->depth, windowHeight, outpamP->width);
MALLOCARRAY_NOFAIL(sumCircMap, windowHeight);
pnm_writepaminit(outpamP);
readAndScaleRows(inpamP, convKernelP->rows, rowbuf,
outpamP->maxval, outpamP->depth);
writeUnconvolvedTop(outpamP, convKernelP, rowbuf);
setupCircMap(circMap, rowbuf, windowHeight, 0);
/* Convolve the first convolvable row and generate convRowSum[][] */
for (plane = 0; plane < outpamP->depth; ++plane) {
unsigned int crow;
for (crow = 0; crow < convKernelP->rows; ++crow)
sumCircMap[crow] = convRowSum[plane][crow];
convolveHorizontalRowPlane0(outpamP, circMap, convKernelP, plane,
outputrow, sumCircMap);
}
pnm_writepamrow(outpamP, outputrow);
/* Convolve the rest of the rows, using convRowSum[] */
for (plane = 0; plane < outpamP->depth; ++plane) {
unsigned int row;
/* Same as in convolveMean */
for (row = convKernelP->rows/2 + 1;
row < inpamP->height - convKernelP->rows/2;
++row) {
unsigned int const windowBotRow = row + crowso2;
unsigned int const windowTopRow = row - crowso2;
/* Same as in convolveMean */
readAndScaleRow(inpamP, rowbuf[windowBotRow % windowHeight],
outpamP->maxval, outpamP->depth);
setupCircMap2(rowbuf, convRowSum[plane], circMap, sumCircMap,
windowTopRow, windowHeight);
convolveHorizontalRowPlane(outpamP, circMap, convKernelP, plane,
outputrow, sumCircMap);
pnm_writepamrow(outpamP, outputrow);
}
}
writeUnconvolvedBottom(outpamP, convKernelP, windowHeight, circMap);
freeRowSum(convRowSum, outpamP->depth, windowHeight);
freeRowbuf(rowbuf, windowHeight);
}
static void
convolveVerticalRowPlane(struct pam * const pamP,
tuple ** const circMap,
const struct ConvKernel * const convKernelP,
unsigned int const plane,
tuple * const outputrow,
sample * const convColumnSum) {
unsigned int const crowso2 = convKernelP->rows / 2;
unsigned int const ccolso2 = convKernelP->cols / 2;
unsigned int const subrow = 0;
/* Row just above convolution window -- what we subtract from
running sum
*/
unsigned int const addrow = 1 + (convKernelP->rows - 1);
/* Bottom row of convolution window: What we add to running sum */
unsigned int col;
for (col = 0; col < pamP->width; ++col) {
if (col < ccolso2 || col >= pamP->width - ccolso2) {
/* The unconvolved left or right edge */
outputrow[col][plane] =
clipSample(convKernelP->bias + circMap[crowso2][col][plane],
pamP->maxval);
} else {
float matrixSum;
if (col == ccolso2) {
unsigned int const leftcol = 0;
/* Convolution window is againt left edge of image */
unsigned int ccol;
/* Slide window down in the first kernel's worth of columns */
for (ccol = 0; ccol < convKernelP->cols; ++ccol) {
convColumnSum[leftcol + ccol] +=
circMap[addrow][leftcol + ccol][plane];
convColumnSum[leftcol + ccol] -=
circMap[subrow][leftcol + ccol][plane];
}
for (ccol = 0, matrixSum = 0.0;
ccol < convKernelP->cols;
++ccol) {
matrixSum += convColumnSum[leftcol + ccol] *
convKernelP->weight[plane][0][ccol];
}
} else {
unsigned int const leftcol = col - ccolso2;
unsigned int const addcol = col + ccolso2;
unsigned int ccol;
/* Slide window down in the column that just entered the
window
*/
convColumnSum[addcol] += circMap[addrow][addcol][plane];
convColumnSum[addcol] -= circMap[subrow][addcol][plane];
for (ccol = 0, matrixSum = 0.0;
ccol < convKernelP->cols;
++ccol) {
matrixSum += convColumnSum[leftcol + ccol] *
convKernelP->weight[plane][0][ccol];
}
}
outputrow[col][plane] =
clipSample(convKernelP->bias + matrixSum + 0.5, pamP->maxval);
}
}
}
static convolver convolveVertical;
static void
convolveVertical(struct pam * const inpamP,
struct pam * const outpamP,
const struct ConvKernel * const convKernelP) {
/* Uses column sums as in mean convolution, above */
unsigned int const windowHeight = convKernelP->rows + 1;
/* Same as in convolveMean */
unsigned int const crowso2 = convKernelP->rows / 2;
/* Same as in convolveMean */
tuple ** rowbuf;
/* Same as in convolveGeneral */
tuple ** circMap;
/* Same as in convolveGeneral */
tuple * outputrow;
/* Same as in convolveGeneral */
unsigned int row;
/* Row number of next row to read in from the file */
sample ** convColumnSum; /* Malloc'd */
/* Same as in convolveMean() */
rowbuf = allocRowbuf(inpamP, windowHeight);
MALLOCARRAY_NOFAIL(circMap, windowHeight);
outputrow = pnm_allocpamrow(outpamP);
convColumnSum = allocSum(outpamP->depth, outpamP->width);
pnm_writepaminit(outpamP);
readAndScaleRows(inpamP, convKernelP->rows, rowbuf,
outpamP->maxval, outpamP->depth);
writeUnconvolvedTop(outpamP, convKernelP, rowbuf);
setupCircMap(circMap, rowbuf, windowHeight, 0);
/* Convolve the first window the long way */
computeInitialColumnSums(inpamP, circMap, convKernelP, convColumnSum);
convolveRowWithColumnSumsVertical(convKernelP, outpamP, circMap,
outputrow, convColumnSum);
pnm_writepamrow(outpamP, outputrow);
for (row = crowso2 + 1; row < inpamP->height - crowso2; ++row) {
unsigned int const windowBotRow = row + crowso2;
/* Same as in convolveMean */
unsigned int const windowTopRow = row - crowso2 - 1;
/* Same as in convolveMean */
unsigned int plane;
readAndScaleRow(inpamP, rowbuf[windowBotRow % windowHeight],
outpamP->maxval, outpamP->depth);
/* Remember the window is one row higher than the convolution
kernel. The top row in the window is not part of this convolution.
*/
setupCircMap(circMap, rowbuf, windowHeight,
windowTopRow % windowHeight);
for (plane = 0; plane < outpamP->depth; ++plane)
convolveVerticalRowPlane(outpamP, circMap, convKernelP, plane,
outputrow, convColumnSum[plane]);
pnm_writepamrow(outpamP, outputrow);
}
writeUnconvolvedBottom(outpamP, convKernelP, windowHeight, circMap);
freeSum(convColumnSum, outpamP->depth);
freeRowbuf(rowbuf, windowHeight);
}
struct convolveType {
convolver * convolve;
};
static bool
convolutionIncludesHorizontal(const struct ConvKernel * const convKernelP) {
bool horizontal;
unsigned int row;
for (row = 0, horizontal = TRUE;
row < convKernelP->rows && horizontal;
++row) {
unsigned int col;
for (col = 1, horizontal = TRUE;
col < convKernelP->cols && horizontal;
++col) {
unsigned int plane;
for (plane = 0; plane < convKernelP->planes; ++plane) {
if (convKernelP->weight[plane][row][col] !=
convKernelP->weight[plane][row][0])
horizontal = FALSE;
}
}
}
return horizontal;
}
static bool
convolutionIncludesVertical(const struct ConvKernel * const convKernelP) {
bool vertical;
unsigned int col;
for (col = 0, vertical = TRUE;
col < convKernelP->cols && vertical;
++col) {
unsigned int row;
for (row = 1, vertical = TRUE;
row < convKernelP->rows && vertical;
++row) {
unsigned int plane;
for (plane = 0; plane < convKernelP->planes; ++plane) {
if (convKernelP->weight[plane][row][col] !=
convKernelP->weight[plane][0][col])
vertical = FALSE;
}
}
}
return vertical;
}
static void
determineConvolveType(const struct ConvKernel * const convKernelP,
struct convolveType * const typeP) {
/*----------------------------------------------------------------------------
Determine which form of convolution is best to convolve the kernel
*convKernelP over tuples[][]. The general form always works, but with some
special case convolution matrices, faster forms of convolution are
possible.
We don't check for the case that the planes can have differing types. We
handle only cases where all planes are of the same special case.
-----------------------------------------------------------------------------*/
bool const horizontal = convolutionIncludesHorizontal(convKernelP);
bool const vertical = convolutionIncludesVertical(convKernelP);
if (horizontal && vertical) {
pm_message("Convolution is a simple mean horizontally and vertically");
typeP->convolve = convolveMean;
} else if (horizontal) {
pm_message("Convolution is a simple mean horizontally");
typeP->convolve = convolveHorizontal;
} else if (vertical) {
pm_message("Convolution is a simple mean vertically");
typeP->convolve = convolveVertical;
} else {
typeP->convolve = convolveGeneral;
}
}
int
main(int argc, char * argv[]) {
struct cmdlineInfo cmdline;
FILE * ifP;
struct convolveType convolveType;
struct ConvKernel * convKernelP;
struct pam inpam;
struct pam outpam;
pnm_init(&argc, argv);
parseCommandLine(argc, argv, &cmdline);
ifP = pm_openr(cmdline.inputFileName);
pnm_readpaminit(ifP, &inpam, PAM_STRUCT_SIZE(allocation_depth));
getKernel(cmdline, inpam.depth, &convKernelP);
outpam = inpam; /* initial value */
outpam.file = stdout;
if ((PNM_FORMAT_TYPE(inpam.format) == PBM_TYPE ||
PNM_FORMAT_TYPE(inpam.format) == PGM_TYPE) &&
convKernelP->planes == 3) {
pm_message("promoting to PPM");
outpam.format = PPM_FORMAT;
}
outpam.depth = MAX(inpam.depth, convKernelP->planes);
pnm_setminallocationdepth(&inpam, MAX(inpam.depth, outpam.depth));
validateEnoughImageToConvolve(&inpam, convKernelP);
/* Handle certain special cases when runtime can be improved. */
determineConvolveType(convKernelP, &convolveType);
convolveType.convolve(&inpam, &outpam, convKernelP);
convKernelDestroy(convKernelP);
pm_close(stdout);
pm_close(ifP);
return 0;
}
/******************************************************************************
SOME CHANGE HISTORY
*******************************************************************************
Version 2.0.1 Changes
---------------------
Fixed four lines that were improperly allocated as sizeof( float ) when they
should have been sizeof( long ).
Version 2.0 Changes
-------------------
Version 2.0 was written by Mike Burns (derived from Jef Poskanzer's
original) in January 1995.
Reduce run time by general optimizations and handling special cases of
convolution matrices. Program automatically determines if convolution
matrix is one of the types it can make use of so no extra command line
arguments are necessary.
Examples of convolution matrices for the special cases are
Mean Horizontal Vertical
x x x x x x x y z
x x x y y y x y z
x x x z z z x y z
I don't know if the horizontal and vertical ones are of much use, but
after working on the mean convolution, it gave me ideas for the other two.
Some other compiler dependent optimizations
-------------------------------------------
Created separate functions as code was getting too large to put keep both
PGM and PPM cases in same function and also because SWITCH statement in
inner loop can take progressively more time the larger the size of the
convolution matrix. GCC is affected this way.
Removed use of MOD (%) operator from innermost loop by modifying manner in
which the current xelbuf[] is chosen.
This is from the file pnmconvol.README, dated August 1995, extracted in
April 2000, which was in the March 1994 Netpbm release:
-----------------------------------------------------------------------------
This is a faster version of the pnmconvol.c program that comes with netpbm.
There are no changes to the command line arguments, so this program can be
dropped in without affecting the way you currently run it. An updated man
page is also included.
My original intention was to improve the running time of applying a
neighborhood averaging convolution matrix to an image by using a different
algorithm, but I also improved the run time of performing the general
convolution by optimizing that code. The general convolution runs in 1/4 to
1/2 of the original time and neighborhood averaging runs in near constant
time for the convolution masks I tested (3x3, 5x5, 7x7, 9x9).
Sample times for two computers are below. Times are in seconds as reported
by /bin/time for a 512x512 pgm image.
Matrix IBM RS6000 SUN IPC
Size & Type 220
3x3
original pnmconvol 6.3 18.4
new general case 3.1 6.0
new average case 1.8 2.6
5x5
original pnmconvol 11.9 44.4
new general case 5.6 11.9
new average case 1.8 2.6
7x7
original pnmconvol 20.3 82.9
new general case 9.4 20.7
new average case 1.8 2.6
9x9
original pnmconvol 30.9 132.4
new general case 14.4 31.8
new average case 1.8 2.6
Send all questions/comments/bugs to me at burns@chem.psu.edu.
- Mike
----------------------------------------------------------------------------
Mike Burns System Administrator
burns@chem.psu.edu Department of Chemistry
(814) 863-2123 The Pennsylvania State University
----------------------------------------------------------------------------
*/
|